Query Processing and Advanced Queries. Advanced Queries (2): R-TreeR

Size: px
Start display at page:

Download "Query Processing and Advanced Queries. Advanced Queries (2): R-TreeR"

Transcription

1 Query Processing and Advanced Queries Advanced Queries (2): R-TreeR

2 Review: PAM Given a point set and a rectangular query, find the points enclosed in the query We allow insertions/deletions online Query CMPT 454: Database Systems II Advanced Queries (2) 2 / 29

3 Review: kd-tree X=7 X=5 y=5 y=6 Y=5 Y=6 x=3 x=8 x=7 Y=2 y=2 X=3 X=5 X=8 Each leaf node can hold up to 2 points. CMPT 454: Database Systems II Advanced Queries (2) 3 / 29

4 Query Answering using kd-tree X=7 X=5 y=5 y=6 Y=5 Y=6 Y=4.5 x=3 x=8 x=7 Y=2 Query y=2 Y=1.1 X=3 X=5 X=8 X=3.1 X=6.2 Each leaf node can hold up to 2 points. CMPT 454: Database Systems II Advanced Queries (2) 4 / 29

5 Review: Spatial Indexing Point Access Methods can index only points. What about regions? Use the transformation technique and a PAM New methods: Spatial Access Methods SAMs R-tree and variations CMPT 454: Database Systems II Advanced Queries (2) 5 / 29

6 Minimum Bounding Rectangle Approximate each region with a simple shape: usually Minimum Bounding Rectangle (MBR) = [(x1, x2), (y1, y2)] y2 y1 x1 x2 CMPT 454: Database Systems II Advanced Queries (2) 6 / 29

7 Transformation Technique Map an d-dim MBR into a point: ex. [(x min, x max ) (y min, y max )] => (x min, x max, y min, y max ) Use a PAM to index the 2d points Given a range query, map the query into the 2d space and use the PAM to answer it CMPT 454: Database Systems II Advanced Queries (2) 7 / 29

8 SAM: The Problem Given a collection of geometric objects (points, lines, polygons,...) Organize them on disk, to answer spatial queries (e.g., range query, NN query, etc) CMPT 454: Database Systems II Advanced Queries (2) 8 / 29

9 Two steps: Indexing using SAMs Filtering step: Find all the MBRs (using the SAM) that satisfy the query Refinement step: For each qualified MBR, check the original object against the query CMPT 454: Database Systems II Advanced Queries (2) 9 / 29

10 R-Trees [Guttman 84] Main idea: allow parents to overlap! => guaranteed 50% utilization => easier insertion/split algorithms. (only deal with Minimum Bounding Rectangles - MBRs) CMPT 454: Database Systems II Advanced Queries (2) 10 / 29

11 R-trees A multi-way external memory tree Index nodes and data (leaf) nodes All leaf nodes appear on the same level Every node contains between m and M entries The root node has at least 2 entries (children) CMPT 454: Database Systems II Advanced Queries (2) 11 / 29

12 Example Fan-out = 4: group nearby rectangles to parent MBRs; each group -> disk page B A C D E F G J H I CMPT 454: Database Systems II Advanced Queries (2) 12 / 29

13 Example F=4 P1 A B P2 C D E P3 G F P4 J H I A B C D E H I J F G CMPT 454: Database Systems II Advanced Queries (2) 13 / 29

14 Example F=4 P1 A B P2 C D E P3 G F P4 J H I A B C D E P1 P2 P3 P4 H I J F G CMPT 454: Database Systems II Advanced Queries (2) 14 / 29

15 R-Trees - Format of Nodes {(MBR; obj_ptr)} for leaf nodes P1 P2 P3 P4 x-low; x-high y-low; y-high... obj ptr... A B C CMPT 454: Database Systems II Advanced Queries (2) 15 / 29

16 R-Trees - Format of Nodes {(MBR; node_ptr)} for non-leaf nodes x-low; x-high y-low; y-high... node ptr... P1 P2 P3 P4 A B C CMPT 454: Database Systems II Advanced Queries (2) 16 / 29

17 R-Trees: Search P1 A B P2 C D E P3 G F P4 J H I A B C D E P1 P2 P3 P4 H I J F G CMPT 454: Database Systems II Advanced Queries (2) 17 / 29

18 R-Trees: Search P1 A B P2 C D E P3 G F P4 J H I A B C D E P1 P2 P3 P4 H I J F G CMPT 454: Database Systems II Advanced Queries (2) 18 / 29

19 Main points: R-Trees: Search Every parent node completely covers its children A child MBR may be covered by more than one parent - it is stored under ONLY ONE of them. A point query may follow multiple branches. Everything works for any(?) dimensionality CMPT 454: Database Systems II Advanced Queries (2) 19 / 29

20 Spatial Queries Given a collection of geometric objects (points, lines, polygons,...) organize them on disk, to answer efficiently range queries k-nn queries CMPT 454: Database Systems II Advanced Queries (2) 20 / 29

21 Spatial Queries Given a collection of geometric objects (points, lines, polygons,...) organize them on disk, to answer efficiently range queries k-nn queries CMPT 454: Database Systems II Advanced Queries (2) 21 / 29

22 Spatial Queries Given a collection of geometric objects (points, lines, polygons,...) organize them on disk, to answer efficiently range queries k-nn queries CMPT 454: Database Systems II Advanced Queries (2) 22 / 29

23 R-Trees - Range Search pseudocode: check the root for each branch, if its MBR intersects the query rectangle apply range-search (or print out, if this is a leaf) CMPT 454: Database Systems II Advanced Queries (2) 23 / 29

24 R-Trees - NN Search q P1 A B P2 C D E P3 G F P4 J H I CMPT 454: Database Systems II Advanced Queries (2) 24 / 29

25 Two Metrics to Ordering the NN Search MINDIST (P, R) is the minimum distance between a point P and a rectangle R. If the point is inside the rectangle, MINDIST = 0; If the point is outside the rectangle, MINDIST is the minimal possible distance from the point to any object in or on the perimeter of the rectangle. o R, MINDIST( P, R) ( P, o) CMPT 454: Database Systems II Advanced Queries (2) 25 / 29

26 MINMAXDIST MINMAXDIST(P,R): for each dimension, find the closest face, compute the distance to the furthest point on this face and take the minimum of all these (d) distances MINMAXDIST(P,R) is the smallest possible upper bound of distances from P to R MINMAXDIST guarantees that there is at least one object in R with a distance to P smaller or equal to it. o R, ( P, o) MINMAXDIST( P, R) CMPT 454: Database Systems II Advanced Queries (2) 26 / 29

27 MINDIST and MINMAXDIST MINDIST(P, R) <= NN(P) <=MINMAXDIST(P,R) R1 MINMAXDIST R3 R4 MINDIST MINDIST MINDIST MINMAXDIST R2 MINMAXDIST CMPT 454: Database Systems II Advanced Queries (2) 27 / 29

28 R-Trees - NN Search Q: How? (find near neighbor; refine...) q P1 A B P2 C D E P3 G F P4 J H I CMPT 454: Database Systems II Advanced Queries (2) 28 / 29

29 R-Trees - NN Search Q: How? (find near neighbor; refine...) q P1 A B P2 C D E P3 G F P4 J H I CMPT 454: Database Systems II Advanced Queries (2) 29 / 29

Spatial Queries. Nearest Neighbor Queries

Spatial Queries. Nearest Neighbor Queries Spatial Queries Nearest Neighbor Queries Spatial Queries Given a collection of geometric objects (points, lines, polygons,...) organize them on disk, to answer efficiently point queries range queries k-nn

More information

Multimedia Database Systems

Multimedia Database Systems Department of Informatics Aristotle University of Thessaloniki Fall 2016-2017 Multimedia Database Systems Indexing Part A Multidimensional Indexing Techniques Outline Motivation Multidimensional indexing

More information

Chap4: Spatial Storage and Indexing. 4.1 Storage:Disk and Files 4.2 Spatial Indexing 4.3 Trends 4.4 Summary

Chap4: Spatial Storage and Indexing. 4.1 Storage:Disk and Files 4.2 Spatial Indexing 4.3 Trends 4.4 Summary Chap4: Spatial Storage and Indexing 4.1 Storage:Disk and Files 4.2 Spatial Indexing 4.3 Trends 4.4 Summary Learning Objectives Learning Objectives (LO) LO1: Understand concept of a physical data model

More information

Nearest Neighbor Queries

Nearest Neighbor Queries Nearest Neighbor Queries Nick Roussopoulos Stephen Kelley Frederic Vincent University of Maryland May 1995 Problem / Motivation Given a point in space, find the k NN classic NN queries (find the nearest

More information

What we have covered?

What we have covered? What we have covered? Indexing and Hashing Data warehouse and OLAP Data Mining Information Retrieval and Web Mining XML and XQuery Spatial Databases Transaction Management 1 Lecture 6: Spatial Data Management

More information

Multidimensional Indexing The R Tree

Multidimensional Indexing The R Tree Multidimensional Indexing The R Tree Module 7, Lecture 1 Database Management Systems, R. Ramakrishnan 1 Single-Dimensional Indexes B+ trees are fundamentally single-dimensional indexes. When we create

More information

Geometric data structures:

Geometric data structures: Geometric data structures: Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade Sham Kakade 2017 1 Announcements: HW3 posted Today: Review: LSH for Euclidean distance Other

More information

Introduction to Indexing R-trees. Hong Kong University of Science and Technology

Introduction to Indexing R-trees. Hong Kong University of Science and Technology Introduction to Indexing R-trees Dimitris Papadias Hong Kong University of Science and Technology 1 Introduction to Indexing 1. Assume that you work in a government office, and you maintain the records

More information

Datenbanksysteme II: Multidimensional Index Structures 2. Ulf Leser

Datenbanksysteme II: Multidimensional Index Structures 2. Ulf Leser Datenbanksysteme II: Multidimensional Index Structures 2 Ulf Leser Content of this Lecture Introduction Partitioned Hashing Grid Files kdb Trees kd Tree kdb Tree R Trees Example: Nearest neighbor image

More information

Spatial Data Management

Spatial Data Management Spatial Data Management [R&G] Chapter 28 CS432 1 Types of Spatial Data Point Data Points in a multidimensional space E.g., Raster data such as satellite imagery, where each pixel stores a measured value

More information

Spatial Data Management

Spatial Data Management Spatial Data Management Chapter 28 Database management Systems, 3ed, R. Ramakrishnan and J. Gehrke 1 Types of Spatial Data Point Data Points in a multidimensional space E.g., Raster data such as satellite

More information

Balanced Box-Decomposition trees for Approximate nearest-neighbor. Manos Thanos (MPLA) Ioannis Emiris (Dept Informatics) Computational Geometry

Balanced Box-Decomposition trees for Approximate nearest-neighbor. Manos Thanos (MPLA) Ioannis Emiris (Dept Informatics) Computational Geometry Balanced Box-Decomposition trees for Approximate nearest-neighbor 11 Manos Thanos (MPLA) Ioannis Emiris (Dept Informatics) Computational Geometry Nearest Neighbor A set S of n points is given in some metric

More information

Module 4: Index Structures Lecture 13: Index structure. The Lecture Contains: Index structure. Binary search tree (BST) B-tree. B+-tree.

Module 4: Index Structures Lecture 13: Index structure. The Lecture Contains: Index structure. Binary search tree (BST) B-tree. B+-tree. The Lecture Contains: Index structure Binary search tree (BST) B-tree B+-tree Order file:///c /Documents%20and%20Settings/iitkrana1/My%20Documents/Google%20Talk%20Received%20Files/ist_data/lecture13/13_1.htm[6/14/2012

More information

kd-trees Idea: Each level of the tree compares against 1 dimension. Let s us have only two children at each node (instead of 2 d )

kd-trees Idea: Each level of the tree compares against 1 dimension. Let s us have only two children at each node (instead of 2 d ) kd-trees Invented in 1970s by Jon Bentley Name originally meant 3d-trees, 4d-trees, etc where k was the # of dimensions Now, people say kd-tree of dimension d Idea: Each level of the tree compares against

More information

Principles of Data Management. Lecture #14 (Spatial Data Management)

Principles of Data Management. Lecture #14 (Spatial Data Management) Principles of Data Management Lecture #14 (Spatial Data Management) Instructor: Mike Carey mjcarey@ics.uci.edu Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Today s Notable News v Project

More information

Course Content. Objectives of Lecture? CMPUT 391: Spatial Data Management Dr. Jörg Sander & Dr. Osmar R. Zaïane. University of Alberta

Course Content. Objectives of Lecture? CMPUT 391: Spatial Data Management Dr. Jörg Sander & Dr. Osmar R. Zaïane. University of Alberta Database Management Systems Winter 2002 CMPUT 39: Spatial Data Management Dr. Jörg Sander & Dr. Osmar. Zaïane University of Alberta Chapter 26 of Textbook Course Content Introduction Database Design Theory

More information

CS535 Fall Department of Computer Science Purdue University

CS535 Fall Department of Computer Science Purdue University Spatial Data Structures and Hierarchies CS535 Fall 2010 Daniel G Aliaga Daniel G. Aliaga Department of Computer Science Purdue University Spatial Data Structures Store geometric information Organize geometric

More information

Module 4: Index Structures Lecture 16: Voronoi Diagrams and Tries. The Lecture Contains: Voronoi diagrams. Tries. Index structures

Module 4: Index Structures Lecture 16: Voronoi Diagrams and Tries. The Lecture Contains: Voronoi diagrams. Tries. Index structures The Lecture Contains: Voronoi diagrams Tries Delaunay triangulation Algorithms Extensions Index structures 1-dimensional index structures Memory-based index structures Disk-based index structures Classification

More information

Algorithms for GIS:! Quadtrees

Algorithms for GIS:! Quadtrees Algorithms for GIS: Quadtrees Quadtree A data structure that corresponds to a hierarchical subdivision of the plane Start with a square (containing inside input data) Divide into 4 equal squares (quadrants)

More information

ICOM 6005 Database Management Systems Design. Dr. Manuel Rodríguez-Martínez Electrical and Computer Engineering Department

ICOM 6005 Database Management Systems Design. Dr. Manuel Rodríguez-Martínez Electrical and Computer Engineering Department ICOM 6005 Database Management Systems Design Dr. Manuel Rodríguez-Martínez Electrical and Computer Engineering Department Tree-based Indexing Read Chapter 10. Idea: Tree-based Data structure is used to

More information

Space-based Partitioning Data Structures and their Algorithms. Jon Leonard

Space-based Partitioning Data Structures and their Algorithms. Jon Leonard Space-based Partitioning Data Structures and their Algorithms Jon Leonard Purpose Space-based Partitioning Data Structures are an efficient way of organizing data that lies in an n-dimensional space 2D,

More information

Using the Holey Brick Tree for Spatial Data. in General Purpose DBMSs. Northeastern University

Using the Holey Brick Tree for Spatial Data. in General Purpose DBMSs. Northeastern University Using the Holey Brick Tree for Spatial Data in General Purpose DBMSs Georgios Evangelidis Betty Salzberg College of Computer Science Northeastern University Boston, MA 02115-5096 1 Introduction There is

More information

Multidimensional Indexes [14]

Multidimensional Indexes [14] CMSC 661, Principles of Database Systems Multidimensional Indexes [14] Dr. Kalpakis http://www.csee.umbc.edu/~kalpakis/courses/661 Motivation Examined indexes when search keys are in 1-D space Many interesting

More information

SPATIAL RANGE QUERY. Rooma Rathore Graduate Student University of Minnesota

SPATIAL RANGE QUERY. Rooma Rathore Graduate Student University of Minnesota SPATIAL RANGE QUERY Rooma Rathore Graduate Student University of Minnesota SYNONYMS Range Query, Window Query DEFINITION Spatial range queries are queries that inquire about certain spatial objects related

More information

Spatial Data Structures

Spatial Data Structures 15-462 Computer Graphics I Lecture 17 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) April 1, 2003 [Angel 9.10] Frank Pfenning Carnegie

More information

CMPUT 391 Database Management Systems. Spatial Data Management. University of Alberta 1. Dr. Jörg Sander, 2006 CMPUT 391 Database Management Systems

CMPUT 391 Database Management Systems. Spatial Data Management. University of Alberta 1. Dr. Jörg Sander, 2006 CMPUT 391 Database Management Systems CMPUT 391 Database Management Systems Spatial Data Management University of Alberta 1 Spatial Data Management Shortcomings of Relational Databases and ORDBMS Modeling Spatial Data Spatial Queries Space-Filling

More information

R-Trees. Accessing Spatial Data

R-Trees. Accessing Spatial Data R-Trees Accessing Spatial Data In the beginning The B-Tree provided a foundation for R- Trees. But what s a B-Tree? A data structure for storing sorted data with amortized run times for insertion and deletion

More information

Spatial Data Structures

Spatial Data Structures 15-462 Computer Graphics I Lecture 17 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) March 28, 2002 [Angel 8.9] Frank Pfenning Carnegie

More information

I/O-Algorithms Lars Arge Aarhus University

I/O-Algorithms Lars Arge Aarhus University I/O-Algorithms Aarhus University April 10, 2008 I/O-Model Block I/O D Parameters N = # elements in problem instance B = # elements that fits in disk block M = # elements that fits in main memory M T =

More information

2. Dynamic Versions of R-trees

2. Dynamic Versions of R-trees 2. Dynamic Versions of R-trees The survey by Gaede and Guenther [69] annotates a vast list of citations related to multi-dimensional access methods and, in particular, refers to R-trees to a significant

More information

Spatial Data Structures

Spatial Data Structures CSCI 420 Computer Graphics Lecture 17 Spatial Data Structures Jernej Barbic University of Southern California Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees [Angel Ch. 8] 1 Ray Tracing Acceleration

More information

Spatial Data Structures

Spatial Data Structures CSCI 480 Computer Graphics Lecture 7 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids BSP Trees [Ch. 0.] March 8, 0 Jernej Barbic University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s/

More information

CMSC 754 Computational Geometry 1

CMSC 754 Computational Geometry 1 CMSC 754 Computational Geometry 1 David M. Mount Department of Computer Science University of Maryland Fall 2005 1 Copyright, David M. Mount, 2005, Dept. of Computer Science, University of Maryland, College

More information

CSE 512 Course Project Operation Requirements

CSE 512 Course Project Operation Requirements CSE 512 Course Project Operation Requirements 1. Operation Checklist 1) Geometry union 2) Geometry convex hull 3) Geometry farthest pair 4) Geometry closest pair 5) Spatial range query 6) Spatial join

More information

Locality- Sensitive Hashing Random Projections for NN Search

Locality- Sensitive Hashing Random Projections for NN Search Case Study 2: Document Retrieval Locality- Sensitive Hashing Random Projections for NN Search Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 18, 2017 Sham Kakade

More information

Introduction to Spatial Database Systems

Introduction to Spatial Database Systems Introduction to Spatial Database Systems by Cyrus Shahabi from Ralf Hart Hartmut Guting s VLDB Journal v3, n4, October 1994 Data Structures & Algorithms 1. Implementation of spatial algebra in an integrated

More information

Intersection Acceleration

Intersection Acceleration Advanced Computer Graphics Intersection Acceleration Matthias Teschner Computer Science Department University of Freiburg Outline introduction bounding volume hierarchies uniform grids kd-trees octrees

More information

Data Structures for Moving Objects

Data Structures for Moving Objects Data Structures for Moving Objects Pankaj K. Agarwal Department of Computer Science Duke University Geometric Data Structures S: Set of geometric objects Points, segments, polygons Ask several queries

More information

Chapter 2: The Game Core. (part 2)

Chapter 2: The Game Core. (part 2) Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Lecture Notes for Managing and Mining Multiplayer Online Games for the Summer Semester 2017

More information

Task Description: Finding Similar Documents. Document Retrieval. Case Study 2: Document Retrieval

Task Description: Finding Similar Documents. Document Retrieval. Case Study 2: Document Retrieval Case Study 2: Document Retrieval Task Description: Finding Similar Documents Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 11, 2017 Sham Kakade 2017 1 Document

More information

Experimental Evaluation of Spatial Indices with FESTIval

Experimental Evaluation of Spatial Indices with FESTIval Experimental Evaluation of Spatial Indices with FESTIval Anderson Chaves Carniel 1, Ricardo Rodrigues Ciferri 2, Cristina Dutra de Aguiar Ciferri 1 1 Department of Computer Science University of São Paulo

More information

Evaluation of R-trees for Nearest Neighbor Search

Evaluation of R-trees for Nearest Neighbor Search Evaluation of R-trees for Nearest Neighbor Search A Thesis Presented to The Faculty of the Department of Computer Science University of Houston In Partial Fulfillment Of the Requirements for the Degree

More information

Search Space Reductions for Nearest-Neighbor Queries

Search Space Reductions for Nearest-Neighbor Queries Search Space Reductions for Nearest-Neighbor Queries Micah Adler 1 and Brent Heeringa 2 1 Department of Computer Science, University of Massachusetts, Amherst 140 Governors Drive Amherst, MA 01003 2 Department

More information

Advances in Data Management Principles of Database Systems - 2 A.Poulovassilis

Advances in Data Management Principles of Database Systems - 2 A.Poulovassilis 1 Advances in Data Management Principles of Database Systems - 2 A.Poulovassilis 1 Storing data on disk The traditional storage hierarchy for DBMSs is: 1. main memory (primary storage) for data currently

More information

NNH: Improving Performance of Nearest-Neighbor Searches Using Histograms (Full Version. UCI Technical Report, Dec. 2003)

NNH: Improving Performance of Nearest-Neighbor Searches Using Histograms (Full Version. UCI Technical Report, Dec. 2003) NNH: Improving Performance of Nearest-Neighbor Searches Using Histograms (Full Version. UCI Technical Report, Dec. 2003) Liang Jin 1, Nick Koudas 2,andChenLi 1 1 School of Information and Computer Science,

More information

VQ Encoding is Nearest Neighbor Search

VQ Encoding is Nearest Neighbor Search VQ Encoding is Nearest Neighbor Search Given an input vector, find the closest codeword in the codebook and output its index. Closest is measured in squared Euclidean distance. For two vectors (w 1,x 1,y

More information

Geometric Structures 2. Quadtree, k-d stromy

Geometric Structures 2. Quadtree, k-d stromy Geometric Structures 2. Quadtree, k-d stromy Martin Samuelčík samuelcik@sccg.sk, www.sccg.sk/~samuelcik, I4 Window and Point query From given set of points, find all that are inside of given d-dimensional

More information

The Unified Segment Tree and its Application to the Rectangle Intersection Problem

The Unified Segment Tree and its Application to the Rectangle Intersection Problem CCCG 2013, Waterloo, Ontario, August 10, 2013 The Unified Segment Tree and its Application to the Rectangle Intersection Problem David P. Wagner Abstract In this paper we introduce a variation on the multidimensional

More information

ISSN: (Online) Volume 4, Issue 1, January 2016 International Journal of Advance Research in Computer Science and Management Studies

ISSN: (Online) Volume 4, Issue 1, January 2016 International Journal of Advance Research in Computer Science and Management Studies ISSN: 2321-7782 (Online) Volume 4, Issue 1, January 2016 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online

More information

Ray Tracing Acceleration Data Structures

Ray Tracing Acceleration Data Structures Ray Tracing Acceleration Data Structures Sumair Ahmed October 29, 2009 Ray Tracing is very time-consuming because of the ray-object intersection calculations. With the brute force method, each ray has

More information

Announcements. Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday

Announcements. Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday Announcements Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday 1 Spatial Data Structures Hierarchical Bounding Volumes Grids Octrees BSP Trees 11/7/02 Speeding Up Computations

More information

Applied Databases. Sebastian Maneth. Lecture 9 Spacial Queries and Indexes. University of Edinburgh - February 13th, 2017

Applied Databases. Sebastian Maneth. Lecture 9 Spacial Queries and Indexes. University of Edinburgh - February 13th, 2017 Applied Databases Lecture 9 Spacial Queries and Indexes Sebastian Maneth University of Edinburgh - February 13th, 2017 2 Outline 1. Assignment 2 2. Spatial Types 3. Spatial Queries 4. R-Trees 3 Assignment

More information

Challenge... Ex. Maps are 2D Ex. Images are (with * height) D (assuming that each pixel is a feature)

Challenge... Ex. Maps are 2D Ex. Images are (with * height) D (assuming that each pixel is a feature) Challenge... l Traditional data is one dimensional. l Multimedia data is multi dimensional. Ex. Maps are 2D Ex. Images are (with * height) D (assuming that each pixel is a feature) In general, if a given

More information

CS127: B-Trees. B-Trees

CS127: B-Trees. B-Trees CS127: B-Trees B-Trees 1 Data Layout on Disk Track: one ring Sector: one pie-shaped piece. Block: intersection of a track and a sector. Disk Based Dictionary Structures Use a disk-based method when the

More information

1 Introduction 2. 2 A Simple Algorithm 2. 3 A Fast Algorithm 2

1 Introduction 2. 2 A Simple Algorithm 2. 3 A Fast Algorithm 2 Polyline Reduction David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy

More information

p1 Z Considering axes (X,Y,Z): RNN(q) = p1 Considering projection on axes (XY) only: RNN(q) = p2

p1 Z Considering axes (X,Y,Z): RNN(q) = p1 Considering projection on axes (XY) only: RNN(q) = p2 Reverse Nearest Neighbor Queries for Dynamic Databases Ioana Stanoi, Divyakant Agrawal, Amr El Abbadi Computer Science Department, University of California at Santa Barbara fioana,agrawal,amr@cs.ucsb.edug

More information

Chap4: Spatial Storage and Indexing

Chap4: Spatial Storage and Indexing Chap4: Spatial Storage and Indexing 4.1 Storage:Disk and Files 4.2 Spatial Indexing 4.3 Trends 4.4 Summary Learning Objectives Learning Objectives (LO) LO1: Understand concept of a physical data model

More information

I/O-Algorithms Lars Arge

I/O-Algorithms Lars Arge I/O-Algorithms Fall 203 September 9, 203 I/O-Model lock I/O D Parameters = # elements in problem instance = # elements that fits in disk block M = # elements that fits in main memory M T = # output size

More information

A Parallel Access Method for Spatial Data Using GPU

A Parallel Access Method for Spatial Data Using GPU A Parallel Access Method for Spatial Data Using GPU Byoung-Woo Oh Department of Computer Engineering Kumoh National Institute of Technology Gumi, Korea bwoh@kumoh.ac.kr Abstract Spatial access methods

More information

Indexing the Positions of Continuously Moving Objects

Indexing the Positions of Continuously Moving Objects Indexing the Positions of Continuously Moving Objects Simonas Šaltenis Christian S. Jensen Aalborg University, Denmark Scott T. Leutenegger Mario A. Lopez Denver University, USA SIGMOD 2000 presented by

More information

Spatial Data Structures for Computer Graphics

Spatial Data Structures for Computer Graphics Spatial Data Structures for Computer Graphics Page 1 of 65 http://www.cse.iitb.ac.in/ sharat November 2008 Spatial Data Structures for Computer Graphics Page 1 of 65 http://www.cse.iitb.ac.in/ sharat November

More information

Range Reporting. Range Reporting. Range Reporting Problem. Applications

Range Reporting. Range Reporting. Range Reporting Problem. Applications Philip Bille Problem problem. Preprocess at set of points P R 2 to support report(x1, y1, x2, y2): Return the set of points in R P, where R is rectangle given by (x1, y1) and (x2, y2). Applications Relational

More information

Finding both Aggregate Nearest Positive and Farthest Negative Neighbors

Finding both Aggregate Nearest Positive and Farthest Negative Neighbors Finding both Aggregate Nearest Positive and Farthest Negative Neighbors I-Fang Su 1, Yuan-Ko Huang 2, Yu-Chi Chung 3,, and I-Ting Shen 4 1 Dept. of IM,Fotech, Kaohsiung, Taiwan 2 Dept. of IC, KYU, Kaohsiung,

More information

Range Searching. Data structure for a set of objects (points, rectangles, polygons) for efficient range queries.

Range Searching. Data structure for a set of objects (points, rectangles, polygons) for efficient range queries. Range Searching Data structure for a set of objects (oints, rectangles, olygons) for efficient range queries. Y Q Deends on tye of objects and queries. Consider basic data structures with broad alicability.

More information

CS350: Data Structures B-Trees

CS350: Data Structures B-Trees B-Trees James Moscola Department of Engineering & Computer Science York College of Pennsylvania James Moscola Introduction All of the data structures that we ve looked at thus far have been memory-based

More information

Object Recognition Using Pictorial Structures. Daniel Huttenlocher Computer Science Department. In This Talk. Object recognition in computer vision

Object Recognition Using Pictorial Structures. Daniel Huttenlocher Computer Science Department. In This Talk. Object recognition in computer vision Object Recognition Using Pictorial Structures Daniel Huttenlocher Computer Science Department Joint work with Pedro Felzenszwalb, MIT AI Lab In This Talk Object recognition in computer vision Brief definition

More information

Computational Geometry

Computational Geometry Computational Geometry Search in High dimension and kd-trees Ioannis Emiris Dept Informatics & Telecoms, National Kapodistrian U. Athens ATHENA Research & Innovation Center, Greece Spring 2018 I.Emiris

More information

9/23/2009 CONFERENCES CONTINUOUS NEAREST NEIGHBOR SEARCH INTRODUCTION OVERVIEW PRELIMINARY -- POINT NN QUERIES

9/23/2009 CONFERENCES CONTINUOUS NEAREST NEIGHBOR SEARCH INTRODUCTION OVERVIEW PRELIMINARY -- POINT NN QUERIES CONFERENCES Short Name SIGMOD Full Name Special Interest Group on Management Of Data CONTINUOUS NEAREST NEIGHBOR SEARCH Yufei Tao, Dimitris Papadias, Qiongmao Shen Hong Kong University of Science and Technology

More information

Outline. Other Use of Triangle Inequality Algorithms for Nearest Neighbor Search: Lecture 2. Orchard s Algorithm. Chapter VI

Outline. Other Use of Triangle Inequality Algorithms for Nearest Neighbor Search: Lecture 2. Orchard s Algorithm. Chapter VI Other Use of Triangle Ineuality Algorithms for Nearest Neighbor Search: Lecture 2 Yury Lifshits http://yury.name Steklov Institute of Mathematics at St.Petersburg California Institute of Technology Outline

More information

Data Organization and Processing

Data Organization and Processing Data Organization and Processing Spatial Join (NDBI007) David Hoksza http://siret.ms.mff.cuni.cz/hoksza Outline Spatial join basics Relational join Spatial join Spatial join definition (1) Given two sets

More information

Multidimensional Data and Modelling - DBMS

Multidimensional Data and Modelling - DBMS Multidimensional Data and Modelling - DBMS 1 DBMS-centric approach Summary: l Spatial data is considered as another type of data beside conventional data in a DBMS. l Enabling advantages of DBMS (data

More information

Subdivision Of Triangular Terrain Mesh Breckon, Chenney, Hobbs, Hoppe, Watts

Subdivision Of Triangular Terrain Mesh Breckon, Chenney, Hobbs, Hoppe, Watts Subdivision Of Triangular Terrain Mesh Breckon, Chenney, Hobbs, Hoppe, Watts MSc Computer Games and Entertainment Maths & Graphics II 2013 Lecturer(s): FFL (with Gareth Edwards) Fractal Terrain Based on

More information

X-tree. Daniel Keim a, Benjamin Bustos b, Stefan Berchtold c, and Hans-Peter Kriegel d. SYNONYMS Extended node tree

X-tree. Daniel Keim a, Benjamin Bustos b, Stefan Berchtold c, and Hans-Peter Kriegel d. SYNONYMS Extended node tree X-tree Daniel Keim a, Benjamin Bustos b, Stefan Berchtold c, and Hans-Peter Kriegel d a Department of Computer and Information Science, University of Konstanz b Department of Computer Science, University

More information

Data Warehousing & Data Mining

Data Warehousing & Data Mining Data Warehousing & Data Mining Wolf-Tilo Balke Kinda El Maarry Institut für Informationssysteme Technische Universität Braunschweig http://www.ifis.cs.tu-bs.de Summary Last week: Logical Model: Cubes,

More information

Nearest Neighbors Classifiers

Nearest Neighbors Classifiers Nearest Neighbors Classifiers Raúl Rojas Freie Universität Berlin July 2014 In pattern recognition we want to analyze data sets of many different types (pictures, vectors of health symptoms, audio streams,

More information

Computational Geometry

Computational Geometry Orthogonal Range Searching omputational Geometry hapter 5 Range Searching Problem: Given a set of n points in R d, preprocess them such that reporting or counting the k points inside a d-dimensional axis-parallel

More information

January 10-12, NIT Surathkal Introduction to Graph and Geometric Algorithms

January 10-12, NIT Surathkal Introduction to Graph and Geometric Algorithms Geometric data structures Sudebkumar Prasant Pal Department of Computer Science and Engineering IIT Kharagpur, 721302. email: spp@cse.iitkgp.ernet.in January 10-12, 2012 - NIT Surathkal Introduction to

More information

Reverse Furthest Neighbors in Spatial Databases

Reverse Furthest Neighbors in Spatial Databases Reverse Furthest Neighbors in Spatial Databases Bin Yao, Feifei Li, Piyush Kumar Computer Science Department, Florida State University Tallahassee, Florida, USA {yao, lifeifei, piyush}@cs.fsu.edu Abstract

More information

Binary Heaps in Dynamic Arrays

Binary Heaps in Dynamic Arrays Yufei Tao ITEE University of Queensland We have already learned that the binary heap serves as an efficient implementation of a priority queue. Our previous discussion was based on pointers (for getting

More information

CS 350 : Data Structures B-Trees

CS 350 : Data Structures B-Trees CS 350 : Data Structures B-Trees David Babcock (courtesy of James Moscola) Department of Physical Sciences York College of Pennsylvania James Moscola Introduction All of the data structures that we ve

More information

Background: disk access vs. main memory access (1/2)

Background: disk access vs. main memory access (1/2) 4.4 B-trees Disk access vs. main memory access: background B-tree concept Node structure Structural properties Insertion operation Deletion operation Running time 66 Background: disk access vs. main memory

More information

CS210 Project 5 (Kd-Trees) Swami Iyer

CS210 Project 5 (Kd-Trees) Swami Iyer The purpose of this assignment is to create a symbol table data type whose keys are two-dimensional points. We ll use a 2d-tree to support efficient range search (find all the points contained in a query

More information

Instance-based Learning

Instance-based Learning Instance-based Learning Nearest Neighbor 1-nearest neighbor algorithm: Remember all your data points When prediction needed for a new point Find the nearest saved data point Return the answer associated

More information

Constrained Nearest Neighbor Queries

Constrained Nearest Neighbor Queries Constrained Nearest Neighbor Queries Hakan Ferhatosmanoglu, Ioanna Stanoi, Divyakant Agrawal, and Amr El Abbadi Computer Science Department, University of California at Santa Barbara {hakan,ioana,agrawal,amr}@csucsbedu

More information

Chapter 25: Spatial and Temporal Data and Mobility

Chapter 25: Spatial and Temporal Data and Mobility Chapter 25: Spatial and Temporal Data and Mobility Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Chapter 25: Spatial and Temporal Data and Mobility Temporal Data Spatial

More information

Database Management Systems. Objectives of Lecture 10. The Need for a DBMS

Database Management Systems. Objectives of Lecture 10. The Need for a DBMS Database Management Systems Winter 2004 CMPUT 391: Spatial Data Management Dr. Osmar. Zaïane University of Alberta Objectives of Lecture 10 Spatial Data Management Discuss limitations of the relational

More information

Graph-based Planning Using Local Information for Unknown Outdoor Environments

Graph-based Planning Using Local Information for Unknown Outdoor Environments Graph-based Planning Using Local Information for Unknown Outdoor Environments Jinhan Lee, Roozbeh Mottaghi, Charles Pippin and Tucker Balch {jinhlee, roozbehm, cepippin, tucker}@cc.gatech.edu Center for

More information

Search. The Nearest Neighbor Problem

Search. The Nearest Neighbor Problem 3 Nearest Neighbor Search Lab Objective: The nearest neighbor problem is an optimization problem that arises in applications such as computer vision, pattern recognition, internet marketing, and data compression.

More information

Information Retrieval. Wesley Mathew

Information Retrieval. Wesley Mathew Information Retrieval Wesley Mathew 30-11-2012 Introduction and motivation Indexing methods B-Tree and the B+ Tree R-Tree IR- Tree Location-aware top-k text query 2 An increasing amount of trajectory data

More information

Advanced Data Types and New Applications

Advanced Data Types and New Applications Advanced Data Types and New Applications These slides are a modified version of the slides of the book Database System Concepts (Chapter 24), 5th Ed., McGraw-Hill, by Silberschatz, Korth and Sudarshan.

More information

Outline. Motivation. Traditional Database Systems. A Distributed Indexing Scheme for Multi-dimensional Range Queries in Sensor Networks

Outline. Motivation. Traditional Database Systems. A Distributed Indexing Scheme for Multi-dimensional Range Queries in Sensor Networks A Distributed Indexing Scheme for Multi-dimensional Range Queries in Sensor Networks Tingjian Ge Outline Introduction and Overview Concepts and Technology Inserting Events into the Index Querying the Index

More information

Processing k nearest neighbor queries in location-aware sensor networks

Processing k nearest neighbor queries in location-aware sensor networks Signal Processing 87 (27) 2861 2881 www.elsevier.com/locate/sigpro Processing k nearest neighbor queries in location-aware sensor networks Yingqi Xu a,, Tao-Yang Fu b, Wang-Chien Lee a, Julian Winter a

More information

Clustering Billions of Images with Large Scale Nearest Neighbor Search

Clustering Billions of Images with Large Scale Nearest Neighbor Search Clustering Billions of Images with Large Scale Nearest Neighbor Search Ting Liu, Charles Rosenberg, Henry A. Rowley IEEE Workshop on Applications of Computer Vision February 2007 Presented by Dafna Bitton

More information

Energy Efficient Exact knn Search in Wireless Broadcast Environments

Energy Efficient Exact knn Search in Wireless Broadcast Environments Energy Efficient Exact knn Search in Wireless Broadcast Environments Buğra Gedik bgedik@ccgatechedu Aameek Singh aameek@ccgatechedu College of Computing Georgia Institute of Technology 332 Atlanta, GA,

More information

An Introduction to Spatial Databases

An Introduction to Spatial Databases An Introduction to Spatial Databases R. H. Guting VLDB Journal v3, n4, October 1994 Speaker: Giovanni Conforti Outline: a rather old (but quite complete) survey on Spatial DBMS Introduction & definition

More information

Web Based Spatial Ranking System

Web Based Spatial Ranking System Research Inventy: International Journal Of Engineering And Science Vol.3, Issue 5 (July 2013), Pp 47-53 Issn(e): 2278-4721, Issn(p):2319-6483, Www.Researchinventy.Com 1 Mr. Vijayakumar Neela, 2 Prof. Raafiya

More information

Collision and Proximity Queries

Collision and Proximity Queries Collision and Proximity Queries Dinesh Manocha (based on slides from Ming Lin) COMP790-058 Fall 2013 Geometric Proximity Queries l Given two object, how would you check: If they intersect with each other

More information

Sorting a file in RAM. External Sorting. Why Sort? 2-Way Sort of N pages Requires Minimum of 3 Buffers Pass 0: Read a page, sort it, write it.

Sorting a file in RAM. External Sorting. Why Sort? 2-Way Sort of N pages Requires Minimum of 3 Buffers Pass 0: Read a page, sort it, write it. Sorting a file in RAM External Sorting Chapter 13 Three steps: Read the entire file from disk into RAM Sort the records using a standard sorting procedure, such as Shell sort, heap sort, bubble sort, Write

More information

Computational Geometry

Computational Geometry Windowing queries Windowing Windowing queries Zoom in; re-center and zoom in; select by outlining Windowing Windowing queries Windowing Windowing queries Given a set of n axis-parallel line segments, preprocess

More information

Laboratory Module Trees

Laboratory Module Trees Purpose: understand the notion of 2-3 trees to build, in C, a 2-3 tree 1 2-3 Trees 1.1 General Presentation Laboratory Module 7 2-3 Trees 2-3 Trees represent a the simplest type of multiway trees trees

More information