Exact solutions to mixed-integer linear programming problems

Size: px
Start display at page:

Download "Exact solutions to mixed-integer linear programming problems"

Transcription

1 Exact solutions to mixed-integer linear programming problems Dan Steffy Zuse Institute Berlin and Oakland University Joint work with Bill Cook, Thorsten Koch and Kati Wolter November 18, 2011

2 Mixed-Integer Programming Mixed-Integer Linear Program. max s.t. c T x Ax b x R n 1 Z n 2

3 Floating-point Computation for MIP What can go wrong? Suboptimal solution returned Infeasible solution returned Feasible problem declared infeasible

4 Deviation in Integer Programming Software Results Default Settings Presolve, cuts and heur. disabled Example SCIP CPLEX SCIP CPLEX aim yes alu alu e e5 90 neos neos [1.643, 2.611] ns ns [94, 7e5] infeasible [3.3, ] [1.7, ] opti e3 infeas./unbd. infeasible infeasible opti e2 infeas./unbd. infeasible infeasible ran14x18.disj-8 [3595, 3714] 3761 [3574, 3735] [3618, 3797] transportmoment infeasible infeas./unbd. unbounded [-5e10, -3e9] Results of FP based solvers (2 hour time limit) Numerically difficult instances (from MIPLIB 2010 and others)

5 Deviation in Integer Programming Software Results Default Settings Presolve, cuts and heur. disabled Example SCIP CPLEX SCIP CPLEX aim yes alu alu e e5 90 neos neos [1.643, 2.611] ns ns [94, 7e5] infeasible [3.3, ] [1.7, ] opti e3 infeas./unbd. infeasible infeasible opti e2 infeas./unbd. infeasible infeasible ran14x18.disj-8 [3595, 3714] 3761 [3574, 3735] [3618, 3797] transportmoment infeasible infeas./unbd. unbounded [-5e10, -3e9] Results of FP based solvers (2 hour time limit) Numerically difficult instances (from MIPLIB 2010 and others)

6 Necessity of Exact Solutions Where are exact MIP results needed? VLSI chip design verification Combinatorial auctions Numerically difficult problems Verifying results of test libraries

7 Rational Arithmetic for Linear Programming Applegate, Cook, Dash and Espinoza [2007] tested rational simplex implementation. It was hundreds or thousands of times slower than floating-point code.

8 Rational Arithmetic for Linear Programming Applegate, Cook, Dash and Espinoza [2007] tested rational simplex implementation. It was hundreds or thousands of times slower than floating-point code. try hybrid symbolic-numeric computation

9 Exact Linear Programming QSopt ex: Exact Rational LP Solver 1 Simplex method performed limited/fixed precision Final basic solution checked exactly Precision increased if needed Only 2-5x slower than FP-codes 1 Developed by Applegate, Cook, Dash and Espinoza [2007]

10 Branch-and-Bound Procedure max

11 Branch-and-Bound Procedure max f

12 Branch-and-Bound Procedure max f

13 Branch-and-Bound Procedure max f

14 Branch-and-Bound Procedure max f

15 Branch-and-Bound Procedure max x

16 Branch-and-Bound Procedure max x

17 Branch-and-Bound Procedure max x

18 Exact Mixed Integer Programming What happens if we use a fast exact LP solver at every node?

19 Exact Mixed Integer Programming What happens if we use a fast exact LP solver at every node? Applegate, Dash, Cook, Espinoza [2007] found this considerably slower than FP code. Warm starting the LPs in branch-and-bound means lots of LPs with less pivots per LP.

20 Exact Mixed Integer Programming Hybrid Approach for Exact MIP: Branch & Bound

21 Exact Mixed Integer Programming Hybrid Approach for Exact MIP: Branch & Bound 1 Store exact representation of problem Perform many operations on approximation or relaxation Exact or safe methods must be used for: Computing feasible solutions Computing LP bounds 1 see Cook, Koch, Steffy and Wolter [2011]

22 Exact Mixed Integer Programming Hybrid Approach for Exact MIP: Branch & Bound 1 Store exact representation of problem Perform many operations on approximation or relaxation Exact or safe methods must be used for: Computing feasible solutions use exact LP solver Computing LP bounds many choices here 1 see Cook, Koch, Steffy and Wolter [2011]

23 Valid Dual Bounds: Exact LP and Basis Verification Exact LP Solve each node LP exactly using QSopt ex Produces tightest possible bound

24 Valid Dual Bounds: Exact LP and Basis Verification Exact LP Solve each node LP exactly using QSopt ex Produces tightest possible bound Basis Verification Recompute basic sol. from floating-point LP solver exactly If dual feasible return valid dual bound Otherwise return infinite bound, branch (Hopefully branching can resolve numerical troubles)

25 Valid Dual Bounds: Primal-Bound-Shift Linear Program Primal: max s.t. Dual: min s.t. c T x Ax b l x u b T y l T z l + u T z u A T y Iz l + Iz u = c y, z l, z u 0 Idea: Use dual variables from primal bounds to correct approximate dual solution Applegate et al. [2006], Neumaier and Shcherbina [2004]

26 Valid Dual Bounds: Primal-Bound-Shift Linear Program Primal: max s.t. Dual: min s.t. c T x Ax b l x u b T y l T z l + u T z u A T y Iz l + Iz u = c y, z l, z u 0 Rigorous objective bound: Let ŷ, ẑ l, ẑ u 0 be an approximate dual solution Set r = c A T ŷ + ẑ l ẑ u (y, z l, z u ) = (ŷ, ẑ l + r +, ẑ u + r ) is a valid dual solution

27 Valid Dual Bounds: Primal-Bound-Shift Linear Program Primal: max c T x s.t. Ax b l x u Dual: min b T y l T z l + u T z u s.t. A T y Iz l + Iz u = c y, z l, z u 0 Good: Bad: Bound is trivial to compute Floating-point computation with directed rounding can be used Strength of the bound depends on tightness of primal variable bounds

28 Valid Dual Bounds: Project-and-Shift Linear Program Primal: max c T x s.t. Ax b Dual: min b T y s.t. A T y = c y 0 A more general procedure:

29 Valid Dual Bounds: Project-and-Shift Linear Program Primal: max c T x s.t. Ax b Dual: min b T y s.t. A T y = c y 0 A more general procedure: Main Idea: Find approximate dual solution ỹ Project ỹ to satisfy A T y = c Maintaining feasibility, shift to satisfy y 0

30 Valid Dual Bounds: Project-and-Shift Linear Program Primal: max c T x s.t. Ax b Dual: min b T y s.t. A T y = c y 0 Comments: Under some assumptions, most expensive computations can be done only once at root node and reused through the tree More general than Primal-Bound-Shift (but not entirely general) Some exact computation still required

31 Problem Structure in Tree Root Primal: max c T x s.t. Ax b Root Dual: min b T y s.t. A T y = c y 0 Node Primal: max c T x s.t. Ax b Āx b Node Dual: min b T y + b T z s.t. A T y + Ā T z y, z 0 = c

32 Valid Dual Bounds: Project-and-Shift Components of Project-and-Shift for MIP Root Node: Setup Phase Compute exact LU factorization of A T Determine (exact) corrector point y A T y = c, y > 0

33 Valid Dual Bounds: Project-and-Shift Components of Project-and-Shift for MIP Root Node: Setup Phase Compute exact LU factorization of A T Determine (exact) corrector point y A T y = c, y > 0 Node Bound Computation Start with approximate solution Project into equality space (using LU = A T ) Take convex combination with y to ensure feasibility

34 Implementation Implementation of Hybrid Branch-and-Bound Method Branch and bound framework: SCIP Exact LP solver: QSopt ex Floating-point LP solver: CPLEX Multiple precision arithmetic package: GMP

35 Computational Tests Dual Bounding Methods Exact LP Basis Verification Primal-Bound-Shift Project-and-Shift Combination of above methods (automatic selection at each node)

36 Computational Tests Dual Bounding Methods Exact LP Basis Verification Primal-Bound-Shift Project-and-Shift Combination of above methods (automatic selection at each node) Pure Branch-and-Bound First Fractional Branching Results reported on 57 test problems selected from the MIPLIB and Mittelmann test libraries that were solved by (floating-point) SCIP branch-and-bound within 1 hour

37 Overall Computation Time # solved in 24h. Nodes Time (s.) Inexact 57 18, Exact LP 51 18, VerifyBasis 51 18, BoundShift 43 24, ProjectShift 49 18, Automatic 55 18, Nodes and time reported are the geometric means over 37/57 problems solved by all methods within 24h. time limit

38 Future Plans Some Future Plans: Cutting planes and pre-solve Certification of results Solve test library problems

39 East Coast Computer Algebra Day 2012 ECCAD 2012 Where: Oakland University, Rochester, Michigan When: Saturday May 12, more details to come

40 Exact solutions to mixed-integer linear programming problems Dan Steffy Zuse Institute Berlin and Oakland University Joint work with Bill Cook, Thorsten Koch and Kati Wolter November 18, 2011

A hybrid branch-and-bound approach for exact rational mixed-integer programming

A hybrid branch-and-bound approach for exact rational mixed-integer programming Math. Prog. Comp. (2013) 5:305 344 DOI 10.1007/s12532-013-0055-6 FULL LENGTH PAPER A hybrid branch-and-bound approach for exact rational mixed-integer programming William Cook Thorsten Koch Daniel E. Steffy

More information

An exact rational mixed-integer programming solver

An exact rational mixed-integer programming solver An exact rational mixed-integer programming solver William Cook 1, Thorsten Koch 2, Daniel E. Steffy 1, and Kati Wolter 2 1 School of Industrial and Systems Engineering, Georgia Institute of Technology,

More information

An Exact Rational Mixed-Integer Programming Solver

An Exact Rational Mixed-Integer Programming Solver Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany WILLIAM COOK 1 THORSTEN KOCH 2 DANIEL E. STEFFY 1 KATI WOLTER 3 An Exact Rational Mixed-Integer Programming

More information

The MIP-Solving-Framework SCIP

The MIP-Solving-Framework SCIP The MIP-Solving-Framework SCIP Timo Berthold Zuse Institut Berlin DFG Research Center MATHEON Mathematics for key technologies Berlin, 23.05.2007 What Is A MIP? Definition MIP The optimization problem

More information

Cloud Branching MIP workshop, Ohio State University, 23/Jul/2014

Cloud Branching MIP workshop, Ohio State University, 23/Jul/2014 Cloud Branching MIP workshop, Ohio State University, 23/Jul/2014 Timo Berthold Xpress Optimization Team Gerald Gamrath Zuse Institute Berlin Domenico Salvagnin Universita degli Studi di Padova This presentation

More information

The Gurobi Optimizer. Bob Bixby

The Gurobi Optimizer. Bob Bixby The Gurobi Optimizer Bob Bixby Outline Gurobi Introduction Company Products Benchmarks Gurobi Technology Rethinking MIP MIP as a bag of tricks 8-Jul-11 2010 Gurobi Optimization 2 Gurobi Optimization Incorporated

More information

The Heuristic (Dark) Side of MIP Solvers. Asja Derviskadic, EPFL Vit Prochazka, NHH Christoph Schaefer, EPFL

The Heuristic (Dark) Side of MIP Solvers. Asja Derviskadic, EPFL Vit Prochazka, NHH Christoph Schaefer, EPFL The Heuristic (Dark) Side of MIP Solvers Asja Derviskadic, EPFL Vit Prochazka, NHH Christoph Schaefer, EPFL 1 Table of content [Lodi], The Heuristic (Dark) Side of MIP Solvers, Hybrid Metaheuristics, 273-284,

More information

Primal Heuristics in SCIP

Primal Heuristics in SCIP Primal Heuristics in SCIP Timo Berthold Zuse Institute Berlin DFG Research Center MATHEON Mathematics for key technologies Berlin, 10/11/2007 Outline 1 Introduction Basics Integration Into SCIP 2 Available

More information

TOPICS IN EXACT PRECISION MATHEMATICAL PROGRAMMING

TOPICS IN EXACT PRECISION MATHEMATICAL PROGRAMMING TOPICS IN EXACT PRECISION MATHEMATICAL PROGRAMMING A Thesis Presented to The Academic Faculty by Daniel E. Steffy In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in Algorithms,

More information

Motivation for Heuristics

Motivation for Heuristics MIP Heuristics 1 Motivation for Heuristics Why not wait for branching? Produce feasible solutions as quickly as possible Often satisfies user demands Avoid exploring unproductive sub trees Better reduced

More information

Gurobi Guidelines for Numerical Issues February 2017

Gurobi Guidelines for Numerical Issues February 2017 Gurobi Guidelines for Numerical Issues February 2017 Background Models with numerical issues can lead to undesirable results: slow performance, wrong answers or inconsistent behavior. When solving a model

More information

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs Introduction to Mathematical Programming IE496 Final Review Dr. Ted Ralphs IE496 Final Review 1 Course Wrap-up: Chapter 2 In the introduction, we discussed the general framework of mathematical modeling

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms Ann-Brith Strömberg 2018 04 24 Lecture 9 Linear and integer optimization with applications

More information

Verifying Integer Programming Results

Verifying Integer Programming Results Zuse Institute Berlin Takustr. 7 14195 Berlin Germany arxiv:1611.08832v1 [math.oc] 27 Nov 2016 KEVIN K. H. CHEUNG, AMBROS GLEIXNER, AND DANIEL E. STEFFY Verifying Integer Programming Results This work

More information

Using Multiple Machines to Solve Models Faster with Gurobi 6.0

Using Multiple Machines to Solve Models Faster with Gurobi 6.0 Using Multiple Machines to Solve Models Faster with Gurobi 6.0 Distributed Algorithms in Gurobi 6.0 Gurobi 6.0 includes 3 distributed algorithms Distributed concurrent LP (new in 6.0) MIP Distributed MIP

More information

Exact solutions to linear programming problems

Exact solutions to linear programming problems Exact solutions to linear programming problems David L. Applegate a William Cook b,1 Sanjeeb Dash c Daniel G. Espinoza d a AT&T Labs - Research, 180 PARK AVE, P.O. BOX 971, Florham Park, NJ, 07932-0971,

More information

The Gurobi Solver V1.0

The Gurobi Solver V1.0 The Gurobi Solver V1.0 Robert E. Bixby Gurobi Optimization & Rice University Ed Rothberg, Zonghao Gu Gurobi Optimization 1 1 Oct 09 Overview Background Rethinking the MIP solver Introduction Tree of Trees

More information

Conflict Analysis in Mixed Integer Programming

Conflict Analysis in Mixed Integer Programming Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany TOBIAS ACHTERBERG Conflict Analysis in Mixed Integer Programming URL: http://www.zib.de/projects/integer-optimization/mip

More information

Pivot and Gomory Cut. A MIP Feasibility Heuristic NSERC

Pivot and Gomory Cut. A MIP Feasibility Heuristic NSERC Pivot and Gomory Cut A MIP Feasibility Heuristic Shubhashis Ghosh Ryan Hayward shubhashis@randomknowledge.net hayward@cs.ualberta.ca NSERC CGGT 2007 Kyoto Jun 11-15 page 1 problem given a MIP, find a feasible

More information

Algorithms for Decision Support. Integer linear programming models

Algorithms for Decision Support. Integer linear programming models Algorithms for Decision Support Integer linear programming models 1 People with reduced mobility (PRM) require assistance when travelling through the airport http://www.schiphol.nl/travellers/atschiphol/informationforpassengerswithreducedmobility.htm

More information

Outline. Modeling. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Models Lecture 5 Mixed Integer Programming Models and Exercises

Outline. Modeling. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Models Lecture 5 Mixed Integer Programming Models and Exercises Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING 1. Lecture 5 Mixed Integer Programming and Exercises Marco Chiarandini 2. 3. 2 Outline Modeling 1. Min cost flow Shortest path 2. Max flow Assignment

More information

Addressing degeneracy in the dual simplex algorithm using a decompositon approach

Addressing degeneracy in the dual simplex algorithm using a decompositon approach Addressing degeneracy in the dual simplex algorithm using a decompositon approach Ambros Gleixner, Stephen J Maher, Matthias Miltenberger Zuse Institute Berlin Berlin, Germany 16th July 2015 @sj_maher

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

Linear Programming. Course review MS-E2140. v. 1.1

Linear Programming. Course review MS-E2140. v. 1.1 Linear Programming MS-E2140 Course review v. 1.1 Course structure Modeling techniques Linear programming theory and the Simplex method Duality theory Dual Simplex algorithm and sensitivity analysis Integer

More information

Exploiting Degeneracy in MIP

Exploiting Degeneracy in MIP Exploiting Degeneracy in MIP Tobias Achterberg 9 January 2018 Aussois Performance Impact in Gurobi 7.5+ 35% 32.0% 30% 25% 20% 15% 14.6% 10% 5.7% 7.9% 6.6% 5% 0% 2.9% 1.2% 0.1% 2.6% 2.6% Time limit: 10000

More information

Pure Cutting Plane Methods for ILP: a computational perspective

Pure Cutting Plane Methods for ILP: a computational perspective Pure Cutting Plane Methods for ILP: a computational perspective Matteo Fischetti, DEI, University of Padova Rorschach test for OR disorders: can you see the tree? 1 Outline 1. Pure cutting plane methods

More information

George Reloaded. M. Monaci (University of Padova, Italy) joint work with M. Fischetti. MIP Workshop, July 2010

George Reloaded. M. Monaci (University of Padova, Italy) joint work with M. Fischetti. MIP Workshop, July 2010 George Reloaded M. Monaci (University of Padova, Italy) joint work with M. Fischetti MIP Workshop, July 2010 Why George? Because of Karzan, Nemhauser, Savelsbergh Information-based branching schemes for

More information

Fundamentals of Integer Programming

Fundamentals of Integer Programming Fundamentals of Integer Programming Di Yuan Department of Information Technology, Uppsala University January 2018 Outline Definition of integer programming Formulating some classical problems with integer

More information

Parallel and Distributed Optimization with Gurobi Optimizer

Parallel and Distributed Optimization with Gurobi Optimizer Parallel and Distributed Optimization with Gurobi Optimizer Our Presenter Dr. Tobias Achterberg Developer, Gurobi Optimization 2 Parallel & Distributed Optimization 3 Terminology for this presentation

More information

Heuristics in Commercial MIP Solvers Part I (Heuristics in IBM CPLEX)

Heuristics in Commercial MIP Solvers Part I (Heuristics in IBM CPLEX) Andrea Tramontani CPLEX Optimization, IBM CWI, Amsterdam, June 12, 2018 Heuristics in Commercial MIP Solvers Part I (Heuristics in IBM CPLEX) Agenda CPLEX Branch-and-Bound (B&B) Primal heuristics in CPLEX

More information

February 19, Integer programming. Outline. Problem formulation. Branch-andbound

February 19, Integer programming. Outline. Problem formulation. Branch-andbound Olga Galinina olga.galinina@tut.fi ELT-53656 Network Analysis and Dimensioning II Department of Electronics and Communications Engineering Tampere University of Technology, Tampere, Finland February 19,

More information

Heuristics in MILP. Group 1 D. Assouline, N. Molyneaux, B. Morén. Supervisors: Michel Bierlaire, Andrea Lodi. Zinal 2017 Winter School

Heuristics in MILP. Group 1 D. Assouline, N. Molyneaux, B. Morén. Supervisors: Michel Bierlaire, Andrea Lodi. Zinal 2017 Winter School Heuristics in MILP Group 1 D. Assouline, N. Molyneaux, B. Morén Supervisors: Michel Bierlaire, Andrea Lodi Zinal 2017 Winter School 0 / 23 Primal heuristics Original paper: Fischetti, M. and Lodi, A. (2011).

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 36 CS 473: Algorithms, Spring 2018 LP Duality Lecture 20 April 3, 2018 Some of the

More information

RENS. The optimal rounding. Timo Berthold

RENS. The optimal rounding. Timo Berthold Math. Prog. Comp. (2014) 6:33 54 DOI 10.1007/s12532-013-0060-9 FULL LENGTH PAPER RENS The optimal rounding Timo Berthold Received: 25 April 2012 / Accepted: 2 October 2013 / Published online: 1 November

More information

5.3 Cutting plane methods and Gomory fractional cuts

5.3 Cutting plane methods and Gomory fractional cuts 5.3 Cutting plane methods and Gomory fractional cuts (ILP) min c T x s.t. Ax b x 0integer feasible region X Assumption: a ij, c j and b i integer. Observation: The feasible region of an ILP can be described

More information

Rounding and Propagation Heuristics for Mixed Integer Programming

Rounding and Propagation Heuristics for Mixed Integer Programming Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-9 Berlin-Dahlem Germany TOBIAS ACHTERBERG TIMO BERTHOLD GREGOR HENDEL Rounding and Propagation Heuristics for Mixed Integer Programming

More information

3 INTEGER LINEAR PROGRAMMING

3 INTEGER LINEAR PROGRAMMING 3 INTEGER LINEAR PROGRAMMING PROBLEM DEFINITION Integer linear programming problem (ILP) of the decision variables x 1,..,x n : (ILP) subject to minimize c x j j n j= 1 a ij x j x j 0 x j integer n j=

More information

LP SCIP NEOS URL. example1.lp 2.1 LP 1. minimize. subject to, bounds, free, general, binary, end. .lp 1 2.2

LP SCIP NEOS URL. example1.lp 2.1 LP 1. minimize. subject to, bounds, free, general, binary, end. .lp 1 2.2 c LP SCIP LP SCIP NEOS 1. URL 2. 2.1 LP 1 LP LP.lp 1 184 8588 2 24 16 1 minimize 3x +4.5y 2z 1 + f subject to g 1,1 + g 1,2 5, 3g 1,1 7g 1,2 + z 2 10, 2f g 1,1 =6, x +0.5y = 4.6, f 0, y 0, g 1,2 0, g 1,1

More information

Restrict-and-relax search for 0-1 mixed-integer programs

Restrict-and-relax search for 0-1 mixed-integer programs EURO J Comput Optim (23) :2 28 DOI.7/s3675-3-7-y ORIGINAL PAPER Restrict-and-relax search for - mixed-integer programs Menal Guzelsoy George Nemhauser Martin Savelsbergh Received: 2 September 22 / Accepted:

More information

Applied Mixed Integer Programming: Beyond 'The Optimum'

Applied Mixed Integer Programming: Beyond 'The Optimum' Applied Mixed Integer Programming: Beyond 'The Optimum' 14 Nov 2016, Simons Institute, Berkeley Pawel Lichocki Operations Research Team, Google https://developers.google.com/optimization/ Applied Mixed

More information

Primal Heuristics for Branch-and-Price Algorithms

Primal Heuristics for Branch-and-Price Algorithms Primal Heuristics for Branch-and-Price Algorithms Marco Lübbecke and Christian Puchert Abstract In this paper, we present several primal heuristics which we implemented in the branch-and-price solver GCG

More information

Branching rules revisited

Branching rules revisited Operations Research Letters 33 (2005) 42 54 Operations Research Letters www.elsevier.com/locate/dsw Branching rules revisited Tobias Achterberg a;, Thorsten Koch a, Alexander Martin b a Konrad-Zuse-Zentrum

More information

Integer Optimization: Mathematics, Algorithms, and Applications

Integer Optimization: Mathematics, Algorithms, and Applications Integer Optimization: Mathematics, Algorithms, and Applications Sommerschool Jacobs University, July 2007 DFG Research Center Matheon Mathematics for key technologies Thorsten Koch Zuse Institute Berlin

More information

Algorithms II MIP Details

Algorithms II MIP Details Algorithms II MIP Details What s Inside Gurobi Optimizer Algorithms for continuous optimization Algorithms for discrete optimization Automatic presolve for both LP and MIP Algorithms to analyze infeasible

More information

Investigating Mixed-Integer Hulls using a MIP-Solver

Investigating Mixed-Integer Hulls using a MIP-Solver Investigating Mixed-Integer Hulls using a MIP-Solver Matthias Walter Otto-von-Guericke Universität Magdeburg Joint work with Volker Kaibel (OvGU) Aussois Combinatorial Optimization Workshop 2015 Outline

More information

Modelling of LP-problems (2WO09)

Modelling of LP-problems (2WO09) Modelling of LP-problems (2WO09) assignor: Judith Keijsper room: HG 9.31 email: J.C.M.Keijsper@tue.nl course info : http://www.win.tue.nl/ jkeijspe Technische Universiteit Eindhoven meeting 1 J.Keijsper

More information

Welcome to the Webinar. What s New in Gurobi 7.5

Welcome to the Webinar. What s New in Gurobi 7.5 Welcome to the Webinar What s New in Gurobi 7.5 Speaker Introduction Dr. Tobias Achterberg Director of R&D at Gurobi Optimization Formerly a developer at ILOG, where he worked on CPLEX 11.0 to 12.6 Obtained

More information

Outline. CS38 Introduction to Algorithms. Linear programming 5/21/2014. Linear programming. Lecture 15 May 20, 2014

Outline. CS38 Introduction to Algorithms. Linear programming 5/21/2014. Linear programming. Lecture 15 May 20, 2014 5/2/24 Outline CS38 Introduction to Algorithms Lecture 5 May 2, 24 Linear programming simplex algorithm LP duality ellipsoid algorithm * slides from Kevin Wayne May 2, 24 CS38 Lecture 5 May 2, 24 CS38

More information

SCIP. 1 Introduction. 2 Model requirements. Contents. Stefan Vigerske, Humboldt University Berlin, Germany

SCIP. 1 Introduction. 2 Model requirements. Contents. Stefan Vigerske, Humboldt University Berlin, Germany SCIP Stefan Vigerske, Humboldt University Berlin, Germany Contents 1 Introduction.................................................. 673 2 Model requirements..............................................

More information

2. Modeling AEA 2018/2019. Based on Algorithm Engineering: Bridging the Gap Between Algorithm Theory and Practice - ch. 2

2. Modeling AEA 2018/2019. Based on Algorithm Engineering: Bridging the Gap Between Algorithm Theory and Practice - ch. 2 2. Modeling AEA 2018/2019 Based on Algorithm Engineering: Bridging the Gap Between Algorithm Theory and Practice - ch. 2 Content Introduction Modeling phases Modeling Frameworks Graph Based Models Mixed

More information

Numerically Safe Gomory Mixed-Integer Cuts

Numerically Safe Gomory Mixed-Integer Cuts Numerically Safe Gomory Mixed-Integer Cuts William Cook Industrial and Systems Engineering Georgia Institute of Technology Ricardo Fukasawa Discrete Optimization Group IBM T. J. Watson Research Center

More information

Integer Programming ISE 418. Lecture 1. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 1. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 1 Dr. Ted Ralphs ISE 418 Lecture 1 1 Reading for This Lecture N&W Sections I.1.1-I.1.4 Wolsey Chapter 1 CCZ Chapter 2 ISE 418 Lecture 1 2 Mathematical Optimization Problems

More information

State-of-the-Optimization using Xpress-MP v2006

State-of-the-Optimization using Xpress-MP v2006 State-of-the-Optimization using Xpress-MP v2006 INFORMS Annual Meeting Pittsburgh, USA November 5 8, 2006 by Alkis Vazacopoulos Outline LP benchmarks Xpress performance on MIPLIB 2003 Conclusions 3 Barrier

More information

lpsymphony - Integer Linear Programming in R

lpsymphony - Integer Linear Programming in R lpsymphony - Integer Linear Programming in R Vladislav Kim October 30, 2017 Contents 1 Introduction 2 2 lpsymphony: Quick Start 2 3 Integer Linear Programming 5 31 Equivalent and Dual Formulations 5 32

More information

Advanced Use of GAMS Solver Links

Advanced Use of GAMS Solver Links Advanced Use of GAMS Solver Links Michael Bussieck, Steven Dirkse, Stefan Vigerske GAMS Development 8th January 2013, ICS Conference, Santa Fe Standard GAMS solve Solve william minimizing cost using mip;

More information

Handling first-order linear constraints with SCIP

Handling first-order linear constraints with SCIP Handling first-order linear constraints with SCIP James Cussens, University of York KU Leuven, 2015-02-16 James Cussens, University of York FO with SCIP KU Leuven, 2015-02-16 1 / 18 MIP Mixed integer programs

More information

The Ascendance of the Dual Simplex Method: A Geometric View

The Ascendance of the Dual Simplex Method: A Geometric View The Ascendance of the Dual Simplex Method: A Geometric View Robert Fourer 4er@ampl.com AMPL Optimization Inc. www.ampl.com +1 773-336-AMPL U.S.-Mexico Workshop on Optimization and Its Applications Huatulco

More information

A Feasibility Pump heuristic for general Mixed-Integer Problems

A Feasibility Pump heuristic for general Mixed-Integer Problems A Feasibility Pump heuristic for general Mixed-Integer Problems Livio Bertacco, Matteo Fischetti, Andrea Lodi Department of Pure & Applied Mathematics, University of Padova, via Belzoni 7-35131 Padova

More information

SBB: A New Solver for Mixed Integer Nonlinear Programming

SBB: A New Solver for Mixed Integer Nonlinear Programming SBB: A New Solver for Mixed Integer Nonlinear Programming Michael R. Bussieck GAMS Development Corp. Arne Drud ARKI Consulting & Development A/S Overview Introduction: The MINLP Model The B&B Algorithm

More information

The Three Phases of MIP Solving

The Three Phases of MIP Solving Zuse Institute Berlin Takustrasse 7 D-14195 Berlin-Dahlem Germany TIMO BERTHOLD, GREGOR HENDEL, AND THORSTEN KOCH The Three Phases of MIP Solving The work for this article has been conducted within the

More information

Basic Concepts of Constraint Integer Programming

Basic Concepts of Constraint Integer Programming Basic Concepts of Constraint Integer Programming Ambros Gleixner Zuse Institute Berlin September 30, 2015 Outline SCIP Solving Constraint Integer Programs 4 methodologies in optimization An integrated

More information

On the safety of Gomory cut generators

On the safety of Gomory cut generators On the safety of Gomory cut generators Gérard Cornuéjols 1, François Margot 1, Giacomo Nannicini 2 1 Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA Email: {gc0v,fmargot}@andrew.cmu.edu

More information

MIPLIB Mixed Integer Programming Library version 5

MIPLIB Mixed Integer Programming Library version 5 Math. Prog. Comp. (2011) 3:103 163 DOI 10.1007/s12532-011-0025-9 FULL LENGTH PAPER MIPLIB 2010 Mixed Integer Programming Library version 5 Thorsten Koch Tobias Achterberg Erling Andersen Oliver Bastert

More information

Column Generation Based Primal Heuristics

Column Generation Based Primal Heuristics Column Generation Based Primal Heuristics C. Joncour, S. Michel, R. Sadykov, D. Sverdlov, F. Vanderbeck University Bordeaux 1 & INRIA team RealOpt Outline 1 Context Generic Primal Heuristics The Branch-and-Price

More information

Solving lexicographic multiobjective MIPs with Branch-Cut-Price

Solving lexicographic multiobjective MIPs with Branch-Cut-Price Solving lexicographic multiobjective MIPs with Branch-Cut-Price Marta Eso (The Hotchkiss School) Laszlo Ladanyi (IBM T.J. Watson Research Center) David Jensen (IBM T.J. Watson Research Center) McMaster

More information

Solving a Challenging Quadratic 3D Assignment Problem

Solving a Challenging Quadratic 3D Assignment Problem Solving a Challenging Quadratic 3D Assignment Problem Hans Mittelmann Arizona State University Domenico Salvagnin DEI - University of Padova Quadratic 3D Assignment Problem Quadratic 3D Assignment Problem

More information

Integer Programming Chapter 9

Integer Programming Chapter 9 1 Integer Programming Chapter 9 University of Chicago Booth School of Business Kipp Martin October 30, 2017 2 Outline Branch and Bound Theory Branch and Bound Linear Programming Node Selection Strategies

More information

COMP9334: Capacity Planning of Computer Systems and Networks

COMP9334: Capacity Planning of Computer Systems and Networks COMP9334: Capacity Planning of Computer Systems and Networks Week 10: Optimisation (1) A/Prof Chun Tung Chou CSE, UNSW COMP9334, Chun Tung Chou, 2016 Three Weeks of Optimisation The lectures for these

More information

Integer Programming as Projection

Integer Programming as Projection Integer Programming as Projection H. P. Williams London School of Economics John Hooker Carnegie Mellon University INFORMS 2015, Philadelphia USA A Different Perspective on IP Projection of an IP onto

More information

Benders Decomposition

Benders Decomposition Benders Decomposition Using projections to solve problems thst@man.dtu.dk DTU-Management Technical University of Denmark 1 Outline Introduction Using projections Benders decomposition Simple plant location

More information

Discrete Optimization with Decision Diagrams

Discrete Optimization with Decision Diagrams Discrete Optimization with Decision Diagrams J. N. Hooker Joint work with David Bergman, André Ciré, Willem van Hoeve Carnegie Mellon University Australian OR Society, May 2014 Goal Find an alternative

More information

How to use your favorite MIP Solver: modeling, solving, cannibalizing. Andrea Lodi University of Bologna, Italy

How to use your favorite MIP Solver: modeling, solving, cannibalizing. Andrea Lodi University of Bologna, Italy How to use your favorite MIP Solver: modeling, solving, cannibalizing Andrea Lodi University of Bologna, Italy andrea.lodi@unibo.it January-February, 2012 @ Universität Wien A. Lodi, How to use your favorite

More information

Two-layer Network Design by Branch-and-Cut featuring MIP-based Heuristics

Two-layer Network Design by Branch-and-Cut featuring MIP-based Heuristics Two-layer Network Design by Branch-and-Cut featuring MIP-based Heuristics Sebastian Orlowski, Zuse Institute Berlin, Takustr. 7, D-14195 Berlin, orlowski@zib.de Arie M.C.A. Koster, Zuse Institute Berlin,

More information

Exact Algorithms for Mixed-Integer Bilevel Linear Programming

Exact Algorithms for Mixed-Integer Bilevel Linear Programming Exact Algorithms for Mixed-Integer Bilevel Linear Programming Matteo Fischetti, University of Padova (based on joint work with I. Ljubic, M. Monaci, and M. Sinnl) Lunteren Conference on the Mathematics

More information

NEOS.jl (and other things)

NEOS.jl (and other things) NEOS.jl (and other things) Oscar Dowson Department of Engineering Science, University of Auckland, New Zealand. o.dowson@auckland.ac.nz Overview 1. The NEOS Server 2. NEOS.jl interface with MPB 3. File

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture 16 Cutting Plane Algorithm We shall continue the discussion on integer programming,

More information

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers Isil Dillig, Thomas Dillig, and Alex Aiken Computer Science Department Stanford University Linear Arithmetic

More information

Penalty Alternating Direction Methods for Mixed- Integer Optimization: A New View on Feasibility Pumps

Penalty Alternating Direction Methods for Mixed- Integer Optimization: A New View on Feasibility Pumps Penalty Alternating Direction Methods for Mixed- Integer Optimization: A New View on Feasibility Pumps Björn Geißler, Antonio Morsi, Lars Schewe, Martin Schmidt FAU Erlangen-Nürnberg, Discrete Optimization

More information

Linear programming and duality theory

Linear programming and duality theory Linear programming and duality theory Complements of Operations Research Giovanni Righini Linear Programming (LP) A linear program is defined by linear constraints, a linear objective function. Its variables

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture 18 All-Integer Dual Algorithm We continue the discussion on the all integer

More information

From final point cuts to!-polyhedral cuts

From final point cuts to!-polyhedral cuts AUSSOIS 2017 From final point cuts to!-polyhedral cuts Egon Balas, Aleksandr M. Kazachkov, François Margot Tepper School of Business, Carnegie Mellon University Overview Background Generalized intersection

More information

The AIMMS Outer Approximation Algorithm for MINLP

The AIMMS Outer Approximation Algorithm for MINLP The AIMMS Outer Approximation Algorithm for MINLP (using GMP functionality) By Marcel Hunting marcel.hunting@aimms.com November 2011 This document describes how to use the GMP variant of the AIMMS Outer

More information

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017 Section Notes 5 Review of Linear Programming Applied Math / Engineering Sciences 121 Week of October 15, 2017 The following list of topics is an overview of the material that was covered in the lectures

More information

Experiments with a Generic Dantzig-Wolfe Decomposition for Integer Programs

Experiments with a Generic Dantzig-Wolfe Decomposition for Integer Programs Experiments with a Generic Dantzig-Wolfe Decomposition for Integer Programs Gerald Gamrath 1 and Marco E. Lübbecke 2 1 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany gamrath@zib.de 2 Technische

More information

Agenda. Understanding advanced modeling techniques takes some time and experience No exercises today Ask questions!

Agenda. Understanding advanced modeling techniques takes some time and experience No exercises today Ask questions! Modeling 2 Agenda Understanding advanced modeling techniques takes some time and experience No exercises today Ask questions! Part 1: Overview of selected modeling techniques Background Range constraints

More information

Linear and Integer Programming (ADM II) Script. Rolf Möhring WS 2010/11

Linear and Integer Programming (ADM II) Script. Rolf Möhring WS 2010/11 Linear and Integer Programming (ADM II) Script Rolf Möhring WS 200/ Contents -. Algorithmic Discrete Mathematics (ADM)... 3... 4.3 Winter term 200/... 5 2. Optimization problems 2. Examples... 7 2.2 Neighborhoods

More information

Constraint Branching and Disjunctive Cuts for Mixed Integer Programs

Constraint Branching and Disjunctive Cuts for Mixed Integer Programs Constraint Branching and Disunctive Cuts for Mixed Integer Programs Constraint Branching and Disunctive Cuts for Mixed Integer Programs Michael Perregaard Dash Optimization Constraint Branching and Disunctive

More information

Primal Heuristics for Mixed Integer Programs with a Staircase Structure

Primal Heuristics for Mixed Integer Programs with a Staircase Structure Primal Heuristics for Mixed Integer Programs with a Staircase Structure Marco E. Lübbecke and Christian Puchert Chair of Operations Research, RWTH Aachen University, Kackertstr. 7, 52072 Aachen, Germany

More information

Linear Programming Duality and Algorithms

Linear Programming Duality and Algorithms COMPSCI 330: Design and Analysis of Algorithms 4/5/2016 and 4/7/2016 Linear Programming Duality and Algorithms Lecturer: Debmalya Panigrahi Scribe: Tianqi Song 1 Overview In this lecture, we will cover

More information

On the Global Solution of Linear Programs with Linear Complementarity Constraints

On the Global Solution of Linear Programs with Linear Complementarity Constraints On the Global Solution of Linear Programs with Linear Complementarity Constraints J. E. Mitchell 1 J. Hu 1 J.-S. Pang 2 K. P. Bennett 1 G. Kunapuli 1 1 Department of Mathematical Sciences RPI, Troy, NY

More information

Benders in a nutshell Matteo Fischetti, University of Padova

Benders in a nutshell Matteo Fischetti, University of Padova Benders in a nutshell Matteo Fischetti, University of Padova ODS 2017, Sorrento, September 2017 1 Benders decomposition The original Benders decomposition from the 1960s uses two distinct ingredients for

More information

The AIMMS Outer Approximation Algorithm for MINLP

The AIMMS Outer Approximation Algorithm for MINLP The AIMMS Outer Approximation Algorithm for MINLP (using GMP functionality) By Marcel Hunting Paragon Decision Technology BV An AIMMS White Paper November, 2011 Abstract This document describes how to

More information

Assessing Performance of Parallel MILP Solvers

Assessing Performance of Parallel MILP Solvers Assessing Performance of Parallel MILP Solvers How Are We Doing, Really? Ted Ralphs 1 Stephen J. Maher 2, Yuji Shinano 3 1 COR@L Lab, Lehigh University, Bethlehem, PA USA 2 Lancaster University, Lancaster,

More information

Improved Gomory Cuts for Primal Cutting Plane Algorithms

Improved Gomory Cuts for Primal Cutting Plane Algorithms Improved Gomory Cuts for Primal Cutting Plane Algorithms S. Dey J-P. Richard Industrial Engineering Purdue University INFORMS, 2005 Outline 1 Motivation The Basic Idea Set up the Lifting Problem How to

More information

A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed Integer Conic Quadratic Programs

A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed Integer Conic Quadratic Programs A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed Integer Conic Quadratic Programs Juan Pablo Vielma Shabbir Ahmed George L. Nemhauser H. Milton Stewart School of Industrial and Systems

More information

Tutorial on Integer Programming for Visual Computing

Tutorial on Integer Programming for Visual Computing Tutorial on Integer Programming for Visual Computing Peter Wonka and Chi-han Peng November 2018 1 1 Notation The vector space is denoted as R,R n,r m n,v,w Matricies are denoted by upper case, italic,

More information

The goal of this paper is to develop models and methods that use complementary

The goal of this paper is to develop models and methods that use complementary for a Class of Optimization Problems Vipul Jain Ignacio E. Grossmann Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA Vipul_Jain@i2.com grossmann@cmu.edu

More information

Computational Integer Programming. Lecture 12: Branch and Cut. Dr. Ted Ralphs

Computational Integer Programming. Lecture 12: Branch and Cut. Dr. Ted Ralphs Computational Integer Programming Lecture 12: Branch and Cut Dr. Ted Ralphs Computational MILP Lecture 12 1 Reading for This Lecture Wolsey Section 9.6 Nemhauser and Wolsey Section II.6 Martin Computational

More information

Some Advanced Topics in Linear Programming

Some Advanced Topics in Linear Programming Some Advanced Topics in Linear Programming Matthew J. Saltzman July 2, 995 Connections with Algebra and Geometry In this section, we will explore how some of the ideas in linear programming, duality theory,

More information

Crash-Starting the Simplex Method

Crash-Starting the Simplex Method Crash-Starting the Simplex Method Ivet Galabova Julian Hall School of Mathematics, University of Edinburgh Optimization Methods and Software December 2017 Ivet Galabova, Julian Hall Crash-Starting Simplex

More information