VQ Encoding is Nearest Neighbor Search

Size: px
Start display at page:

Download "VQ Encoding is Nearest Neighbor Search"

Transcription

1 VQ Encoding is Nearest Neighbor Search Given an input vector, find the closest codeword in the codebook and output its index. Closest is measured in squared Euclidean distance. For two vectors (w 1,x 1,y 1,z 1 ) and (w 2,x 2,y 2,z 2 ).

2 kd-trees Invented in 1970s by Jon Bentley Name originally meant 3d-trees, 4d-trees, etc where k was the # of dimensions Now, people say kd-tree of dimension d Idea: Each level of the tree compares against 1 dimension. Let s us have only two children at each node (instead of 2 d )

3 k-d Tree Jon Bentley, 1975 Tree used to store spatial data. Nearest neighbor search. Range queries. Fast look-up! k-d trees are guaranteed log 2 n depth where n is the number of points in the set. Traditionally, k-d trees store points in d-dimensional space (equivalent to vectors in ddimensional space).

4 k-d tree construction If there is just one point, form a leaf with that point. Otherwise, divide the points in half by a line perpendicular to one of the axes. Recursively construct k-d trees for the two sets of points. Division strategies: divide points perpendicular to the axis with widest spread. divide in a round-robin fashion.

5 k-d tree construction example

6 k-d tree construction example

7 k-d tree construction example

8 k-d tree construction example

9 k-d tree construction example

10 k-d tree Construction Complexity First sort the points in each dimension: O(dn log n) time and dn storage. These are stored in A[1..d,1..n] Finding the widest spread and equally dividing into two subsets can be done in O(dn) time. Constructing the k-d tree can be done in O(dn log n) and dn storage

11 kd-trees Each level has a cutting dimension Cycle through the dimensions as you walk down the tree. Each node contains a point P = (x,y) x y x To find (x,y ) you only compare coordinate from the cutting dimension - e.g. if cutting dimension is x, then you ask: is x < x? x y

12 kd-tree example insert: (30,40), (5,25), (10,12), (70,70), (50,30), (35,45) x 30,40 (70,70) y 5,25 70,70 (30,40) (35,45) x 10,12 50,30 (5,25) (50,30) y 35,45 (10,12)

13 FindMin in kd-trees FindMin(d): find the point with the smallest value in the dth dimension. Recursively traverse the tree If cutdim(current_node) = d, then the minimum can t be in the right subtree, so recurse on just the left subtree - if no left subtree, then current node is the min for tree rooted at this node. If cutdim(current_node) d, then minimum could be in either subtree, so recurse on both subtrees. - (unlike in 1-d structures, often have to explore several paths down the tree)

14 FindMin FindMin(x-dimension): (35,90) (60,80) x 51,75 (51,75) (70,70) y 25,40 70,70 (50,50) (25,40) x 10,30 35,90 55,1 60,80 (1,10) (10,30) (55,1) y 1,10 50,50

15 FindMin FindMin(y-dimension): (35,90) (60,80) x 51,75 (51,75) (70,70) y 25,40 70,70 (50,50) (25,40) x 10,30 35,90 55,1 55,1 60,80 (1,10) (10,30) (55,1) y 1,10 1,10 50,50

16 FindMin FindMin(y-dimension): space searched (35,90) (60,80) x 51,75 (51,75) (70,70) y 25,40 70,70 (50,50) (25,40) x 10,30 35,90 55,1 60,80 (1,10) (10,30) (55,1) y 1,10 50,50

17 Delete in kd-trees Want to delete node A. Assume cutting dimension of A is cd In BST, we d findmin(a.right). cd A Here, we have to findmin(a.right, cd) Everything in Q has cd-coord < B, and everything in P has cdcoord B Q cd B P

18 Delete in kd-trees --- No Right Subtree What is right subtree is empty? Possible idea: Find the max in the left subtree? - Why might this not work? Suppose I findmax(t.left) and get point (a,b): x (x,y) It s possible that T.left contains another point with x = a. Now, our equal coordinate invariant is violated! (a,c) Q cd (a,b)

19 No right subtree --- Solution Swap the subtrees of node to be deleted B = findmin(t.left) Replace deleted node by B x (x,y) Now, if there is another point with x=a, it appears in the right subtree, where it should Q cd (a,b) (a,c)

20 Codebook for 2-d vector

21 Node Structure for k-d Tree A node has 5 fields axis (splitting axis) value (splitting value) left (left subtree) right (right subtree) point (holds a point if left and right children are null)

22 Nearest Neighbor Searching in kd-trees Nearest Neighbor Queries are very common: given a point Q find the point P in the data set that is closest to Q. Doesn t work: find cell that would contain Q and return the point it contains. - Reason: the nearest point to P in space may be far from P in the tree: - E.g. NN(52,52): (35,90) (60,80) 51,75 (51,75) 25,40 70,70 (70,70) (50,50) (25,40) 10,30 35,90 55,1 60,80 (1,10) (10,30) (55,1) 1,10 50,50

23 kd-trees Nearest Neighbor Idea: traverse the whole tree, BUT make two modifications to prune to search space: 1. Keep variable of closest point C found so far. Prune subtrees once their bounding boxes say that they can t contain any point closer than C 2. Search the subtrees in order that maximizes the chance for pruning

24 Nearest Neighbor: Ideas, continued Query Point Q d Bounding box of subtree rooted at T T If d > dist(c, Q), then no point in BB(T) can be closer to Q than C. Hence, no reason to search subtree rooted at T. Update the best point so far, if T is better: if dist(c, Q) > dist(t.data, Q), C := T.data Recurse, but start with the subtree closer to Q: First search the subtree that would contain Q if we were inserting Q below T.

25 Nearest Neighbor Facts Might have to search close to the whole tree in the worst case. [O(n)] In practice, runtime is closer to: - O(2 d + log n) - log n to find cells near the query point - 2 d to search around cells in that neighborhood Three important concepts that reoccur in range / nearest neighbor searching: - storing partial results: keep best so far, and update - pruning: reduce search space by eliminating irrelevant trees. - traversal order: visit the most promising subtree first.

26 Why does k-d tree work?

27 k-d Tree Nearest Neighbor Search

28 k-d Tree Nearest Neighbor Search

29 k-d Tree Nearest Neighbor Search

30 k-d Tree Nearest Neighbor Search

31 k-d Tree Nearest Neighbor Search

32 k-d Tree Nearest Neighbor Search

33 Notes on Nearest Neighbor Search Has been shown to run in O(log n) average time per search in a reasonable model. (Assuming d a constant) For VQ it appears that O(log n) is correct. Storage for the k-d tree is O(n). Preprocessing time is O(n log n) assuming d is a constant.

34 Notes on Nearest Neighbor Search Orchard s Algorithm (1991) Uses O(n2) storage but is very fast Annulus Algorithm Similar to Orchard but uses O(n) storage. Does many more distance calculations. Principal Component Partitioning (PCP) Zatloukal, Johnson, Ladner (1999). Similar to k-d trees. Also very fast.

35 PCP Tree

36 PCP Tree vs. k-d Tree

37 Search Time

38 Notes on VQ Works well in some applications. Requires training. Has some interesting algorithms: Codebook design. Nearest neighbor search. Variable length codes for VQ: PTSVQ - pruned tree structured VQ (Chou, Lookabaugh and Gray, 1989) ECVQ - entropy constrained VQ (Chou, Lookabaugh and Gray, 1989)

kd-trees Idea: Each level of the tree compares against 1 dimension. Let s us have only two children at each node (instead of 2 d )

kd-trees Idea: Each level of the tree compares against 1 dimension. Let s us have only two children at each node (instead of 2 d ) kd-trees Invented in 1970s by Jon Bentley Name originally meant 3d-trees, 4d-trees, etc where k was the # of dimensions Now, people say kd-tree of dimension d Idea: Each level of the tree compares against

More information

OPPA European Social Fund Prague & EU: We invest in your future.

OPPA European Social Fund Prague & EU: We invest in your future. OPPA European Social Fund Prague & EU: We invest in your future. Search trees, k-d tree Marko Berezovský Radek Mařík PAL 2012 p 2

More information

Geometric data structures:

Geometric data structures: Geometric data structures: Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade Sham Kakade 2017 1 Announcements: HW3 posted Today: Review: LSH for Euclidean distance Other

More information

Spatial Queries. Nearest Neighbor Queries

Spatial Queries. Nearest Neighbor Queries Spatial Queries Nearest Neighbor Queries Spatial Queries Given a collection of geometric objects (points, lines, polygons,...) organize them on disk, to answer efficiently point queries range queries k-nn

More information

Search trees, k-d tree Marko Berezovský Radek Mařík PAL 2012

Search trees, k-d tree Marko Berezovský Radek Mařík PAL 2012 Search trees, k-d tree Marko Berezovský Radek Mařík PAL 2012 p 2

More information

Advanced Algorithm Design and Analysis (Lecture 12) SW5 fall 2005 Simonas Šaltenis E1-215b

Advanced Algorithm Design and Analysis (Lecture 12) SW5 fall 2005 Simonas Šaltenis E1-215b Advanced Algorithm Design and Analysis (Lecture 12) SW5 fall 2005 Simonas Šaltenis E1-215b simas@cs.aau.dk Range Searching in 2D Main goals of the lecture: to understand and to be able to analyze the kd-trees

More information

Outline. Other Use of Triangle Inequality Algorithms for Nearest Neighbor Search: Lecture 2. Orchard s Algorithm. Chapter VI

Outline. Other Use of Triangle Inequality Algorithms for Nearest Neighbor Search: Lecture 2. Orchard s Algorithm. Chapter VI Other Use of Triangle Ineuality Algorithms for Nearest Neighbor Search: Lecture 2 Yury Lifshits http://yury.name Steklov Institute of Mathematics at St.Petersburg California Institute of Technology Outline

More information

CS210 Project 5 (Kd-Trees) Swami Iyer

CS210 Project 5 (Kd-Trees) Swami Iyer The purpose of this assignment is to create a symbol table data type whose keys are two-dimensional points. We ll use a 2d-tree to support efficient range search (find all the points contained in a query

More information

CMSC 754 Computational Geometry 1

CMSC 754 Computational Geometry 1 CMSC 754 Computational Geometry 1 David M. Mount Department of Computer Science University of Maryland Fall 2005 1 Copyright, David M. Mount, 2005, Dept. of Computer Science, University of Maryland, College

More information

Friday Four Square! 4:15PM, Outside Gates

Friday Four Square! 4:15PM, Outside Gates Binary Search Trees Friday Four Square! 4:15PM, Outside Gates Implementing Set On Monday and Wednesday, we saw how to implement the Map and Lexicon, respectively. Let's now turn our attention to the Set.

More information

Data Structures in Java

Data Structures in Java Data Structures in Java Lecture 9: Binary Search Trees. 10/7/015 Daniel Bauer 1 Contents 1. Binary Search Trees. Implementing Maps with BSTs Map ADT A map is collection of (key, value) pairs. Keys are

More information

Big Data Analytics. Special Topics for Computer Science CSE CSE April 14

Big Data Analytics. Special Topics for Computer Science CSE CSE April 14 Big Data Analytics Special Topics for Computer Science CSE 4095-001 CSE 5095-005 April 14 Fei Wang Associate Professor Department of Computer Science and Engineering fei_wang@uconn.edu Scalability I K-d

More information

Binary Trees, Binary Search Trees

Binary Trees, Binary Search Trees Binary Trees, Binary Search Trees Trees Linear access time of linked lists is prohibitive Does there exist any simple data structure for which the running time of most operations (search, insert, delete)

More information

Binary Search Trees. See Section 11.1 of the text.

Binary Search Trees. See Section 11.1 of the text. Binary Search Trees See Section 11.1 of the text. Consider the following Binary Search Tree 17 This tree has a nice property: for every node, all of the nodes in its left subtree have values less than

More information

Lecture 3 February 9, 2010

Lecture 3 February 9, 2010 6.851: Advanced Data Structures Spring 2010 Dr. André Schulz Lecture 3 February 9, 2010 Scribe: Jacob Steinhardt and Greg Brockman 1 Overview In the last lecture we continued to study binary search trees

More information

Orthogonal Range Queries

Orthogonal Range Queries Orthogonal Range Piotr Indyk Range Searching in 2D Given a set of n points, build a data structure that for any query rectangle R, reports all points in R Kd-trees [Bentley] Not the most efficient solution

More information

Intersection Acceleration

Intersection Acceleration Advanced Computer Graphics Intersection Acceleration Matthias Teschner Computer Science Department University of Freiburg Outline introduction bounding volume hierarchies uniform grids kd-trees octrees

More information

High Dimensional Indexing by Clustering

High Dimensional Indexing by Clustering Yufei Tao ITEE University of Queensland Recall that, our discussion so far has assumed that the dimensionality d is moderately high, such that it can be regarded as a constant. This means that d should

More information

Computational Geometry

Computational Geometry Windowing queries Windowing Windowing queries Zoom in; re-center and zoom in; select by outlining Windowing Windowing queries Windowing Windowing queries Given a set of n axis-parallel line segments, preprocess

More information

Computational Geometry

Computational Geometry Orthogonal Range Searching omputational Geometry hapter 5 Range Searching Problem: Given a set of n points in R d, preprocess them such that reporting or counting the k points inside a d-dimensional axis-parallel

More information

Nearest neighbors. Focus on tree-based methods. Clément Jamin, GUDHI project, Inria March 2017

Nearest neighbors. Focus on tree-based methods. Clément Jamin, GUDHI project, Inria March 2017 Nearest neighbors Focus on tree-based methods Clément Jamin, GUDHI project, Inria March 2017 Introduction Exact and approximate nearest neighbor search Essential tool for many applications Huge bibliography

More information

Clustering Billions of Images with Large Scale Nearest Neighbor Search

Clustering Billions of Images with Large Scale Nearest Neighbor Search Clustering Billions of Images with Large Scale Nearest Neighbor Search Ting Liu, Charles Rosenberg, Henry A. Rowley IEEE Workshop on Applications of Computer Vision February 2007 Presented by Dafna Bitton

More information

Task Description: Finding Similar Documents. Document Retrieval. Case Study 2: Document Retrieval

Task Description: Finding Similar Documents. Document Retrieval. Case Study 2: Document Retrieval Case Study 2: Document Retrieval Task Description: Finding Similar Documents Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 11, 2017 Sham Kakade 2017 1 Document

More information

Ray Tracing Acceleration Data Structures

Ray Tracing Acceleration Data Structures Ray Tracing Acceleration Data Structures Sumair Ahmed October 29, 2009 Ray Tracing is very time-consuming because of the ray-object intersection calculations. With the brute force method, each ray has

More information

Range Searching. Data structure for a set of objects (points, rectangles, polygons) for efficient range queries.

Range Searching. Data structure for a set of objects (points, rectangles, polygons) for efficient range queries. Range Searching Data structure for a set of objects (oints, rectangles, olygons) for efficient range queries. Y Q Deends on tye of objects and queries. Consider basic data structures with broad alicability.

More information

KD-Tree Algorithm for Propensity Score Matching PhD Qualifying Exam Defense

KD-Tree Algorithm for Propensity Score Matching PhD Qualifying Exam Defense KD-Tree Algorithm for Propensity Score Matching PhD Qualifying Exam Defense John R Hott University of Virginia May 11, 2012 1 / 62 Motivation Epidemiology: Clinical Trials Phase II and III pre-market trials

More information

Hierarchical Ordering for Approximate Similarity Ranking

Hierarchical Ordering for Approximate Similarity Ranking Hierarchical Ordering for Approximate Similarity Ranking Joselíto J. Chua and Peter E. Tischer School of Computer Science and Software Engineering Monash University, Victoria 3800, Australia jjchua@mail.csse.monash.edu.au

More information

Orthogonal range searching. Range Trees. Orthogonal range searching. 1D range searching. CS Spring 2009

Orthogonal range searching. Range Trees. Orthogonal range searching. 1D range searching. CS Spring 2009 CS 5633 -- Spring 2009 Orthogonal range searching Range Trees Carola Wenk Slides courtesy of Charles Leiserson with small changes by Carola Wenk CS 5633 Analysis of Algorithms 1 Input: n points in d dimensions

More information

CS350: Data Structures Binary Search Trees

CS350: Data Structures Binary Search Trees Binary Search Trees James Moscola Department of Engineering & Computer Science York College of Pennsylvania James Moscola Introduction to Binary Search Trees A binary search tree is a binary tree that

More information

Module 8: Range-Searching in Dictionaries for Points

Module 8: Range-Searching in Dictionaries for Points Module 8: Range-Searching in Dictionaries for Points CS 240 Data Structures and Data Management T. Biedl K. Lanctot M. Sepehri S. Wild Based on lecture notes by many previous cs240 instructors David R.

More information

Orthogonal Range Search and its Relatives

Orthogonal Range Search and its Relatives Orthogonal Range Search and its Relatives Coordinate-wise dominance and minima Definition: dominates Say that point (x,y) dominates (x', y') if x

More information

Multidimensional Indexes [14]

Multidimensional Indexes [14] CMSC 661, Principles of Database Systems Multidimensional Indexes [14] Dr. Kalpakis http://www.csee.umbc.edu/~kalpakis/courses/661 Motivation Examined indexes when search keys are in 1-D space Many interesting

More information

CS350: Data Structures B-Trees

CS350: Data Structures B-Trees B-Trees James Moscola Department of Engineering & Computer Science York College of Pennsylvania James Moscola Introduction All of the data structures that we ve looked at thus far have been memory-based

More information

We can use a max-heap to sort data.

We can use a max-heap to sort data. Sorting 7B N log N Sorts 1 Heap Sort We can use a max-heap to sort data. Convert an array to a max-heap. Remove the root from the heap and store it in its proper position in the same array. Repeat until

More information

Accelerating Geometric Queries. Computer Graphics CMU /15-662, Fall 2016

Accelerating Geometric Queries. Computer Graphics CMU /15-662, Fall 2016 Accelerating Geometric Queries Computer Graphics CMU 15-462/15-662, Fall 2016 Geometric modeling and geometric queries p What point on the mesh is closest to p? What point on the mesh is closest to p?

More information

Trees. (Trees) Data Structures and Programming Spring / 28

Trees. (Trees) Data Structures and Programming Spring / 28 Trees (Trees) Data Structures and Programming Spring 2018 1 / 28 Trees A tree is a collection of nodes, which can be empty (recursive definition) If not empty, a tree consists of a distinguished node r

More information

CS 350 : Data Structures Binary Search Trees

CS 350 : Data Structures Binary Search Trees CS 350 : Data Structures Binary Search Trees David Babcock (courtesy of James Moscola) Department of Physical Sciences York College of Pennsylvania James Moscola Introduction to Binary Search Trees A binary

More information

Nearest Neighbor Methods

Nearest Neighbor Methods Nearest Neighbor Methods Nicholas Ruozzi University of Texas at Dallas Based on the slides of Vibhav Gogate and David Sontag Nearest Neighbor Methods Learning Store all training examples Classifying a

More information

Midterm Examination CS540-2: Introduction to Artificial Intelligence

Midterm Examination CS540-2: Introduction to Artificial Intelligence Midterm Examination CS540-2: Introduction to Artificial Intelligence March 15, 2018 LAST NAME: FIRST NAME: Problem Score Max Score 1 12 2 13 3 9 4 11 5 8 6 13 7 9 8 16 9 9 Total 100 Question 1. [12] Search

More information

{ K 0 (P ); ; K k 1 (P )): k keys of P ( COORD(P) ) { DISC(P): discriminator of P { HISON(P), LOSON(P) Kd-Tree Multidimensional binary search tree Tak

{ K 0 (P ); ; K k 1 (P )): k keys of P ( COORD(P) ) { DISC(P): discriminator of P { HISON(P), LOSON(P) Kd-Tree Multidimensional binary search tree Tak Nearest Neighbor Search using Kd-Tree Kim Doe-Wan and Media Processing Lab Language for Automation Research Center of Maryland University March 28, 2000 { K 0 (P ); ; K k 1 (P )): k keys of P ( COORD(P)

More information

Spatial Data Structures

Spatial Data Structures CSCI 420 Computer Graphics Lecture 17 Spatial Data Structures Jernej Barbic University of Southern California Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees [Angel Ch. 8] 1 Ray Tracing Acceleration

More information

Data Mining and Machine Learning: Techniques and Algorithms

Data Mining and Machine Learning: Techniques and Algorithms Instance based classification Data Mining and Machine Learning: Techniques and Algorithms Eneldo Loza Mencía eneldo@ke.tu-darmstadt.de Knowledge Engineering Group, TU Darmstadt International Week 2019,

More information

Spatial Data Structures

Spatial Data Structures CSCI 480 Computer Graphics Lecture 7 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids BSP Trees [Ch. 0.] March 8, 0 Jernej Barbic University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s/

More information

CS 350 : Data Structures B-Trees

CS 350 : Data Structures B-Trees CS 350 : Data Structures B-Trees David Babcock (courtesy of James Moscola) Department of Physical Sciences York College of Pennsylvania James Moscola Introduction All of the data structures that we ve

More information

In-Memory Searching. Linear Search. Binary Search. Binary Search Tree. k-d Tree. Hashing. Hash Collisions. Collision Strategies.

In-Memory Searching. Linear Search. Binary Search. Binary Search Tree. k-d Tree. Hashing. Hash Collisions. Collision Strategies. In-Memory Searching Linear Search Binary Search Binary Search Tree k-d Tree Hashing Hash Collisions Collision Strategies Chapter 4 Searching A second fundamental operation in Computer Science We review

More information

B-Trees. Based on materials by D. Frey and T. Anastasio

B-Trees. Based on materials by D. Frey and T. Anastasio B-Trees Based on materials by D. Frey and T. Anastasio 1 Large Trees n Tailored toward applications where tree doesn t fit in memory q operations much faster than disk accesses q want to limit levels of

More information

TREES. Trees - Introduction

TREES. Trees - Introduction TREES Chapter 6 Trees - Introduction All previous data organizations we've studied are linear each element can have only one predecessor and successor Accessing all elements in a linear sequence is O(n)

More information

Nearest Neighbors Classifiers

Nearest Neighbors Classifiers Nearest Neighbors Classifiers Raúl Rojas Freie Universität Berlin July 2014 In pattern recognition we want to analyze data sets of many different types (pictures, vectors of health symptoms, audio streams,

More information

Algorithms GEOMETRIC APPLICATIONS OF BSTS. 1d range search line segment intersection kd trees interval search trees rectangle intersection

Algorithms GEOMETRIC APPLICATIONS OF BSTS. 1d range search line segment intersection kd trees interval search trees rectangle intersection GEOMETRIC APPLICATIONS OF BSTS Algorithms F O U R T H E D I T I O N 1d range search line segment intersection kd trees interval search trees rectangle intersection R O B E R T S E D G E W I C K K E V I

More information

Locality- Sensitive Hashing Random Projections for NN Search

Locality- Sensitive Hashing Random Projections for NN Search Case Study 2: Document Retrieval Locality- Sensitive Hashing Random Projections for NN Search Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 18, 2017 Sham Kakade

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms CS245-2008S-19 B-Trees David Galles Department of Computer Science University of San Francisco 19-0: Indexing Operations: Add an element Remove an element Find an element,

More information

Lecture 6: Analysis of Algorithms (CS )

Lecture 6: Analysis of Algorithms (CS ) Lecture 6: Analysis of Algorithms (CS583-002) Amarda Shehu October 08, 2014 1 Outline of Today s Class 2 Traversals Querying Insertion and Deletion Sorting with BSTs 3 Red-black Trees Height of a Red-black

More information

Spatial Data Structures

Spatial Data Structures 15-462 Computer Graphics I Lecture 17 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) April 1, 2003 [Angel 9.10] Frank Pfenning Carnegie

More information

Query Processing and Advanced Queries. Advanced Queries (2): R-TreeR

Query Processing and Advanced Queries. Advanced Queries (2): R-TreeR Query Processing and Advanced Queries Advanced Queries (2): R-TreeR Review: PAM Given a point set and a rectangular query, find the points enclosed in the query We allow insertions/deletions online Query

More information

Range Searching and Windowing

Range Searching and Windowing CS 6463 -- Fall 2010 Range Searching and Windowing Carola Wenk 1 Orthogonal range searching Input: n points in d dimensions E.g., representing a database of n records each with d numeric fields Query:

More information

CSE 241 Class 17. Jeremy Buhler. October 28, Ordered collections supported both, plus total ordering operations (pred and succ)

CSE 241 Class 17. Jeremy Buhler. October 28, Ordered collections supported both, plus total ordering operations (pred and succ) CSE 241 Class 17 Jeremy Buhler October 28, 2015 And now for something completely different! 1 A New Abstract Data Type So far, we ve described ordered and unordered collections. Unordered collections didn

More information

Data Mining. 3.5 Lazy Learners (Instance-Based Learners) Fall Instructor: Dr. Masoud Yaghini. Lazy Learners

Data Mining. 3.5 Lazy Learners (Instance-Based Learners) Fall Instructor: Dr. Masoud Yaghini. Lazy Learners Data Mining 3.5 (Instance-Based Learners) Fall 2008 Instructor: Dr. Masoud Yaghini Outline Introduction k-nearest-neighbor Classifiers References Introduction Introduction Lazy vs. eager learning Eager

More information

Announcements. Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday

Announcements. Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday Announcements Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday 1 Spatial Data Structures Hierarchical Bounding Volumes Grids Octrees BSP Trees 11/7/02 Speeding Up Computations

More information

Lecture 24: Image Retrieval: Part II. Visual Computing Systems CMU , Fall 2013

Lecture 24: Image Retrieval: Part II. Visual Computing Systems CMU , Fall 2013 Lecture 24: Image Retrieval: Part II Visual Computing Systems Review: K-D tree Spatial partitioning hierarchy K = dimensionality of space (below: K = 2) 3 2 1 3 3 4 2 Counts of points in leaf nodes Nearest

More information

9. Heap : Priority Queue

9. Heap : Priority Queue 9. Heap : Priority Queue Where We Are? Array Linked list Stack Queue Tree Binary Tree Heap Binary Search Tree Priority Queue Queue Queue operation is based on the order of arrivals of elements FIFO(First-In

More information

Algorithms. AVL Tree

Algorithms. AVL Tree Algorithms AVL Tree Balanced binary tree The disadvantage of a binary search tree is that its height can be as large as N-1 This means that the time needed to perform insertion and deletion and many other

More information

Binary Trees. BSTs. For example: Jargon: Data Structures & Algorithms. root node. level: internal node. edge.

Binary Trees. BSTs. For example: Jargon: Data Structures & Algorithms. root node. level: internal node. edge. Binary Trees 1 A binary tree is either empty, or it consists of a node called the root together with two binary trees called the left subtree and the right subtree of the root, which are disjoint from

More information

Backtracking. Chapter 5

Backtracking. Chapter 5 1 Backtracking Chapter 5 2 Objectives Describe the backtrack programming technique Determine when the backtracking technique is an appropriate approach to solving a problem Define a state space tree for

More information

CSE 326: Data Structures B-Trees and B+ Trees

CSE 326: Data Structures B-Trees and B+ Trees Announcements (2/4/09) CSE 26: Data Structures B-Trees and B+ Trees Midterm on Friday Special office hour: 4:00-5:00 Thursday in Jaech Gallery (6 th floor of CSE building) This is in addition to my usual

More information

Spatial Data Structures

Spatial Data Structures 15-462 Computer Graphics I Lecture 17 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) March 28, 2002 [Angel 8.9] Frank Pfenning Carnegie

More information

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge Trees & Heaps Week 12 Gaddis: 20 Weiss: 21.1-3 CS 5301 Fall 2018 Jill Seaman!1 Tree: non-recursive definition! Tree: set of nodes and directed edges - root: one node is distinguished as the root - Every

More information

DATA MINING LECTURE 10B. Classification k-nearest neighbor classifier Naïve Bayes Logistic Regression Support Vector Machines

DATA MINING LECTURE 10B. Classification k-nearest neighbor classifier Naïve Bayes Logistic Regression Support Vector Machines DATA MINING LECTURE 10B Classification k-nearest neighbor classifier Naïve Bayes Logistic Regression Support Vector Machines NEAREST NEIGHBOR CLASSIFICATION 10 10 Illustrating Classification Task Tid Attrib1

More information

Trapezoidal decomposition:

Trapezoidal decomposition: Trapezoidal decomposition: Motivation: manipulate/analayze a collection of segments e.g. detect segment intersections e.g., point location data structure Definition. Draw verticals at all points binary

More information

Data Structures. Giri Narasimhan Office: ECS 254A Phone: x-3748

Data Structures. Giri Narasimhan Office: ECS 254A Phone: x-3748 Data Structures Giri Narasimhan Office: ECS 254A Phone: x-3748 giri@cs.fiu.edu Search Tree Structures Binary Tree Operations u Tree Traversals u Search O(n) calls to visit() Why? Every recursive has one

More information

CSE373: Data Structures & Algorithms Lecture 6: Binary Search Trees. Linda Shapiro Spring 2016

CSE373: Data Structures & Algorithms Lecture 6: Binary Search Trees. Linda Shapiro Spring 2016 CSE373: Data Structures & lgorithms Lecture 6: Binary Search Trees Linda Shapiro Spring 2016 nnouncements HW2 due start of class Wednesday pril 13 on paper. Spring 2016 CSE373: Data Structures & lgorithms

More information

Module 4: Index Structures Lecture 13: Index structure. The Lecture Contains: Index structure. Binary search tree (BST) B-tree. B+-tree.

Module 4: Index Structures Lecture 13: Index structure. The Lecture Contains: Index structure. Binary search tree (BST) B-tree. B+-tree. The Lecture Contains: Index structure Binary search tree (BST) B-tree B+-tree Order file:///c /Documents%20and%20Settings/iitkrana1/My%20Documents/Google%20Talk%20Received%20Files/ist_data/lecture13/13_1.htm[6/14/2012

More information

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition Pattern Recognition Kjell Elenius Speech, Music and Hearing KTH March 29, 2007 Speech recognition 2007 1 Ch 4. Pattern Recognition 1(3) Bayes Decision Theory Minimum-Error-Rate Decision Rules Discriminant

More information

Introduction. for large input, even access time may be prohibitive we need data structures that exhibit times closer to O(log N) binary search tree

Introduction. for large input, even access time may be prohibitive we need data structures that exhibit times closer to O(log N) binary search tree Chapter 4 Trees 2 Introduction for large input, even access time may be prohibitive we need data structures that exhibit running times closer to O(log N) binary search tree 3 Terminology recursive definition

More information

CS 361 Data Structures & Algs Lecture 9. Prof. Tom Hayes University of New Mexico

CS 361 Data Structures & Algs Lecture 9. Prof. Tom Hayes University of New Mexico CS 361 Data Structures & Algs Lecture 9 Prof. Tom Hayes University of New Mexico 09-21-2010 1 Today Orderings Searching Sorting Priority Queues & Heaps 2 Order Relation We say a binary relation R is an

More information

Multi-way Search Trees. (Multi-way Search Trees) Data Structures and Programming Spring / 25

Multi-way Search Trees. (Multi-way Search Trees) Data Structures and Programming Spring / 25 Multi-way Search Trees (Multi-way Search Trees) Data Structures and Programming Spring 2017 1 / 25 Multi-way Search Trees Each internal node of a multi-way search tree T: has at least two children contains

More information

Voronoi Region. K-means method for Signal Compression: Vector Quantization. Compression Formula 11/20/2013

Voronoi Region. K-means method for Signal Compression: Vector Quantization. Compression Formula 11/20/2013 Voronoi Region K-means method for Signal Compression: Vector Quantization Blocks of signals: A sequence of audio. A block of image pixels. Formally: vector example: (0.2, 0.3, 0.5, 0.1) A vector quantizer

More information

Advanced Set Representation Methods

Advanced Set Representation Methods Advanced Set Representation Methods AVL trees. 2-3(-4) Trees. Union-Find Set ADT DSA - lecture 4 - T.U.Cluj-Napoca - M. Joldos 1 Advanced Set Representation. AVL Trees Problem with BSTs: worst case operation

More information

Algorithms for GIS:! Quadtrees

Algorithms for GIS:! Quadtrees Algorithms for GIS: Quadtrees Quadtree A data structure that corresponds to a hierarchical subdivision of the plane Start with a square (containing inside input data) Divide into 4 equal squares (quadrants)

More information

Lec 17 April 8. Topics: binary Trees expression trees. (Chapter 5 of text)

Lec 17 April 8. Topics: binary Trees expression trees. (Chapter 5 of text) Lec 17 April 8 Topics: binary Trees expression trees Binary Search Trees (Chapter 5 of text) Trees Linear access time of linked lists is prohibitive Heap can t support search in O(log N) time. (takes O(N)

More information

An improvement in the build algorithm for Kd-trees using mathematical mean

An improvement in the build algorithm for Kd-trees using mathematical mean An improvement in the build algorithm for Kd-trees using mathematical mean Priyank Trivedi, Abhinandan Patni, Zeon Trevor Fernando and Tejaswi Agarwal School of Computing Sciences and Engineering, VIT

More information

Parallel and Sequential Data Structures and Algorithms Lecture (Spring 2012) Lecture 16 Treaps; Augmented BSTs

Parallel and Sequential Data Structures and Algorithms Lecture (Spring 2012) Lecture 16 Treaps; Augmented BSTs Lecture 16 Treaps; Augmented BSTs Parallel and Sequential Data Structures and Algorithms, 15-210 (Spring 2012) Lectured by Margaret Reid-Miller 8 March 2012 Today: - More on Treaps - Ordered Sets and Tables

More information

Point Cloud Filtering using Ray Casting by Eric Jensen 2012 The Basic Methodology

Point Cloud Filtering using Ray Casting by Eric Jensen 2012 The Basic Methodology Point Cloud Filtering using Ray Casting by Eric Jensen 01 The Basic Methodology Ray tracing in standard graphics study is a method of following the path of a photon from the light source to the camera,

More information

l So unlike the search trees, there are neither arbitrary find operations nor arbitrary delete operations possible.

l So unlike the search trees, there are neither arbitrary find operations nor arbitrary delete operations possible. DDS-Heaps 1 Heaps - basics l Heaps an abstract structure where each object has a key value (the priority), and the operations are: insert an object, find the object of minimum key (find min), and delete

More information

CMSC 341 Lecture 15 Leftist Heaps

CMSC 341 Lecture 15 Leftist Heaps Based on slides from previous iterations of this course CMSC 341 Lecture 15 Leftist Heaps Prof. John Park Review of Heaps Min Binary Heap A min binary heap is a Complete binary tree Neither child is smaller

More information

Clustering. Unsupervised Learning

Clustering. Unsupervised Learning Clustering. Unsupervised Learning Maria-Florina Balcan 03/02/2016 Clustering, Informal Goals Goal: Automatically partition unlabeled data into groups of similar datapoints. Question: When and why would

More information

GEOMETRIC SEARCHING PART 2: RANGE SEARCH

GEOMETRIC SEARCHING PART 2: RANGE SEARCH GEOMETRIC SEARCHING PART 2: RANGE SEARCH PETR FELKEL FEL CTU PRAGUE felkel@fel.cvut.cz https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start Based on [Berg] and [Mount] Version from 19.10.2017 Range search

More information

January 10-12, NIT Surathkal Introduction to Graph and Geometric Algorithms

January 10-12, NIT Surathkal Introduction to Graph and Geometric Algorithms Geometric data structures Sudebkumar Prasant Pal Department of Computer Science and Engineering IIT Kharagpur, 721302. email: spp@cse.iitkgp.ernet.in January 10-12, 2012 - NIT Surathkal Introduction to

More information

Balanced Box-Decomposition trees for Approximate nearest-neighbor. Manos Thanos (MPLA) Ioannis Emiris (Dept Informatics) Computational Geometry

Balanced Box-Decomposition trees for Approximate nearest-neighbor. Manos Thanos (MPLA) Ioannis Emiris (Dept Informatics) Computational Geometry Balanced Box-Decomposition trees for Approximate nearest-neighbor 11 Manos Thanos (MPLA) Ioannis Emiris (Dept Informatics) Computational Geometry Nearest Neighbor A set S of n points is given in some metric

More information

Priority Queues and Binary Heaps

Priority Queues and Binary Heaps Yufei Tao ITEE University of Queensland In this lecture, we will learn our first tree data structure called the binary heap which serves as an implementation of the priority queue. Priority Queue A priority

More information

Data Mining and Data Warehousing Classification-Lazy Learners

Data Mining and Data Warehousing Classification-Lazy Learners Motivation Data Mining and Data Warehousing Classification-Lazy Learners Lazy Learners are the most intuitive type of learners and are used in many practical scenarios. The reason of their popularity is

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms Spring 2017-2018 Outline 1 Priority Queues Outline Priority Queues 1 Priority Queues Jumping the Queue Priority Queues In normal queue, the mode of selection is first in,

More information

CMSC 341 Lecture 15 Leftist Heaps

CMSC 341 Lecture 15 Leftist Heaps Based on slides from previous iterations of this course CMSC 341 Lecture 15 Leftist Heaps Prof. John Park Review of Heaps Min Binary Heap A min binary heap is a Complete binary tree Neither child is smaller

More information

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge Trees (& Heaps) Week 12 Gaddis: 20 Weiss: 21.1-3 CS 5301 Spring 2015 Jill Seaman 1 Tree: non-recursive definition! Tree: set of nodes and directed edges - root: one node is distinguished as the root -

More information

Computational Optimization ISE 407. Lecture 16. Dr. Ted Ralphs

Computational Optimization ISE 407. Lecture 16. Dr. Ted Ralphs Computational Optimization ISE 407 Lecture 16 Dr. Ted Ralphs ISE 407 Lecture 16 1 References for Today s Lecture Required reading Sections 6.5-6.7 References CLRS Chapter 22 R. Sedgewick, Algorithms in

More information

CSCI2100B Data Structures Heaps

CSCI2100B Data Structures Heaps CSCI2100B Data Structures Heaps Irwin King king@cse.cuhk.edu.hk http://www.cse.cuhk.edu.hk/~king Department of Computer Science & Engineering The Chinese University of Hong Kong Introduction In some applications,

More information

Programming II (CS300)

Programming II (CS300) 1 Programming II (CS300) Chapter 12: Sorting Algorithms MOUNA KACEM mouna@cs.wisc.edu Spring 2018 Outline 2 Last week Implementation of the three tree depth-traversal algorithms Implementation of the BinarySearchTree

More information

CS Machine Learning

CS Machine Learning CS 60050 Machine Learning Decision Tree Classifier Slides taken from course materials of Tan, Steinbach, Kumar 10 10 Illustrating Classification Task Tid Attrib1 Attrib2 Attrib3 Class 1 Yes Large 125K

More information

A note on quickly finding the nearest neighbour

A note on quickly finding the nearest neighbour A note on quickly finding the nearest neighbour David Barber Department of Computer Science University College London May 19, 2014 1 Finding your nearest neighbour quickly Consider that we have a set of

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Sorting lower bound and Linear-time sorting Date: 9/19/17

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Sorting lower bound and Linear-time sorting Date: 9/19/17 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Sorting lower bound and Linear-time sorting Date: 9/19/17 5.1 Introduction You should all know a few ways of sorting in O(n log n)

More information

Balanced Trees Part Two

Balanced Trees Part Two Balanced Trees Part Two Outline for Today Recap from Last Time Review of B-trees, 2-3-4 trees, and red/black trees. Order Statistic Trees BSTs with indexing. Augmented Binary Search Trees Building new

More information