Penalty Alternating Direction Methods for Mixed- Integer Optimization: A New View on Feasibility Pumps

Size: px
Start display at page:

Download "Penalty Alternating Direction Methods for Mixed- Integer Optimization: A New View on Feasibility Pumps"

Transcription

1 Penalty Alternating Direction Methods for Mixed- Integer Optimization: A New View on Feasibility Pumps Björn Geißler, Antonio Morsi, Lars Schewe, Martin Schmidt FAU Erlangen-Nürnberg, Discrete Optimization Workshop on Combinatorial Optimization, Aussois,

2 Feasibility Pumps for MIPs Fischetti, Glover, Lodi (2005), Bertacco, Fischetti, Lodi (2007) min x s.t. c x Ax b x i Z for all i I Create two sequences (x k ) k satisfies the inequalities, (y k ) k is integral for all i I. Minimize distance of pairs x k and y k If you get stuck, perturb (at random). x k = y k : you are done. Lars Schewe FAU Erlangen-Nürnberg Feasibility Pumps as Penalty ADMs Aussois,

3 Goal Understand feasibility pump algorithms Does the procedure converge? Can we characterize the points to which it converges? Specifically... What is the role of the perturbation step? Why randomize? In this talk... A feasibility pump variant with no randomization for MIP and MINLP. Characterization of the points to which the method converges Observation: The standard feasibility pump only has short cycles (see also Dey et al. 2016) Lars Schewe FAU Erlangen-Nürnberg Feasibility Pumps as Penalty ADMs Aussois,

4 The Basic Feasibility Pump for MIPs Compute x 0 argmin{c x : x P}. if x 0 is integer feasible then return x 0 y 0 x 0 and k 0. while not termination condition do Compute x k+1 argmin{ x I y k I 1 : x P}. if x k+1 is integer feasible then return x k+1 y k+1 x k+1. if algorithm stalls or cycles then perturb y k+1 k k + 1 Stalling : x k = x k+1, y k = y k+1. Cycling : x k = x k+l, y k = y k+l for l > 1. Lars Schewe FAU Erlangen-Nürnberg Feasibility Pumps as Penalty ADMs Aussois,

5 The Idealized Feasibility Pump for MIPs Compute x 0 argmin{c x : x P}. if x 0 is integer feasible then return x 0 y 0 x 0 and k 0. while True do Compute x k+1 argmin{ x I y k I 1 : x P}. y k+1 x k+1. k k + 1 Lars Schewe FAU Erlangen-Nürnberg Feasibility Pumps as Penalty ADMs Aussois,

6 How to analyze feasibility pumps? Treat idealized FP as special case of other methods Frank-Wolfe method (De Santis et al. 2013, 2014, Eckstein and Nediak 2007) Proximal point method (Boland et al. 2012) Successive projection method (D Ambrosio et al. 2012) Change randomization step of basic FP Dey, Iroume, Molinaro, and Salvagnin (2016) This talk First approach: Interpret idealized FP as Alternating Direction Method Lars Schewe FAU Erlangen-Nürnberg Feasibility Pumps as Penalty ADMs Aussois,

7 Mixed-Integer Nonlinear Problems min x f (x) s.t. h(x) 0 x i Z [l i, u i ] for all i I Convex MINLPs Bonami, Goncalves (2012): direct extension of feasibility pump for MIPs to convex MINLPs Bonami et al. (2009): rounding step replaced by MIP relaxation (OA) of the convex MINLP; high computational effort but inheritance of OA theory Nonconvex MINLPs D Ambrosio et al. (2010): first feasibility pump for nonconvex MINLPs Solving nonconvex projection step NLP via a multistart heuristic using local NLP solvers Lars Schewe FAU Erlangen-Nürnberg Feasibility Pumps as Penalty ADMs Aussois,

8 Alternating Direction Methods min x,y f (x, y) s.t. x X, y Y, g(x, y) = 0, h(x, y) 0 Choose initial values (x 0, y 0 ) X Y. for k = 0, 1,... do Compute x k+1 argmin x {f (x, y k ) : g(x, y k ) = 0, h(x, y k ) 0, x X } Compute y k+1 argmin y {f (x k+1, y) : g(x k+1, y) = 0, h(x k+1, y) 0, y Y } Lars Schewe FAU Erlangen-Nürnberg Feasibility Pumps as Penalty ADMs Aussois,

9 ADMs: Convergence Theory A point (x, y ) Ω is called a partial minimum if holds. f (x, y ) f (x, y ) for all (x, y ) Ω, f (x, y ) f (x, y) for all (x, y) Ω Theorem (see e.g. Gorski et al. 2007) Let f, g, h be continuous, X, Y non-empty, compact, and disjoint and (x k, y k ) k=0 a sequence generated by ADM. If the solution of one optimization problem is always unique, then every convergent subsequence of { (x k, y k ) } k=0 converges to a partial minimum and the objective values of all these limit points are equal. Lars Schewe FAU Erlangen-Nürnberg Feasibility Pumps as Penalty ADMs Aussois,

10 Idealized Feasibility Pumps are ADMs Consider the MIP min x s.t. c x Ax b x i Z for all i I Lars Schewe FAU Erlangen-Nürnberg Feasibility Pumps as Penalty ADMs Aussois,

11 Idealized Feasibility Pumps are ADMs Consider the MIP min x s.t. c x Ax b x i Z for all i I Duplicate variables x I using the new variable vector y {0, 1} I min x,y c x s.t. x X := {x R n : Ax b, x I [0, 1] I } y Y := {0, 1} I, g(x, y) = x I y = 0 Lars Schewe FAU Erlangen-Nürnberg Feasibility Pumps as Penalty ADMs Aussois,

12 Idealized Feasibility Pumps are ADMs Consider the MIP min x s.t. c x Ax b x i Z for all i I Duplicate variables x I using the new variable vector y {0, 1} I min x,y c x s.t. x X := {x R n : Ax b, x I [0, 1] I } y Y := {0, 1} I, g(x, y) = x I y = 0 l 1 penalization of coupling condition y = x I min x,y x I y 1 s.t. x X := {x R n : Ax b, x I [0, 1] I } y Y := {0, 1} I Lars Schewe FAU Erlangen-Nürnberg Feasibility Pumps as Penalty ADMs Aussois,

13 ADM Theory for Convex MINLP Feasibility Pumps Lemma (Geißler, Morsi, LS, Schmidt (2016)) The ADM does not cycle... and so does not the idealized feasibility pump. Theorem (Geißler, Morsi, LS, Schmidt (2016)) The idealized feasibility pump for convex MINLPs is equivalent to the ADM algorithm applied to the reformulated problem above. Thus, it terminates at a partial minimum (x, y ) after a finite number of iterations. If this partial minimum has objective value x I y 1 = 0, the point (x, y ) is feasible for the original problem. Lars Schewe FAU Erlangen-Nürnberg Feasibility Pumps as Penalty ADMs Aussois,

14 ADM Theory for Feasibility Pumps Positive Case Idealized feasibility pump converges to a MI(NL)P-feasible partial minimum of the reformulated problem. Negative Case Idealized feasibility pump converges to a partial minimum of the reformulated problem that is not MI(NL)P-feasible. Random restarts can be seen as an attempt to escape MI(NL)P-infeasible partial minima Lars Schewe FAU Erlangen-Nürnberg Feasibility Pumps as Penalty ADMs Aussois,

15 Another way to escape infeasibility... Penalty methods l 1 penalty function with φ 1 (x, y; µ, ρ) := f (x, y) + [α] := m µ i g i (x, y) + i=1 { 0, if α 0 α, if α < 0 µ = (µ i ) m i=1, ρ = (ρ i) p i=1 0: penalty parameters Penalty problem p ρ i [h i (x, y)] i=1 min x,y φ 1 (x, y; µ, ρ) s.t. x X, y Y Lars Schewe FAU Erlangen-Nürnberg Feasibility Pumps as Penalty ADMs Aussois,

16 The l 1 Penalty Alternating Direction Method Choose initial values (x 0,0, y 0,0 ) X Y and penalty parameters µ 0, ρ 0 0 for k = 0, 1,... do l 0 while (x k,l, y k,l ) is not a partial minimum of the penalty problem with µ = µ k and ρ = ρ k do Compute x k,l+1 argmin x {φ 1 (x, y k,l ; µ k, ρ k ) : x X } Compute y k,l+1 argmin y {φ 1 (x k,l+1, y; µ k, ρ k ) : y Y } l l + 1 Choose new penalty parameters µ k+1 µ k and ρ k+1 ρ k Lars Schewe FAU Erlangen-Nürnberg Feasibility Pumps as Penalty ADMs Aussois,

17 Penalty ADM: Convergence Theory Weighted l 1 feasibility measure m χ µ,ρ (x, y) := µ i g i (x, y) + i=1 p ρ i [h i (x, y)] i=1 Theorem (Geißler, Morsi, LS, Schmidt (2016)) Suppose that the assumptions hold and that µ k i for all i = 1,..., m and ρ k i for all i = 1,..., p. Moreover, let (x k, y k ) be a sequence of partial minima of the penalty problems (for µ = µ k and ρ = ρ k ) generated by PADM with (x k, y k ) (x, y ). Then there exist weights µ, ρ 0 such that (x, y ) is a partial minimizer of the feasibility measure χ µ, ρ. If (x, y ) is feasible for the original problem, then (x, y ) is a partial minimum of the original problem. The latter case can be improved if more regularity of the problem is assumed. Lars Schewe FAU Erlangen-Nürnberg Feasibility Pumps as Penalty ADMs Aussois,

18 ADM-Exactness of l 1 Penalty Functions Theorem Let (x, y ) be a partial minimizer of min x,y f (x, y) s.t. g(x, y) = 0, x X, y Y, (1) and suppose that the Assumptions [...] hold. Then there exists a constant µ > 0 such that (x, y ) is a partial minimizer of for all µ µ and min x,y φ 1 (x, y; µ) s.t. x X, y Y φ 1 (x, y; µ) := f (x, y) + m µ i g i (x, y). i=1 Lars Schewe FAU Erlangen-Nürnberg Feasibility Pumps as Penalty ADMs Aussois,

19 Back to Feasibility Pumps Take the MINLP and duplicate the integer components x I of x The sets min x,y are compact Additional equality constraints Apply penalty ADM algorithm f (x) s.t. h(x) 0, x I = y, y Z I [l I, u I ] X := {x : h(x) 0}, Y := Z I [l I, u I ] g(x, y) = x I y = 0 Lars Schewe FAU Erlangen-Nürnberg Feasibility Pumps as Penalty ADMs Aussois,

20 Mixed-Integer Linear Problems Computational Setup C++ implementation; compiled with gcc using flag o3 LP solver: Gurobi Performance profiles (Dolan, Moré 2002) Running time; time limit 1 h Performance measure: primal-dual gap gap = Test instances: MIPLIB 2003, 2010 b p b d inf{ z : z [b d, b p ]} Lars Schewe FAU Erlangen-Nürnberg Feasibility Pumps as Penalty ADMs Aussois,

21 Mixed-Integer Linear Problems PADM w/o local branching compared to OFP by Achterberg, Berthold inc m inc m, lb inc a inc a, lb OFP 1e 02 1e+01 1e+04 Lars Schewe FAU Erlangen-Nürnberg Feasibility Pumps as Penalty ADMs Aussois,

22 Mixed-Integer Nonlinear Problems Computational Setup C++ implementation using the GAMS Expert-Level API GAMS NLP solver: CONOPT 3.17A Test instances: MINLPLib and MINLPLib2 Lars Schewe FAU Erlangen-Nürnberg Feasibility Pumps as Penalty ADMs Aussois,

23 Mixed-Integer Nonlinear Problems e 02 1e+01 1e+04 Red: penalty ADM based feasibility pump Blue: six feasibility pump variants of D Ambrosio et al. (2012) Lars Schewe FAU Erlangen-Nürnberg Feasibility Pumps as Penalty ADMs Aussois,

24 Mixed-Integer Nonlinear Problems e 02 1e+01 1e+04 Red: penalty ADM based feasibility pump Blue: feasibility pump variants by Berthold (2014) Lars Schewe FAU Erlangen-Nürnberg Feasibility Pumps as Penalty ADMs Aussois,

25 Summary Idealized feasibility pumps are alternating direction methods Convergence towards partial minima of a reformulated problem Random restarts: attempt to escape MI(NL)P-infeasible partial minima Random restarts penalty framework New penalty ADM with convergence theory Very encouraging numerical results Lars Schewe FAU Erlangen-Nürnberg Feasibility Pumps as Penalty ADMs Aussois,

26 Geißler, Morsi, Schewe, Schmidt (2016): Penalty Alternating Direction Methods for Mixed-Integer Optimization: A New View on Feasibility Pumps Thanks! Lars Schewe FAU Erlangen-Nürnberg Feasibility Pumps as Penalty ADMs Aussois,

A Center-Cut Algorithm for Quickly Obtaining Feasible Solutions and Solving Convex MINLP Problems

A Center-Cut Algorithm for Quickly Obtaining Feasible Solutions and Solving Convex MINLP Problems A Center-Cut Algorithm for Quickly Obtaining Feasible Solutions and Solving Convex MINLP Problems Jan Kronqvist a, David E. Bernal b, Andreas Lundell a, and Tapio Westerlund a a Faculty of Science and

More information

Pivot and Gomory Cut. A MIP Feasibility Heuristic NSERC

Pivot and Gomory Cut. A MIP Feasibility Heuristic NSERC Pivot and Gomory Cut A MIP Feasibility Heuristic Shubhashis Ghosh Ryan Hayward shubhashis@randomknowledge.net hayward@cs.ualberta.ca NSERC CGGT 2007 Kyoto Jun 11-15 page 1 problem given a MIP, find a feasible

More information

A NEW SEQUENTIAL CUTTING PLANE ALGORITHM FOR SOLVING MIXED INTEGER NONLINEAR PROGRAMMING PROBLEMS

A NEW SEQUENTIAL CUTTING PLANE ALGORITHM FOR SOLVING MIXED INTEGER NONLINEAR PROGRAMMING PROBLEMS EVOLUTIONARY METHODS FOR DESIGN, OPTIMIZATION AND CONTROL P. Neittaanmäki, J. Périaux and T. Tuovinen (Eds.) c CIMNE, Barcelona, Spain 2007 A NEW SEQUENTIAL CUTTING PLANE ALGORITHM FOR SOLVING MIXED INTEGER

More information

LaGO - A solver for mixed integer nonlinear programming

LaGO - A solver for mixed integer nonlinear programming LaGO - A solver for mixed integer nonlinear programming Ivo Nowak June 1 2005 Problem formulation MINLP: min f(x, y) s.t. g(x, y) 0 h(x, y) = 0 x [x, x] y [y, y] integer MINLP: - n

More information

Primal Heuristics for Branch-and-Price Algorithms

Primal Heuristics for Branch-and-Price Algorithms Primal Heuristics for Branch-and-Price Algorithms Marco Lübbecke and Christian Puchert Abstract In this paper, we present several primal heuristics which we implemented in the branch-and-price solver GCG

More information

Advanced Use of GAMS Solver Links

Advanced Use of GAMS Solver Links Advanced Use of GAMS Solver Links Michael Bussieck, Steven Dirkse, Stefan Vigerske GAMS Development 8th January 2013, ICS Conference, Santa Fe Standard GAMS solve Solve william minimizing cost using mip;

More information

Cloud Branching MIP workshop, Ohio State University, 23/Jul/2014

Cloud Branching MIP workshop, Ohio State University, 23/Jul/2014 Cloud Branching MIP workshop, Ohio State University, 23/Jul/2014 Timo Berthold Xpress Optimization Team Gerald Gamrath Zuse Institute Berlin Domenico Salvagnin Universita degli Studi di Padova This presentation

More information

A Feasibility Pump heuristic for general Mixed-Integer Problems

A Feasibility Pump heuristic for general Mixed-Integer Problems A Feasibility Pump heuristic for general Mixed-Integer Problems Livio Bertacco, Matteo Fischetti, Andrea Lodi Department of Pure & Applied Mathematics, University of Padova, via Belzoni 7-35131 Padova

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

Column Generation Based Primal Heuristics

Column Generation Based Primal Heuristics Column Generation Based Primal Heuristics C. Joncour, S. Michel, R. Sadykov, D. Sverdlov, F. Vanderbeck University Bordeaux 1 & INRIA team RealOpt Outline 1 Context Generic Primal Heuristics The Branch-and-Price

More information

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs Introduction to Mathematical Programming IE496 Final Review Dr. Ted Ralphs IE496 Final Review 1 Course Wrap-up: Chapter 2 In the introduction, we discussed the general framework of mathematical modeling

More information

The Supporting Hyperplane Optimization Toolkit A Polyhedral Outer Approximation Based Convex MINLP Solver Utilizing a Single Branching Tree Approach

The Supporting Hyperplane Optimization Toolkit A Polyhedral Outer Approximation Based Convex MINLP Solver Utilizing a Single Branching Tree Approach The Supporting Hyperplane Optimization Toolkit A Polyhedral Outer Approximation Based Convex MINLP Solver Utilizing a Single Branching Tree Approach Andreas Lundell a, Jan Kronqvist b, and Tapio Westerlund

More information

Exploiting Degeneracy in MIP

Exploiting Degeneracy in MIP Exploiting Degeneracy in MIP Tobias Achterberg 9 January 2018 Aussois Performance Impact in Gurobi 7.5+ 35% 32.0% 30% 25% 20% 15% 14.6% 10% 5.7% 7.9% 6.6% 5% 0% 2.9% 1.2% 0.1% 2.6% 2.6% Time limit: 10000

More information

Review of Mixed-Integer Nonlinear and Generalized Disjunctive Programming Methods

Review of Mixed-Integer Nonlinear and Generalized Disjunctive Programming Methods Carnegie Mellon University Research Showcase @ CMU Department of Chemical Engineering Carnegie Institute of Technology 2-2014 Review of Mixed-Integer Nonlinear and Generalized Disjunctive Programming Methods

More information

The MIP-Solving-Framework SCIP

The MIP-Solving-Framework SCIP The MIP-Solving-Framework SCIP Timo Berthold Zuse Institut Berlin DFG Research Center MATHEON Mathematics for key technologies Berlin, 23.05.2007 What Is A MIP? Definition MIP The optimization problem

More information

Improved Gomory Cuts for Primal Cutting Plane Algorithms

Improved Gomory Cuts for Primal Cutting Plane Algorithms Improved Gomory Cuts for Primal Cutting Plane Algorithms S. Dey J-P. Richard Industrial Engineering Purdue University INFORMS, 2005 Outline 1 Motivation The Basic Idea Set up the Lifting Problem How to

More information

On the Global Solution of Linear Programs with Linear Complementarity Constraints

On the Global Solution of Linear Programs with Linear Complementarity Constraints On the Global Solution of Linear Programs with Linear Complementarity Constraints J. E. Mitchell 1 J. Hu 1 J.-S. Pang 2 K. P. Bennett 1 G. Kunapuli 1 1 Department of Mathematical Sciences RPI, Troy, NY

More information

Heuristics in MILP. Group 1 D. Assouline, N. Molyneaux, B. Morén. Supervisors: Michel Bierlaire, Andrea Lodi. Zinal 2017 Winter School

Heuristics in MILP. Group 1 D. Assouline, N. Molyneaux, B. Morén. Supervisors: Michel Bierlaire, Andrea Lodi. Zinal 2017 Winter School Heuristics in MILP Group 1 D. Assouline, N. Molyneaux, B. Morén Supervisors: Michel Bierlaire, Andrea Lodi Zinal 2017 Winter School 0 / 23 Primal heuristics Original paper: Fischetti, M. and Lodi, A. (2011).

More information

Applied Mixed Integer Programming: Beyond 'The Optimum'

Applied Mixed Integer Programming: Beyond 'The Optimum' Applied Mixed Integer Programming: Beyond 'The Optimum' 14 Nov 2016, Simons Institute, Berkeley Pawel Lichocki Operations Research Team, Google https://developers.google.com/optimization/ Applied Mixed

More information

A Comparison of Mixed-Integer Programming Models for Non-Convex Piecewise Linear Cost Minimization Problems

A Comparison of Mixed-Integer Programming Models for Non-Convex Piecewise Linear Cost Minimization Problems A Comparison of Mixed-Integer Programming Models for Non-Convex Piecewise Linear Cost Minimization Problems Keely L. Croxton Fisher College of Business The Ohio State University Bernard Gendron Département

More information

Received: 27 October 2008 / Accepted: 1 September 2009 / Published online: 17 September 2009 Springer and Mathematical Programming Society 2009

Received: 27 October 2008 / Accepted: 1 September 2009 / Published online: 17 September 2009 Springer and Mathematical Programming Society 2009 Math. Prog. Comp. (2009) 1:201 222 DOI 10.1007/s12532-009-0007-3 FULL LENGTH PAPER Feasibility pump 2.0 Matteo Fischetti Domenico Salvagnin Received: 27 October 2008 / Accepted: 1 September 2009 / Published

More information

Stochastic Separable Mixed-Integer Nonlinear Programming via Nonconvex Generalized Benders Decomposition

Stochastic Separable Mixed-Integer Nonlinear Programming via Nonconvex Generalized Benders Decomposition Stochastic Separable Mixed-Integer Nonlinear Programming via Nonconvex Generalized Benders Decomposition Xiang Li Process Systems Engineering Laboratory Department of Chemical Engineering Massachusetts

More information

The AIMMS Outer Approximation Algorithm for MINLP

The AIMMS Outer Approximation Algorithm for MINLP The AIMMS Outer Approximation Algorithm for MINLP (using GMP functionality) By Marcel Hunting marcel.hunting@aimms.com November 2011 This document describes how to use the GMP variant of the AIMMS Outer

More information

In this paper we address the problem of finding a feasible solution of a generic MIP problem of the form

In this paper we address the problem of finding a feasible solution of a generic MIP problem of the form Mathematical Programming manuscript No. (will be inserted by the editor) Matteo Fischetti Fred Glover Andrea Lodi The feasibility pump Revised version Abstract. In this paper we consider the NP-hard problem

More information

LaGO. Ivo Nowak and Stefan Vigerske. Humboldt-University Berlin, Department of Mathematics

LaGO. Ivo Nowak and Stefan Vigerske. Humboldt-University Berlin, Department of Mathematics LaGO a Branch and Cut framework for nonconvex MINLPs Ivo Nowak and Humboldt-University Berlin, Department of Mathematics EURO XXI, July 5, 2006 21st European Conference on Operational Research, Reykjavik

More information

A New Multistart Algorithm. Marcel Hunting AIMMS Optimization Specialist

A New Multistart Algorithm. Marcel Hunting AIMMS Optimization Specialist A New Multistart Algorithm Marcel Hunting AIMMS Optimization Specialist Webinar, March 22, 2017 Motivation & Credits >Presentation by John Chinneck about CCGO at INFORMS 2015 >CCGO was compared with Knitro

More information

The feasibility pump. Matteo Fischetti Fred Glover Andrea Lodi. 1. Introduction

The feasibility pump. Matteo Fischetti Fred Glover Andrea Lodi. 1. Introduction Math. Program., Ser. A 104, 91 104 (2005) Digital Object Identifier (DOI) 10.1007/s10107-004-0570-3 Matteo Fischetti Fred Glover Andrea Lodi The feasibility pump Received: May 17, 2004 / Accepted: November

More information

The AIMMS Outer Approximation Algorithm for MINLP

The AIMMS Outer Approximation Algorithm for MINLP The AIMMS Outer Approximation Algorithm for MINLP (using GMP functionality) By Marcel Hunting Paragon Decision Technology BV An AIMMS White Paper November, 2011 Abstract This document describes how to

More information

Lecture 12: Feasible direction methods

Lecture 12: Feasible direction methods Lecture 12 Lecture 12: Feasible direction methods Kin Cheong Sou December 2, 2013 TMA947 Lecture 12 Lecture 12: Feasible direction methods 1 / 1 Feasible-direction methods, I Intro Consider the problem

More information

Primal and Dual Methods for Optimisation over the Non-dominated Set of a Multi-objective Programme and Computing the Nadir Point

Primal and Dual Methods for Optimisation over the Non-dominated Set of a Multi-objective Programme and Computing the Nadir Point Primal and Dual Methods for Optimisation over the Non-dominated Set of a Multi-objective Programme and Computing the Nadir Point Ethan Liu Supervisor: Professor Matthias Ehrgott Lancaster University Outline

More information

Heuristics in Commercial MIP Solvers Part I (Heuristics in IBM CPLEX)

Heuristics in Commercial MIP Solvers Part I (Heuristics in IBM CPLEX) Andrea Tramontani CPLEX Optimization, IBM CWI, Amsterdam, June 12, 2018 Heuristics in Commercial MIP Solvers Part I (Heuristics in IBM CPLEX) Agenda CPLEX Branch-and-Bound (B&B) Primal heuristics in CPLEX

More information

The Heuristic (Dark) Side of MIP Solvers. Asja Derviskadic, EPFL Vit Prochazka, NHH Christoph Schaefer, EPFL

The Heuristic (Dark) Side of MIP Solvers. Asja Derviskadic, EPFL Vit Prochazka, NHH Christoph Schaefer, EPFL The Heuristic (Dark) Side of MIP Solvers Asja Derviskadic, EPFL Vit Prochazka, NHH Christoph Schaefer, EPFL 1 Table of content [Lodi], The Heuristic (Dark) Side of MIP Solvers, Hybrid Metaheuristics, 273-284,

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms Ann-Brith Strömberg 2018 04 24 Lecture 9 Linear and integer optimization with applications

More information

The Gurobi Optimizer. Bob Bixby

The Gurobi Optimizer. Bob Bixby The Gurobi Optimizer Bob Bixby Outline Gurobi Introduction Company Products Benchmarks Gurobi Technology Rethinking MIP MIP as a bag of tricks 8-Jul-11 2010 Gurobi Optimization 2 Gurobi Optimization Incorporated

More information

25. NLP algorithms. ˆ Overview. ˆ Local methods. ˆ Constrained optimization. ˆ Global methods. ˆ Black-box methods.

25. NLP algorithms. ˆ Overview. ˆ Local methods. ˆ Constrained optimization. ˆ Global methods. ˆ Black-box methods. CS/ECE/ISyE 524 Introduction to Optimization Spring 2017 18 25. NLP algorithms ˆ Overview ˆ Local methods ˆ Constrained optimization ˆ Global methods ˆ Black-box methods ˆ Course wrap-up Laurent Lessard

More information

Primal Heuristics in SCIP

Primal Heuristics in SCIP Primal Heuristics in SCIP Timo Berthold Zuse Institute Berlin DFG Research Center MATHEON Mathematics for key technologies Berlin, 10/11/2007 Outline 1 Introduction Basics Integration Into SCIP 2 Available

More information

Lagrangean relaxation - exercises

Lagrangean relaxation - exercises Lagrangean relaxation - exercises Giovanni Righini Set covering We start from the following Set Covering Problem instance: min z = x + 2x 2 + x + 2x 4 + x 5 x + x 2 + x 4 x 2 + x x 2 + x 4 + x 5 x + x

More information

TMA946/MAN280 APPLIED OPTIMIZATION. Exam instructions

TMA946/MAN280 APPLIED OPTIMIZATION. Exam instructions Chalmers/GU Mathematics EXAM TMA946/MAN280 APPLIED OPTIMIZATION Date: 03 05 28 Time: House V, morning Aids: Text memory-less calculator Number of questions: 7; passed on one question requires 2 points

More information

An extended supporting hyperplane algorithm for convex MINLP problems

An extended supporting hyperplane algorithm for convex MINLP problems An extended supporting hyperplane algorithm for convex MINLP problems Andreas Lundell, Jan Kronqvist and Tapio Westerlund Center of Excellence in Optimization and Systems Engineering Åbo Akademi University,

More information

Benders in a nutshell Matteo Fischetti, University of Padova

Benders in a nutshell Matteo Fischetti, University of Padova Benders in a nutshell Matteo Fischetti, University of Padova ODS 2017, Sorrento, September 2017 1 Benders decomposition The original Benders decomposition from the 1960s uses two distinct ingredients for

More information

Linear programming and duality theory

Linear programming and duality theory Linear programming and duality theory Complements of Operations Research Giovanni Righini Linear Programming (LP) A linear program is defined by linear constraints, a linear objective function. Its variables

More information

Characterizing Improving Directions Unconstrained Optimization

Characterizing Improving Directions Unconstrained Optimization Final Review IE417 In the Beginning... In the beginning, Weierstrass's theorem said that a continuous function achieves a minimum on a compact set. Using this, we showed that for a convex set S and y not

More information

Crash-Starting the Simplex Method

Crash-Starting the Simplex Method Crash-Starting the Simplex Method Ivet Galabova Julian Hall School of Mathematics, University of Edinburgh Optimization Methods and Software December 2017 Ivet Galabova, Julian Hall Crash-Starting Simplex

More information

Lagrangian Relaxation: An overview

Lagrangian Relaxation: An overview Discrete Math for Bioinformatics WS 11/12:, by A. Bockmayr/K. Reinert, 22. Januar 2013, 13:27 4001 Lagrangian Relaxation: An overview Sources for this lecture: D. Bertsimas and J. Tsitsiklis: Introduction

More information

DETERMINISTIC OPERATIONS RESEARCH

DETERMINISTIC OPERATIONS RESEARCH DETERMINISTIC OPERATIONS RESEARCH Models and Methods in Optimization Linear DAVID J. RADER, JR. Rose-Hulman Institute of Technology Department of Mathematics Terre Haute, IN WILEY A JOHN WILEY & SONS,

More information

An extended supporting hyperplane algorithm for convex MINLP problems

An extended supporting hyperplane algorithm for convex MINLP problems An extended supporting hyperplane algorithm for convex MINLP problems Jan Kronqvist, Andreas Lundell and Tapio Westerlund Center of Excellence in Optimization and Systems Engineering Åbo Akademi University,

More information

ACO Comprehensive Exam October 12 and 13, Computability, Complexity and Algorithms

ACO Comprehensive Exam October 12 and 13, Computability, Complexity and Algorithms 1. Computability, Complexity and Algorithms Given a simple directed graph G = (V, E), a cycle cover is a set of vertex-disjoint directed cycles that cover all vertices of the graph. 1. Show that there

More information

Integrating Mixed-Integer Optimisation & Satisfiability Modulo Theories

Integrating Mixed-Integer Optimisation & Satisfiability Modulo Theories Integrating Mixed-Integer Optimisation & Satisfiability Modulo Theories Application to Scheduling Miten Mistry and Ruth Misener Wednesday 11 th January, 2017 Mistry & Misener MIP & SMT Wednesday 11 th

More information

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs 15.082J and 6.855J Lagrangian Relaxation 2 Algorithms Application to LPs 1 The Constrained Shortest Path Problem (1,10) 2 (1,1) 4 (2,3) (1,7) 1 (10,3) (1,2) (10,1) (5,7) 3 (12,3) 5 (2,2) 6 Find the shortest

More information

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 600.469 / 600.669 Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 9.1 Linear Programming Suppose we are trying to approximate a minimization

More information

Alternating Criteria Search: A Parallel Large Neighborhood Search Algorithm for Mixed Integer Programs

Alternating Criteria Search: A Parallel Large Neighborhood Search Algorithm for Mixed Integer Programs Alternating Criteria Search: A Parallel Large Neighborhood Search Algorithm for Mixed Integer Programs Lluís-Miquel Munguía 1, Shabbir Ahmed 2, David A. Bader 1, George L. Nemhauser 2, and Yufen Shao 3

More information

Integer Programming Chapter 9

Integer Programming Chapter 9 1 Integer Programming Chapter 9 University of Chicago Booth School of Business Kipp Martin October 30, 2017 2 Outline Branch and Bound Theory Branch and Bound Linear Programming Node Selection Strategies

More information

RENS. The optimal rounding. Timo Berthold

RENS. The optimal rounding. Timo Berthold Math. Prog. Comp. (2014) 6:33 54 DOI 10.1007/s12532-013-0060-9 FULL LENGTH PAPER RENS The optimal rounding Timo Berthold Received: 25 April 2012 / Accepted: 2 October 2013 / Published online: 1 November

More information

mixed-integer convex optimization

mixed-integer convex optimization mixed-integer convex optimization Miles Lubin with Emre Yamangil, Russell Bent, Juan Pablo Vielma, Chris Coey April 1, 2016 MIT & Los Alamos National Laboratory First, Mixed-integer linear programming

More information

Lec13p1, ORF363/COS323

Lec13p1, ORF363/COS323 Lec13 Page 1 Lec13p1, ORF363/COS323 This lecture: Semidefinite programming (SDP) Definition and basic properties Review of positive semidefinite matrices SDP duality SDP relaxations for nonconvex optimization

More information

MINLP applications, part II: Water Network Design and some applications of black-box optimization

MINLP applications, part II: Water Network Design and some applications of black-box optimization MINLP applications, part II: Water Network Design and some applications of black-box optimization Claudia D Ambrosio CNRS & LIX, École Polytechnique dambrosio@lix.polytechnique.fr 5th Porto Meeting on

More information

Selected Topics in Column Generation

Selected Topics in Column Generation Selected Topics in Column Generation February 1, 2007 Choosing a solver for the Master Solve in the dual space(kelly s method) by applying a cutting plane algorithm In the bundle method(lemarechal), a

More information

Repairing MIP infeasibility through Local Branching

Repairing MIP infeasibility through Local Branching Repairing MIP infeasibility through Local Branching Matteo Fischetti, Andrea Lodi, DEI, University of Padova, Via Gradenigo 6A - 35131 Padova - Italy T.J. Watson Research Center, IBM, Yorktown Heights,

More information

Algorithms for Decision Support. Integer linear programming models

Algorithms for Decision Support. Integer linear programming models Algorithms for Decision Support Integer linear programming models 1 People with reduced mobility (PRM) require assistance when travelling through the airport http://www.schiphol.nl/travellers/atschiphol/informationforpassengerswithreducedmobility.htm

More information

Implementing a B&C algorithm for Mixed-Integer Bilevel Linear Programming

Implementing a B&C algorithm for Mixed-Integer Bilevel Linear Programming Implementing a B&C algorithm for Mixed-Integer Bilevel Linear Programming Matteo Fischetti, University of Padova 8th Cargese-Porquerolles Workshop on Combinatorial Optimization, August 2017 1 Bilevel Optimization

More information

Exact solutions to mixed-integer linear programming problems

Exact solutions to mixed-integer linear programming problems Exact solutions to mixed-integer linear programming problems Dan Steffy Zuse Institute Berlin and Oakland University Joint work with Bill Cook, Thorsten Koch and Kati Wolter November 18, 2011 Mixed-Integer

More information

From final point cuts to!-polyhedral cuts

From final point cuts to!-polyhedral cuts AUSSOIS 2017 From final point cuts to!-polyhedral cuts Egon Balas, Aleksandr M. Kazachkov, François Margot Tepper School of Business, Carnegie Mellon University Overview Background Generalized intersection

More information

Exact Algorithms for Mixed-Integer Bilevel Linear Programming

Exact Algorithms for Mixed-Integer Bilevel Linear Programming Exact Algorithms for Mixed-Integer Bilevel Linear Programming Matteo Fischetti, University of Padova (based on joint work with I. Ljubic, M. Monaci, and M. Sinnl) Lunteren Conference on the Mathematics

More information

LECTURE NOTES Non-Linear Programming

LECTURE NOTES Non-Linear Programming CEE 6110 David Rosenberg p. 1 Learning Objectives LECTURE NOTES Non-Linear Programming 1. Write out the non-linear model formulation 2. Describe the difficulties of solving a non-linear programming model

More information

5.3 Cutting plane methods and Gomory fractional cuts

5.3 Cutting plane methods and Gomory fractional cuts 5.3 Cutting plane methods and Gomory fractional cuts (ILP) min c T x s.t. Ax b x 0integer feasible region X Assumption: a ij, c j and b i integer. Observation: The feasible region of an ILP can be described

More information

5. DUAL LP, SOLUTION INTERPRETATION, AND POST-OPTIMALITY

5. DUAL LP, SOLUTION INTERPRETATION, AND POST-OPTIMALITY 5. DUAL LP, SOLUTION INTERPRETATION, AND POST-OPTIMALITY 5.1 DUALITY Associated with every linear programming problem (the primal) is another linear programming problem called its dual. If the primal involves

More information

The Ascendance of the Dual Simplex Method: A Geometric View

The Ascendance of the Dual Simplex Method: A Geometric View The Ascendance of the Dual Simplex Method: A Geometric View Robert Fourer 4er@ampl.com AMPL Optimization Inc. www.ampl.com +1 773-336-AMPL U.S.-Mexico Workshop on Optimization and Its Applications Huatulco

More information

Restrict-and-relax search for 0-1 mixed-integer programs

Restrict-and-relax search for 0-1 mixed-integer programs EURO J Comput Optim (23) :2 28 DOI.7/s3675-3-7-y ORIGINAL PAPER Restrict-and-relax search for - mixed-integer programs Menal Guzelsoy George Nemhauser Martin Savelsbergh Received: 2 September 22 / Accepted:

More information

Standard dimension optimization of steel frames

Standard dimension optimization of steel frames Computer Aided Optimum Design in Engineering IX 157 Standard dimension optimization of steel frames U. Klanšek & S. Kravanja University of Maribor, Faculty of Civil Engineering, Slovenia Abstract This

More information

Motivation for Heuristics

Motivation for Heuristics MIP Heuristics 1 Motivation for Heuristics Why not wait for branching? Produce feasible solutions as quickly as possible Often satisfies user demands Avoid exploring unproductive sub trees Better reduced

More information

Branch-and-cut implementation of Benders decomposition Matteo Fischetti, University of Padova

Branch-and-cut implementation of Benders decomposition Matteo Fischetti, University of Padova Branch-and-cut implementation of Benders decomposition Matteo Fischetti, University of Padova 8th Cargese-Porquerolles Workshop on Combinatorial Optimization, August 2017 1 Mixed-Integer Programming We

More information

A Nonlinear Presolve Algorithm in AIMMS

A Nonlinear Presolve Algorithm in AIMMS A Nonlinear Presolve Algorithm in AIMMS By Marcel Hunting marcel.hunting@aimms.com November 2011 This paper describes the AIMMS presolve algorithm for nonlinear problems. This presolve algorithm uses standard

More information

Comparisons of Commercial MIP Solvers and an Adaptive Memory (Tabu Search) Procedure for a Class of 0-1 Integer Programming Problems

Comparisons of Commercial MIP Solvers and an Adaptive Memory (Tabu Search) Procedure for a Class of 0-1 Integer Programming Problems Comparisons of Commercial MIP Solvers and an Adaptive Memory (Tabu Search) Procedure for a Class of 0-1 Integer Programming Problems Lars M. Hvattum The Norwegian University of Science and Technology Trondheim,

More information

MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS

MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS GRADO EN A.D.E. GRADO EN ECONOMÍA GRADO EN F.Y.C. ACADEMIC YEAR 2011-12 INDEX UNIT 1.- AN INTRODUCCTION TO OPTIMIZATION 2 UNIT 2.- NONLINEAR PROGRAMMING

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

Lecture 14: Linear Programming II

Lecture 14: Linear Programming II A Theorist s Toolkit (CMU 18-859T, Fall 013) Lecture 14: Linear Programming II October 3, 013 Lecturer: Ryan O Donnell Scribe: Stylianos Despotakis 1 Introduction At a big conference in Wisconsin in 1948

More information

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach Basic approaches I. Primal Approach - Feasible Direction

More information

Decomposition of loosely coupled integer programs: A multiobjective perspective

Decomposition of loosely coupled integer programs: A multiobjective perspective Decomposition of loosely coupled integer programs: A multiobjective perspective Merve Bodur, Shabbir Ahmed, Natashia Boland, and George L. Nemhauser H. Milton Stewart School of Industrial and Systems Engineering,

More information

Cutting Planes for Some Nonconvex Combinatorial Optimization Problems

Cutting Planes for Some Nonconvex Combinatorial Optimization Problems Cutting Planes for Some Nonconvex Combinatorial Optimization Problems Ismael Regis de Farias Jr. Department of Industrial Engineering Texas Tech Summary Problem definition Solution strategy Multiple-choice

More information

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 2 Review Dr. Ted Ralphs IE316 Quiz 2 Review 1 Reading for The Quiz Material covered in detail in lecture Bertsimas 4.1-4.5, 4.8, 5.1-5.5, 6.1-6.3 Material

More information

3 No-Wait Job Shops with Variable Processing Times

3 No-Wait Job Shops with Variable Processing Times 3 No-Wait Job Shops with Variable Processing Times In this chapter we assume that, on top of the classical no-wait job shop setting, we are given a set of processing times for each operation. We may select

More information

Optimality certificates for convex minimization and Helly numbers

Optimality certificates for convex minimization and Helly numbers Optimality certificates for convex minimization and Helly numbers Amitabh Basu Michele Conforti Gérard Cornuéjols Robert Weismantel Stefan Weltge October 20, 2016 Abstract We consider the problem of minimizing

More information

SCIP. 1 Introduction. 2 Model requirements. Contents. Stefan Vigerske, Humboldt University Berlin, Germany

SCIP. 1 Introduction. 2 Model requirements. Contents. Stefan Vigerske, Humboldt University Berlin, Germany SCIP Stefan Vigerske, Humboldt University Berlin, Germany Contents 1 Introduction.................................................. 673 2 Model requirements..............................................

More information

Can Interior Solutions Help in Solving Mixed Integer Programs?

Can Interior Solutions Help in Solving Mixed Integer Programs? Can Interior Solutions Help in Solving Mixed Integer Programs? Sanjay Mehrotra joint work with Kuo-Ling Huang, Utku Koc, Zhifeng Li Industrial Engineering and Management Sciences Northwestern University

More information

COLUMN GENERATION IN LINEAR PROGRAMMING

COLUMN GENERATION IN LINEAR PROGRAMMING COLUMN GENERATION IN LINEAR PROGRAMMING EXAMPLE: THE CUTTING STOCK PROBLEM A certain material (e.g. lumber) is stocked in lengths of 9, 4, and 6 feet, with respective costs of $5, $9, and $. An order for

More information

Lecture 5: Duality Theory

Lecture 5: Duality Theory Lecture 5: Duality Theory Rajat Mittal IIT Kanpur The objective of this lecture note will be to learn duality theory of linear programming. We are planning to answer following questions. What are hyperplane

More information

AIMMS Language Reference - AIMMS Outer Approximation Algorithm for MINLP

AIMMS Language Reference - AIMMS Outer Approximation Algorithm for MINLP AIMMS Language Reference - AIMMS Outer Approximation Algorithm for MINLP This file contains only one chapter of the book. For a free download of the complete book in pdf format, please visit www.aimms.com

More information

CMU-Q Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization. Teacher: Gianni A. Di Caro

CMU-Q Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization. Teacher: Gianni A. Di Caro CMU-Q 15-381 Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization Teacher: Gianni A. Di Caro GLOBAL FUNCTION OPTIMIZATION Find the global maximum of the function f x (and

More information

Modern Benders (in a nutshell)

Modern Benders (in a nutshell) Modern Benders (in a nutshell) Matteo Fischetti, University of Padova (based on joint work with Ivana Ljubic and Markus Sinnl) Lunteren Conference on the Mathematics of Operations Research, January 17,

More information

Projection-Based Methods in Optimization

Projection-Based Methods in Optimization Projection-Based Methods in Optimization Charles Byrne (Charles Byrne@uml.edu) http://faculty.uml.edu/cbyrne/cbyrne.html Department of Mathematical Sciences University of Massachusetts Lowell Lowell, MA

More information

LocalSolver 4.0: novelties and benchmarks

LocalSolver 4.0: novelties and benchmarks LocalSolver 4.0: novelties and benchmarks Thierry Benoist Julien Darlay Bertrand Estellon Frédéric Gardi Romain Megel www.localsolver.com 1/18 LocalSolver 3.1 Solver for combinatorial optimization Simple

More information

Constraining strategies for Kaczmarz-like algorithms

Constraining strategies for Kaczmarz-like algorithms Constraining strategies for Kaczmarz-like algorithms Ovidius University, Constanta, Romania Faculty of Mathematics and Computer Science Talk on April 7, 2008 University of Erlangen-Nürnberg The scanning

More information

Handling of constraints

Handling of constraints Handling of constraints MTH6418 S. Le Digabel, École Polytechnique de Montréal Fall 2015 (v3) MTH6418: Constraints 1/41 Plan Taxonomy of constraints Approaches The Progressive Barrier (PB) References MTH6418:

More information

Detecting Infeasibility in Infeasible-Interior-Point. Methods for Optimization

Detecting Infeasibility in Infeasible-Interior-Point. Methods for Optimization FOCM 02 Infeasible Interior Point Methods 1 Detecting Infeasibility in Infeasible-Interior-Point Methods for Optimization Slide 1 Michael J. Todd, School of Operations Research and Industrial Engineering,

More information

Comparison of Some High-Performance MINLP Solvers

Comparison of Some High-Performance MINLP Solvers Comparison of Some High-Performance MINLP s Toni Lastusilta 1, Michael R. Bussieck 2 and Tapio Westerlund 1,* 1,* Process Design Laboratory, Åbo Akademi University Biskopsgatan 8, FIN-25 ÅBO, Finland 2

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 36 CS 473: Algorithms, Spring 2018 LP Duality Lecture 20 April 3, 2018 Some of the

More information

Using Multiple Machines to Solve Models Faster with Gurobi 6.0

Using Multiple Machines to Solve Models Faster with Gurobi 6.0 Using Multiple Machines to Solve Models Faster with Gurobi 6.0 Distributed Algorithms in Gurobi 6.0 Gurobi 6.0 includes 3 distributed algorithms Distributed concurrent LP (new in 6.0) MIP Distributed MIP

More information

Optimality certificates for convex minimization and Helly numbers

Optimality certificates for convex minimization and Helly numbers Optimality certificates for convex minimization and Helly numbers Amitabh Basu Michele Conforti Gérard Cornuéjols Robert Weismantel Stefan Weltge May 10, 2017 Abstract We consider the problem of minimizing

More information

SBB: A New Solver for Mixed Integer Nonlinear Programming

SBB: A New Solver for Mixed Integer Nonlinear Programming SBB: A New Solver for Mixed Integer Nonlinear Programming Michael R. Bussieck GAMS Development Corp. Arne Drud ARKI Consulting & Development A/S Overview Introduction: The MINLP Model The B&B Algorithm

More information

Tutorial on Integer Programming for Visual Computing

Tutorial on Integer Programming for Visual Computing Tutorial on Integer Programming for Visual Computing Peter Wonka and Chi-han Peng November 2018 1 1 Notation The vector space is denoted as R,R n,r m n,v,w Matricies are denoted by upper case, italic,

More information