Process Automation for Static Analysis of Truck Chassis Assembly

Size: px
Start display at page:

Download "Process Automation for Static Analysis of Truck Chassis Assembly"

Transcription

1 Process Automation for Static Analysis of Truck Chassis Assembly Haridas P.T AGM - CAE Ashok Leyland Ltd Technical Centre, Velliyoyal Chavadi Chennai Balakrishnan.M Senior Manager-CAE Ashok Leyland Ltd Technical Centre, Velliyoyal Chavadi Chennai Shashidhar.D Senior Manager-CAE Ashok Leyland Ltd Technical Centre, Velliyoyal Chavadi Chennai Selva Karunakar.S Manager-CAE Ashok Leyland Ltd Technical Centre, Velliyoyal Chavadi Chennai Abbreviations: CAE (Computer Aided Engineering), CAD (Computer Aided Design), TCL (Tool Command Language), FEA (Finite Element Analysis), CG (Centre of gravity), FAW (Front Axle Weight), RAW (Rear Axle Weight), GVW (Gross Vehicle weight), BC (Boundary Condition) Keywords: Chassis, Process automation, Macros, Solver templates, Time reduction Abstract In today s competitive world, the customer expects better products than the existing one. To meet this, there is a need to adopt fast, responsive, adaptive and innovative product development processes. Computer Aided Engineering (CAE) is one such a tool, which aids in this. This paper explains the process automation techniques employed from pre-processing stage to report generation stage during the static analysis of truck chassis assembly in CAE. These automations resulted in the reduction of cycle time, elimination of possible mistakes and result variation due to manual post processing. Introduction Frame assemblies of most heavy commercial vehicles are ladder shaped structure with side frame rails interconnected with cross members at critical locations where frame stresses are expected to be higher. These primary load carrying frame side members and cross members form an integral structure to support payload, cab, load body, power train and other chassis mounted components such as fuel tank, battery, spare wheel carrier, Air tank, Air cleaner, silencer, etc., Pre-processing and post-processing are major time consuming activities in a chassis analysis. Time reduction in pre-processing and post-processing will help us to reduce the overall analysis duration and thereby the project duration. Hence, the following improvements are made to automate the chassis analysis process. 1. Organizing of CAD model. 2. Mid surface extraction and assigning thickness using macro 3. Meshing of thin shell components & Automatic bolt creation using macro 4. Renaming of components with specific name with thickness details (for checking FE model and post processing). 5. Renumbering of specific nodes to apply Loads, Boundary conditions & extraction of output. 6. Lumped mass creation at respective CG locations using Excel worksheet and macro 7. Leaf spring suspension modeling using macro. 8. Using solver template file with include files. 9. Automatic post processing of results using advanced option in HyperView 10. Comparison of results between two chassis results using excel macro Flow chart for static analysis of truck chassis assembly The following flow chart explains the list of activities involved in static analysis of truck chassis assembly and process automations are made in the activity which is filled with "Green" colour.

2 Start Import CAD model in Hypermesh Organize the CAD parts with specific name Extract mid-surface & assign thickness using macro Meshing using macro Re-mesh NO Is the mesh quality O.K? Check the quality of the mesh YES Bolt connection using macro Assign material Renumbering of specific nodes & elements to apply Loads & BCs and to extract desired output Free - Freee normal mode analysis using Solver templatee files with include files (Mesh data) Correct the element connectivity NO Is the element connectivity O.K? Check the element connectivity by viewing the mode shapes in Hyperview A A YES Lumped mass creation using macro

3 Suspension modeling using macro Apply Loads & BC s for Vertical_1G using Solver template file with include files (Mesh data file & input variable file) Calculate FE model mass Adjust missing mass in the payload with the consent of customer NO Is that matching with GVW? Compare the FE model mass with GVW YES Solve for Vertical_1G Modify the payload CG location to match the reaction forces Extract the FEA reaction forces at ground points for Vertical_1G NO Is that matching with FAW & RAW? Compare the FEA reaction forces at ground points with FAW & RAW (given in the input sheet) YES B B

4 Apply Loads & BC s for other load cases (Vertical_3G, Braking, and Cornering & Articulation) Solve for other load cases using solver template file Extract the FEA reaction forces for other load cases Check the reaction forces for Braking, Cornering and Articulation load case Post processing using "Advanced option" in Hyperview Comparison of results between two chassis assembly using excel macro Report preparation End 1. Organizing the CAD model Organizing the CAD model with specific name will help us in checking of FE processing. Sample CAD model of chassis assembly is shown in Figure 1. model and aid in post-

5 Figure 1: Sample CAD model of Chassis assembly 2. Mid surface extraction and assigning thickness using macro This macro extracts the mid surface and assigns thickness to the components and the name of the component will look like "MID_COMPOENT-NAME_THICKNESS" as shown in Figure 2. Figure 2: Mid surface extraction and assigning thickness

6 3. Meshing of thin shell components & Automatic bolt creation using macro This macro will mesh the components with specified meshing criteria and create bolt connection between the components where there is a matching hole. Sample mesh pattern around the hole is shown in Figure 3. Sample rigid spider and beam element creation is shown in Figure 4. Figure 3: Sample mesh pattern around the hole Figure 4: Sample Rigid spider & Beam element creation

7 4. Renaming of components with specific name Once the meshing is completed, we have to rename the components with specific name for checking FE model and post processing of results. Sample component naming format is shown in Figure 5. 1 FSM 2 Internal Flitch 2 External Flitch 3 Front cross member Conventional Naming 5. Renumbering of specific nodes and elements Specific Naming Format 01_FSM_*T 02_Flitch_Int_Front_*T 02_Flitch_Int_Middle_*T 02_Flitch_Int_Rear_*T 02_Flitch_Ext_Middle_*T 02_Flitch_Ext_Rear_*T 03_Front_Xmem_Channel *T 03_Front_Xmem_Gusset_* *T 03_Front_Xmem_Stiffener *T Figure 5: Specific component naming format Standard node and element numbers are being employed to apply Loads, Boundary conditions and to extract desired outputs using solver template file. Standard nodes and elements numbering at front suspension is shown in Figure 6 and rear suspension is shown in Figure 7. NODE IDS Ground : 2 Spring Seat : 102 Bump stop : 202 Spring Bkt front : 302 Spring Bkt rear : 402 NODE IDS Ground : 4 Spring Seat : 104 Bump stop : 204 Spring Bkt front : 304 Spring Bkt rear : 404 FA1_RH FA2_RH FRONT Power train ( Engine + Gear box) NODE ID: 1001 Ram point NODE ID: 1002 FA1_LH NODE IDS Ground : 1 Spring Seat : 101 Bump stop : 201 Spring Bkt front : 301 Spring Bkt rear : 401 FA2_LH NODE IDS Ground : 3 Spring Seat : 103 Bump stop : 203 Spring Bkt front : 303 Spring Bkt rear : 403 Y-Axis X-Axis Figure 6: Node numbering at front suspension

8 NODE IDS Ground : 6 Spring Seat : 106 Bump stop : 206 Spring Bkt front : 306 Spring Bkt rear :406 RA1_RH NODE IDS Ground : 8 Spring Seat : 108 Helper spring mid node : 208 Spring Bkt front : 308 Spring Bkt rear : 408 FSM Bump Stop Spring Bottom node1 : 508 FSM Bump Stop Spring Bottom node2 : 708 FSM Bump Stop Spring Bottom node3 : 808 Bump stop node on Axle : 608 ELEMENT IDS Helper spring Bush : 2008 (F), 3008 (R) FSM Bump stop Spring1 : 5008 FSM Bump stop Spring2 : 7008 FSM Bump stop Spring3 : 8008 RA2_RH Hinge_RH NODE ID: 1004 NODE ID: 1003 Hinge_LH RA1_LH NODE IDS Ground : 5 Spring Seat : 105 Bump stop : 205 Spring Bkt front : 305 Spring Bkt rear : 405 RA2_LH NODE IDS Ground : 7 Spring Seat : 107 Helper spring mid node : 207 Spring Bkt front : 307 Spring Bkt rear :407 FSM Bump Stop Spring Bottom node1 :507 FSM Bump Stop Spring Bottom node2 :707 FSM Bump Stop Spring Bottom node3 :807 Bump stop node on Axle : 607 ELEMENT IDS Helper spring Bush: 2007 (F), 3007 (R) FSM Bump stop Spring1: 5007 FSM Bump stop Spring2: 7007 FSM Bump stop Spring3: 8007 Figure 7: Node numbering at rear suspension

9 6. Lumped mass creation at respective CG locations using Excel worksheet and macro This macro will create lumped mass of Payload and other aggregates at respective CG locations. FE model after lumped mass creation is shown in Figure 9. STEPS TO USE THE MACRO 1) Enter X, Y, Z coordinates of reference point in respective cells as shown in Figure 8. 2) Enter the description of each aggregate in Column B 3) Enter mass of each aggregate (in Tonnes) in column C 4) Enter X, Y, Z coordinates (in mm) of the aggregates in respective cells. 5) Press button "Run. A new *.tcl file will be created in C drive (C:\CGmass.tcl) 6) Execute C:\CGmass.tcl in HM to create lumped masses and corresponding tags. Figure 8: Lumped mass creation data from inputs Figure 9: FE model after lumped mass creation

10 7. Leaf spring suspension modeling using macro This macro will create beam element representation of leaf springs with shackle at specified locations. FE model after leaf spring modeling using macro is shown in Figure 11. Figure 10: Inputs for Leaf spring modeling Figure 11: FE model after Leaf spring modeling

11 8. Using solver template file with include files Solver template will help the analyst to apply loads, boundary conditions and to extract desired outputs (Displacements, Stress, SPC forces, MPC forces, BUSH element forces, etc.,). Using the template files will reduce mistakes due to manual application of loads & BC's and also reduces FE model review time. Figure 12: Portion of sample solver template file 9. Automatic post processing of results using advanced option in HyperView This option will help the analyst to post process the desired results. Steps for advanced post processing are explained below 1. Click the icon Contours to view the stress and displacements. 2. Select Stress [t] and vonmises options under Result type to view the vonmises stress results. 3. Select the Elements or Components under selection icon. 4. Click Apply. 5. Select Query Results to extract the plots in h3d format

12 On Clicking Query Results option, the following window will open. Click the Advanced option The html file will be having component wise results with a hyperlink to respective h3d files for all the loading conditions. Sample view of html file which comes out of the above mentioned post-processing option is shown in Figure 13.

13 Figure 13: Sample view of results HTML file 10. Comparison of results between two chassis results using excel macro Steps to be followed to compare follows. the results between two frames using Excel spreadsheet macro is as 1. Open the excel spreadsheet for comparing the results between two frames as shown in Figure Update the name of vehicle1 and vehicle2 in the Nomenclature tab 3. Enter the number of load cases to be compared. 4. Open the html file of Vehicle-1,copy all the contents and paste it in VEH1_RES sheet. 5. Open the html file of Vehicle-2,copy all the contents and paste it in VEH2_RES sheet. 6. Go to Nomenclature sheet and execute "Vehicle 1","Vehicle 2" and "Summary" macros to get the consolidated and summary results as shown in Figure 15.

14 Figure 14: Comparison of results - Nomenclature Figure 15: Comparison of results - Summary

15 Benefits Summary Pre-processing time reduction and elimination of manual errors using macros Extraction of mid surface and assigning thickness (Time reduction: 4 hrs to 10 min) Meshing of thin shell components (Time reduction: 56 hrs to 24 hrs) Automatic bolt creation (Time reduction: 8 hrs to 15 min) Lumped mass creation at respective CG locations (Time reduction: 2 hrs to 5 min) Leaf spring suspension modeling (Time reduction: 10 hrs to 30 min) Pre-processing technical review (Time reduction: 8 hrs to 3 hour) Solver template file (Time reduction: 4 hrs to 5 min) Post-processing and comparison of results using macros (Time reduction: 16 hrs to 3 hour) Challenges Time reduction in overall Chassis analysis without compromising on the quality of results Standardization of component names, analysis deck and output requests Comparison of results between two chassis assemblies with hyperlink to result plots. Conclusions Major time consuming activity in chassis analysis process has been automated using macros which helped us to reduce the overall analysis duration by 70%. Macros created during this process automation exercise has been deployed horizontally across all the Truck chassis analysis carried out in AL, which has helped the designer to carry out many iterations and to get consistent results. ACKNOWLEDGEMENTS The authors thank the management of Ashok Leyland, Head-CAE and ALTAIR for having provided opportunity to present the work reported in this paper. The authors also thank our CAE team members at Ashok Leyland Technical centre for their continuous support in executing this process automation. Hyper Mesh User Manual, Altair Engineering Practical Programming in TCL and TK, Brent Welch REFERENCES

Introduction of Optimization Tools in BIW Design

Introduction of Optimization Tools in BIW Design Introduction of Optimization Tools in BIW Design Himanshu Shekhar Deputy Manager, Maruti Suzuki India Ltd, Palam Gurgaon Road, Gurgaon. Vimal Kumar Deputy Manager, Maruti Suzuki India Ltd, Palam Gurgaon

More information

Development of Lightweight Engine Mounting Cross Member

Development of Lightweight Engine Mounting Cross Member Development of Lightweight Engine Mounting Cross Member Nitin Babaso Bodhale Team Lead Tata Technologies Ltd Pimpri Pune-411018, India. nitin.bodhale@tatatechnologies.com Jayeshkumar Raghuvanshi Sr. Team

More information

Design Verification Procedure (DVP) Load Case Analysis of Car Bonnet

Design Verification Procedure (DVP) Load Case Analysis of Car Bonnet Design Verification Procedure (DVP) Load Case Analysis of Car Bonnet Mahesha J 1, Prashanth A S 2 M.Tech Student, Machine Design, Dr. A.I.T, Bangalore, India 1 Asst. Professor, Department of Mechanical

More information

Simulation of Automotive Fuel Tank Sloshing using Radioss

Simulation of Automotive Fuel Tank Sloshing using Radioss Simulation of Automotive Fuel Tank Sloshing using Radioss Prashant V. Kulkarni CAE Analyst Tata Motors. Pimpri, Pune - 411018, India Sanjay S. Patil Senior Manager Tata Motors. Pimpri, Pune - 411018, India

More information

Concept Evaluation and Optimization Tool for Rear Twist Beam Axles. Guillaume LAURENT ThyssenKrupp Sofedit

Concept Evaluation and Optimization Tool for Rear Twist Beam Axles. Guillaume LAURENT ThyssenKrupp Sofedit Concept Evaluation and Optimization Tool for Rear Twist Beam Axles Guillaume LAURENT Sofedit CONTENT Abstract Sofedit The problem : definition of a twist beam The HyperMesh process : creation of the model

More information

Tube stamping simulation for the crossmember of rear suspension system

Tube stamping simulation for the crossmember of rear suspension system Tube stamping simulation for the crossmember of rear suspension system G. Borgna A. Santini P. Monchiero Magneti Marelli Suspension Systems Abstract: A recent innovation project at Magneti Marelli Suspension

More information

Virtual Product Development for HCV -FUPD Structure

Virtual Product Development for HCV -FUPD Structure Virtual Product Development for HCV -FUPD Structure Shailesh Kadre Principal CAE Analyst Mahindra Engineering Services #128/A, Sanghavi Compound, Chinchwad Pune, 411 018 Ravindra Kumar Senior CAE-Analyst

More information

Fast Tracking Rail Vehicle Design

Fast Tracking Rail Vehicle Design Fast Tracking Rail Vehicle Design Nigel Randell Senior Engineer Crash Safety, Bombardier Transportation UK Ltd Litchurch Lane, Derby, DE24 8AD, UK nigel.randell@uk.transport.bombardier.com Jérôme Rousseau

More information

Auto Spot Weld FE Connection Using TCL Script For Process Automation

Auto Spot Weld FE Connection Using TCL Script For Process Automation Auto Spot Weld FE Connection Using TCL Script For Process Automation Vishal Gole Technical lead-cae Vishal.G.Gole Sagar J Patel CAE engineer Sagar.J.Patel Pravinkumar Sonavane Technical lead-cae Pravinkumar.Sonavane

More information

Modeling Bolted Connections. Marilyn Tomlin CAE COE / Siemens Corporation

Modeling Bolted Connections. Marilyn Tomlin CAE COE / Siemens Corporation Modeling Bolted Connections Marilyn Tomlin CAE COE / Siemens Corporation Overview Bolted Connection Engineering Judgment Modeling Options Summary Typical Bolted Connection Gasket Bolt Nut Washer Technology

More information

VII. 3-D Meshing. 7.1 When to Use 3-D Elements

VII. 3-D Meshing. 7.1 When to Use 3-D Elements VII 3-D Meshing This chapter includes material from the book Practical Finite Element Analysis. It also has been reviewed and has additional material added by Matthias Goelke. 7.1 When to Use 3-D Elements

More information

COSMOS. Vehicle Suspension Analysis ---- SolidWorks Corporation. Introduction 1. Role of vehicle suspension 2. Motion analysis 2

COSMOS. Vehicle Suspension Analysis ---- SolidWorks Corporation. Introduction 1. Role of vehicle suspension 2. Motion analysis 2 ---- WHITE PAPER Vehicle Suspension Analysis CONTENTS Introduction 1 Role of vehicle suspension 2 Motion analysis 2 Motion analysis using COSMOSMotion 3 Real-life example 4-5 Exporting loads to COSMOSWorks

More information

Topology Optimization of Engine Structure of a Scooter Engine using OptiStruct

Topology Optimization of Engine Structure of a Scooter Engine using OptiStruct Topology Optimization of Engine Structure of a Scooter Engine using OptiStruct Vikas Kumar Agarwal Deputy Manager Mahindra Two Wheelers Ltd. MIDC Chinchwad Pune 411019 India Gyanendra Roy Senior Manager

More information

Commercial Vehicle Powertrain Mount Selection Based on Static and Modal Analysis Using Altair Motion-Solve

Commercial Vehicle Powertrain Mount Selection Based on Static and Modal Analysis Using Altair Motion-Solve Commercial Vehicle Powertrain Mount Selection Based on Static and Modal Analysis Using Altair Motion-Solve E.Loganathan Divisional manager Ashok Leyland Limited Vallur Chennai-600103 India Loganathan.e@ashokleyland.com

More information

SIMULATION CAPABILITIES IN CREO

SIMULATION CAPABILITIES IN CREO SIMULATION CAPABILITIES IN CREO Enhance Your Product Design with Simulation & Using digital prototypes to understand how your designs perform in real-world conditions is vital to your product development

More information

Modal Analysis of a Steel Frame

Modal Analysis of a Steel Frame Modal Analysis of a Steel Frame Name: Sushanth Kumareshwar Panchaxrimath Department: Mechanical Engineering Course: Powertrain NVH of Electrified Vehicles Date: 11/26/2016 SUMMARY A dynamic modal analysis

More information

Principal Roll Structure Design Using Non-Linear Implicit Optimisation in Radioss

Principal Roll Structure Design Using Non-Linear Implicit Optimisation in Radioss Principal Roll Structure Design Using Non-Linear Implicit Optimisation in Radioss David Mylett, Dr. Simon Gardner Force India Formula One Team Ltd. Dadford Road, Silverstone, Northamptonshire, NN12 8TJ,

More information

FINITE ELEMENT ANALYSIS OF A PLANAR TRUSS

FINITE ELEMENT ANALYSIS OF A PLANAR TRUSS FINITE ELEMENT ANALYSIS OF A PLANAR TRUSS Instructor: Professor James Sherwood Revised: Michael Schraiber, Dimitri Soteropoulos Programs Utilized: HyperMesh Desktop v12.0, OptiStruct, HyperView This tutorial

More information

Topology Optimization and Analysis of Crane Hook Model

Topology Optimization and Analysis of Crane Hook Model RESEARCH ARTICLE Topology Optimization and Analysis of Crane Hook Model Thejomurthy M.C 1, D.S Ramakrishn 2 1 Dept. of Mechanical engineering, CIT, Gubbi, 572216, India 2 Dept. of Mechanical engineering,

More information

midas NFX 2017R1 Release Note

midas NFX 2017R1 Release Note Total Solution for True Analysis-driven Design midas NFX 2017R1 Release Note 1 midas NFX R E L E A S E N O T E 2 0 1 7 R 1 Major Improvements Midas NFX is an integrated finite element analysis program

More information

STATIC FINITE ELEMENT ANALYSIS AND VALIDATION OF N1 TYPE VEHICLE CHASSIS MEMBERS FOR BENDING PERFORMANCE

STATIC FINITE ELEMENT ANALYSIS AND VALIDATION OF N1 TYPE VEHICLE CHASSIS MEMBERS FOR BENDING PERFORMANCE STATIC FINITE ELEMENT ANALYSIS AND VALIDATION OF N1 TYPE VEHICLE CHASSIS MEMBERS FOR BENDING PERFORMANCE 1 CHINMAY POTDAR, 2 AMEY PISE, 3 AISHWARYA DUBEY, 4 SUSHRUT JADHAV 1, 3 TATA Technologies Limited,

More information

Finite Element Analysis and Experimental Validation of Lower Control Arm

Finite Element Analysis and Experimental Validation of Lower Control Arm Finite Element Analysis and Experimental Validation of Lower Control Arm 1 Miss. P. B. Patil, 2 Prof. M. V. Kharade 1 Assistant Professor at Vishweshwaraya Technical Campus Degree wing, Patgaon, Miraj

More information

Automation of Post-Processing Techniques for Iterative design Procedure Using TCL Script

Automation of Post-Processing Techniques for Iterative design Procedure Using TCL Script Automation of Post-Processing Techniques for Iterative design Procedure Using TCL Script Pravinkumar Sonavane Technical lead-cae Pravinkumar.Sonavane@tat atechnologies.com Sagar Patel CAE Engineer Sagar.J.Patel@tatatechnolo

More information

Finite Element Analysis and Optimization of I.C. Engine Piston Using RADIOSS and OptiStruct

Finite Element Analysis and Optimization of I.C. Engine Piston Using RADIOSS and OptiStruct Finite Element Analysis and Optimization of I.C. Engine Piston Using RADIOSS and OptiStruct Vivek Zolekar Student M. Tech. Mechanical (CAD/CAM) SGGSIE&T Nanded - 431 606 Dr. L.N. Wankhade Professor Department

More information

Finite Element Analysis Using Creo Simulate 4.0

Finite Element Analysis Using Creo Simulate 4.0 Introduction to Finite Element Analysis Using Creo Simulate 4.0 Randy H. Shih SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit the following

More information

FINITE ELEMENT ANALYSIS OF A PLANAR TRUSS

FINITE ELEMENT ANALYSIS OF A PLANAR TRUSS FINITE ELEMENT ANALYSIS OF A PLANAR TRUSS Instructor: Professor James Sherwood Revised: Michael Schraiber, Dimitri Soteropoulos, Sanjay Nainani Programs Utilized: HyperMesh Desktop v2017.2, OptiStruct,

More information

SIMULATION CAPABILITIES IN CREO. Enhance Your Product Design with Simulation & Analysis

SIMULATION CAPABILITIES IN CREO. Enhance Your Product Design with Simulation & Analysis SIMULATION CAPABILITIES IN CREO Enhance Your Product Design with Simulation & Using digital prototypes to understand how your designs perform in real-world conditions is vital to your product development

More information

RD-1070: Analysis of an Axi-symmetric Structure using RADIOSS

RD-1070: Analysis of an Axi-symmetric Structure using RADIOSS RADIOSS, MotionSolve, and OptiStruct RD-1070: Analysis of an Axi-symmetric Structure using RADIOSS In this tutorial, you will learn the method of modeling an axi- symmetry problem in RADIOSS. The figure

More information

Exercise 2: Bike Frame Analysis

Exercise 2: Bike Frame Analysis Exercise 2: Bike Frame Analysis This exercise will analyze a new, innovative mountain bike frame design under structural loads. The objective is to determine the maximum stresses in the frame due to the

More information

Finite Element Analysis using ANSYS Mechanical APDL & ANSYS Workbench

Finite Element Analysis using ANSYS Mechanical APDL & ANSYS Workbench Finite Element Analysis using ANSYS Mechanical APDL & ANSYS Workbench Course Curriculum (Duration: 120 Hrs.) Section I: ANSYS Mechanical APDL Chapter 1: Before you start using ANSYS a. Introduction to

More information

First Order Analysis for Automotive Body Structure Design Using Excel

First Order Analysis for Automotive Body Structure Design Using Excel Special Issue First Order Analysis 1 Research Report First Order Analysis for Automotive Body Structure Design Using Excel Hidekazu Nishigaki CAE numerically estimates the performance of automobiles and

More information

VIRTUAL PROTOTYPING SIMULATION FOR THE DESIGN OF TWO-WHEELED VEHICLES

VIRTUAL PROTOTYPING SIMULATION FOR THE DESIGN OF TWO-WHEELED VEHICLES NTERNATIONAL DESIGN CONFERENCE - DESIGN 2002 Dubrovnik, May 14-17, 2002. VIRTUAL PROTOTYPING SIMULATION FOR THE DESIGN OF TWO-WHEELED VEHICLES S. Barone, A. Curcio and F. Pierucci Keywords: CAD, Multi-Body

More information

AutoMesher for LS-DYNA Vehicle Modelling

AutoMesher for LS-DYNA Vehicle Modelling 13 th International LS-DYNA Users Conference Session: Computing Technology AutoMesher for LS-DYNA Vehicle Modelling Ryan Alberson 1, David Stevens 2, James D. Walker 3, Tom Moore 3 Protection Engineering

More information

NX Advanced FEM. fact sheet

NX Advanced FEM. fact sheet Advanced FEM fact sheet www.ugs.com Summary Advanced FEM is a comprehensive multi-cad finite element modeling and results visualization product that is designed to meet the needs of experienced CAE analysts.

More information

Using Computer Aided Engineering Processes in Packaging Design Development

Using Computer Aided Engineering Processes in Packaging Design Development Using Computer Aided Engineering Processes in Packaging Design Development Jose Martinez, Miguel Angel Garcia Jose Luis Moreno Vicencio & Hugo Miranda Mabe, Mexico Mahesh Patel, Andrew Burkhalter, Eric

More information

Topology and Shape optimization within the ANSA-TOSCA Environment

Topology and Shape optimization within the ANSA-TOSCA Environment Topology and Shape optimization within the ANSA-TOSCA Environment Introduction Nowadays, manufacturers need to design and produce, reliable but still light weighting and elegant components, at minimum

More information

Structural re-design of engine components

Structural re-design of engine components Structural re-design of engine components Product design cycle Design Development Testing Structural optimization Product knowledge Design freedom 2/18 Structural re-design of engine components Product

More information

Modal Based Optimization of TAPS Using OptiStruct

Modal Based Optimization of TAPS Using OptiStruct Modal Based Optimization of TAPS Using OptiStruct Yogesh Jaju Sr. Manager CAE Dana India Technical Centre Pvt. Ltd 501 Pride Silicon Plaza Pune 411016 India Ulhas Patil Sr. Project Engineer - CAE Dana

More information

Topology Optimization of Flaring Tool Using OptiStruct

Topology Optimization of Flaring Tool Using OptiStruct Topology Optimization of Flaring Tool Using OptiStruct Rahul Nanche Engineer CAE Emerson Innovation Center Hinjewadi,Pune 411057 Sachin Magdum Lead Engineer Emerson Innovation Center Hinjewadi,Pune 411057

More information

Improvement of Simulation Technology for Analysis of Hub Unit Bearing

Improvement of Simulation Technology for Analysis of Hub Unit Bearing TECHNICAL REPORT Improvement of Simulation Technology for Analysis of Hub Unit Bearing K. KAJIHARA Recently, severe development competition, a development process reform aiming for shorter development

More information

Design and Structural Analysis of Leaf Spring

Design and Structural Analysis of Leaf Spring International Journal of Current Research in Multidisciplinary (IJCRM) ISSN: 2456-0979 Design and Structural Analysis of Leaf Spring Tarun kumar 1, G.v.r.s.rao 2,Anand Kumar pathak3 1 (Mechanical Engineering,

More information

Modelling Flat Spring Performance Using FEA

Modelling Flat Spring Performance Using FEA Modelling Flat Spring Performance Using FEA Blessing O Fatola, Patrick Keogh and Ben Hicks Department of Mechanical Engineering, University of Corresponding author bf223@bath.ac.uk Abstract. This paper

More information

How TMG Uses Elements and Nodes

How TMG Uses Elements and Nodes Simulation: TMG Thermal Analysis User's Guide How TMG Uses Elements and Nodes Defining Boundary Conditions on Elements You create a TMG thermal model in exactly the same way that you create any finite

More information

Nastran In-CAD: Understanding Data Conversion, Data Type, and Contour Type

Nastran In-CAD: Understanding Data Conversion, Data Type, and Contour Type Nastran In-CAD: Understanding,, and Issue When creating a contour plot of a result, what is meant by " ", " ", and " "? The options in the drop-downs are as follows: 1. : "Average", "Maximum", or "Minimum"

More information

The new HyperMesh - Samcef interface.

The new HyperMesh - Samcef interface. The new HyperMesh - Samcef interface. Deployment and industrial applications at Eurocopter. Ronan PITOIS Dynamic systems dpt. Presentation plan Eurocopter overview Stress computation performed in Eurocopter

More information

Automation for Material and Property Values in HyperMesh Using TCL

Automation for Material and Property Values in HyperMesh Using TCL Automation for Material and Property Values in HyperMesh Using TCL P.N.V.Narasimha Rao Asst.Manager HYUNDAI MOBIS India Res. & Dev. Pvt. Ltd. 1 st, Floor, Survey No: 5/2 & 5/3, Backside of NAC, Izzatnagar,

More information

Flexible Body Suspension System Modeling and Simulation Using MD Nastran SOL700 in VPG Environment

Flexible Body Suspension System Modeling and Simulation Using MD Nastran SOL700 in VPG Environment 9 th International LS-DYNA Users Conference Crash/Safety (4) Flexible Body Suspension System Modeling and Simulation Using SOL700 in VPG Environment Casey Heydari, Ted Pawela MSC.Software Corporation Santa

More information

Exercise 2: Bike Frame Analysis

Exercise 2: Bike Frame Analysis Exercise 2: Bike Frame Analysis This exercise will analyze a new, innovative mountain bike frame design under structural loads. The objective is to determine the maximum stresses in the frame due to the

More information

GrafiCalc Examples. Here are nineteen (19) examples that illustrate proven applications of GrafiCalc technology.

GrafiCalc Examples. Here are nineteen (19) examples that illustrate proven applications of GrafiCalc technology. GrafiCalc Examples Here are nineteen (19) examples that illustrate proven applications of GrafiCalc technology. The examples have been arranged to show the following capabilities. 1. Predictive engineering

More information

ASSOCIATIVE SIZING OF AERONAUTICAL STRUCTURES FROM CATIA V5 TO SAMCEF : APPLICATIONS TO STATIC AND BIRD IMPACT ANALYSES

ASSOCIATIVE SIZING OF AERONAUTICAL STRUCTURES FROM CATIA V5 TO SAMCEF : APPLICATIONS TO STATIC AND BIRD IMPACT ANALYSES ASSOCIATIVE SIZING OF AERONAUTICAL STRUCTURES FROM CATIA V5 TO SAMCEF : APPLICATIONS TO STATIC AND BIRD IMPACT ANALYSES A.P. Gonze & J. Verstuyft SONACA S.A. Abstract : This paper presents an associative

More information

HyperCrash. A highly-tuned modeling environment for crash analysis and safety evaluation in the HyperWorks simulation framework

HyperCrash. A highly-tuned modeling environment for crash analysis and safety evaluation in the HyperWorks simulation framework HyperCrash A highly-tuned modeling environment for crash analysis and safety evaluation in the HyperWorks simulation framework Christian Alscher, Giuseppe Resta Altair, Böblingen/Troy, Germany/USA Summary:

More information

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 ISSN

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April-2017 ISSN ISSN 2229-5518 1058 Finite Element Analysis of an Excavator Arm CAE Tool Asit Kumar Choudhary, Gian Bhushan Abstract: Background: Excavators are earth moving equipment and the main component for completing

More information

Lecture 3 : General Preprocessing. Introduction to ANSYS Mechanical Release ANSYS, Inc. February 27, 2015

Lecture 3 : General Preprocessing. Introduction to ANSYS Mechanical Release ANSYS, Inc. February 27, 2015 Lecture 3 : General Preprocessing 16.0 Release Introduction to ANSYS Mechanical 1 2015 ANSYS, Inc. February 27, 2015 Chapter Overview In this chapter we cover basic preprocessing operations that are common

More information

Modeling, Simulation and Optimization Analysis on Steering Knuckle Component For Purpose of Weight Reduction

Modeling, Simulation and Optimization Analysis on Steering Knuckle Component For Purpose of Weight Reduction Modeling, Simulation and Optimization Analysis on Steering Knuckle Component For Purpose of Weight Reduction W. M. Wan Muhamad 1, E. Sujatmika 1, Hisham Hamid 1 and Faris Tarlochan 2 1 UniKL Malaysia France

More information

Topology Optimization Design of Automotive Engine Bracket

Topology Optimization Design of Automotive Engine Bracket Energy and Power Engineering, 2016, 8, 230-235 Published Online April 2016 in SciRes. http://www.scirp.org/journal/epe http://dx.doi.org/10.4236/epe.2016.84021 Topology Optimization Design of Automotive

More information

FEA and Topology Optimization of an Engine Mounting Bracket

FEA and Topology Optimization of an Engine Mounting Bracket International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Sanket

More information

FEA of Composites Classical Lamination Theory Example 1

FEA of Composites Classical Lamination Theory Example 1 FEA of Composites Classical Lamination Theory Example 1 22.514 Instructor: Professor James Sherwood Author: Dimitri Soteropoulos Revised by Jacob Wardell Problem Description: A four layer [0/90] s graphite-epoxy

More information

IJREAS VOLUME 6, ISSUE 4 (April, 2016) (ISSN ) International Journal of Research in Engineering and Applied Sciences (IMPACT FACTOR 6.

IJREAS VOLUME 6, ISSUE 4 (April, 2016) (ISSN ) International Journal of Research in Engineering and Applied Sciences (IMPACT FACTOR 6. THICKNESS OPTIMIZATION OF CAR FRAME FOR STRENGTH Manoj Kumar Singh 1 R.Hussain Vali 2 P.Yagnasri 3 Associate Professor Assistant Professor Assistant Professor ABSTRACT Department of mechanical engineering,,

More information

NX Advanced FEM. Benefits

NX Advanced FEM. Benefits Advanced FEM fact sheet Siemens PLM Software www.siemens.com/plm Summary Advanced FEM software is a comprehensive multi-cad finite element modeling and results visualization product that is designed to

More information

Overview of Product Information Interoperability Using STEP (ISO 10303)

Overview of Product Information Interoperability Using STEP (ISO 10303) Overview of Product Information Interoperability Using STEP (ISO 10303) Diego Tamburini 1997 For Georgia Tech ME6754 et al. 5/98 Updates - M. C. Ramesh 11/00 Updates - R. Peak 1 Product Information Interoperability

More information

SolidWorks Optimization

SolidWorks Optimization white paper SolidWorks Optimization inspiration SUMMARY Optimization is the calculation of weight, stress, cost, deflection, natural frequencies, and temperature factors, which are dependent on variables

More information

Static, Modal and Kinematic Analysis of Hydraulic Excavator

Static, Modal and Kinematic Analysis of Hydraulic Excavator Static, Modal and Kinematic Analysis of Hydraulic Excavator Anil Jadhav Abhijit Kulkarni Tamilnadu,India-632014 Vinayak Kulkarni Prof. Ravi. K Assistant professor Mechanical department Abstract Hydraulic

More information

Fundamentals of Modeling with Simcenter 3D Robin Boeykens

Fundamentals of Modeling with Simcenter 3D Robin Boeykens Fundamentals of Modeling with Simcenter 3D Robin Boeykens robin.boeykens@siemens.com Realize innovation. 3D CAE for the digital twin Simcenter 3D Page 2 Simcenter 3D Engineering Desktop Simcenter 3D Engineering

More information

BETA. CAE data and process management. ANSA Data Management ANSA Task Manager. CAE Systems SA

BETA. CAE data and process management. ANSA Data Management ANSA Task Manager. CAE Systems SA BETA CAE Systems SA CAE data and process management ANSA Data Management ANSA Task Manager 28 June 2010 Overview 1. Motivation and objectives 2. ANSA Data Management for CAE data organization 3. Assembly

More information

MASTA 9.0 Release Notes

MASTA 9.0 Release Notes November 2018 2018 Smart Manufacturing Technology Ltd. Commercial in Confidence Page 1 of 33 MASTA 9.0 Contents and Summary See next section for additional details The 9.0 release of MASTA contains all

More information

LMS Virtual.Lab Noise and Vibration

LMS Virtual.Lab Noise and Vibration LMS Virtual.Lab Noise and Vibration LMS Virtual.Lab Noise and Vibration From component to system-level noise and vibration prediction 2 LMS Virtual.Lab Noise and Vibration LMS Virtual.Lab Noise and Vibration

More information

Virtual Testing Methodology for TPL Lifting Capacity of Agricultural Tractor TPL

Virtual Testing Methodology for TPL Lifting Capacity of Agricultural Tractor TPL Virtual Testing Methodology for TPL Lifting Capacity of Agricultural Tractor TPL Dheeraj Pandey AM CAE International Tractors Limited Jalandhar Road, Hoshiarpur 146001 - India dheerajpandey@sonalika.com

More information

Modeling and Analysis of Honeycomb Impact Attenuator

Modeling and Analysis of Honeycomb Impact Attenuator Modeling and Analysis of Honeycomb Impact Attenuator Preprocessor : Altair HyperMesh 14.0 Solver : Altair RADIOSS Postprocessor : Altair HyperView 1 An impact attenuator is a structure used to decelerate

More information

CAE Data Management and Quality Assessment of LS-DYNA Crash Models using V-CESS

CAE Data Management and Quality Assessment of LS-DYNA Crash Models using V-CESS 4 th European LS-DYNA Users Conference LS-DYNA Environment I CAE Data Management and Quality Assessment of LS-DYNA Crash Models using V-CESS Authors: Matthias Eick, Dr. Lars Fredriksson, Dr. Jochen Seybold

More information

Visit the following websites to learn more about this book:

Visit the following websites to learn more about this book: Visit the following websites to learn more about this book: 6 Introduction to Finite Element Simulation Historically, finite element modeling tools were only capable of solving the simplest engineering

More information

SimWise. 3D Dynamic Motion, and Stress Analysis. integrated with Alibre Design

SimWise. 3D Dynamic Motion, and Stress Analysis. integrated with Alibre Design SimWise 3D Dynamic Motion, and Stress Analysis integrated with Alibre Design SimWise 4D for Alibre Integrated Motion Simulation and Stress Analysis SimWise 4D is a software tool that allows the functional

More information

Size Optimization of a Rail Joint

Size Optimization of a Rail Joint Size Optimization of a Rail Joint This exercise demonstrates how to perform a size optimization on an automobile rail joint modeled with shell elements. The structural model with loads and constraints

More information

FINITE ELEMENT ANALYSIS OF A PROPPED CANTILEVER BEAM

FINITE ELEMENT ANALYSIS OF A PROPPED CANTILEVER BEAM FINITE ELEMENT ANALYSIS OF A PROPPED CANTILEVER BEAM Problem Description: Instructor: Professor James Sherwood Revised: Venkat Putcha, Dimitri Soteropoulos Programs Utilized: HyperMesh Desktop 12.0, OptiStruct,

More information

SETTLEMENT OF A CIRCULAR FOOTING ON SAND

SETTLEMENT OF A CIRCULAR FOOTING ON SAND 1 SETTLEMENT OF A CIRCULAR FOOTING ON SAND In this chapter a first application is considered, namely the settlement of a circular foundation footing on sand. This is the first step in becoming familiar

More information

Multi-Body Simulation of Earthmoving Equipment using MotionView / MotionSolve

Multi-Body Simulation of Earthmoving Equipment using MotionView / MotionSolve Multi-Body Simulation of Earthmoving Equipment using MotionView / MotionSolve Amit Srivastava Manager Larsen & Toubro IES Knowledge City, NH8 Vadodara 390 019, India Gopikrishnan. M Assistant Manager Larsen

More information

Chapter 20 Assembly Model with VEX Robot Kit - Autodesk Inventor

Chapter 20 Assembly Model with VEX Robot Kit - Autodesk Inventor Tools for Design Using AutoCAD and Autodesk Inventor 20-1 Chapter 20 Assembly Model with VEX Robot Kit - Autodesk Inventor Creating an Assembly Using Parts from the VEX Robot Kit Understand and Perform

More information

COMPUTER AIDED ENGINEERING. Part-1

COMPUTER AIDED ENGINEERING. Part-1 COMPUTER AIDED ENGINEERING Course no. 7962 Finite Element Modelling and Simulation Finite Element Modelling and Simulation Part-1 Modeling & Simulation System A system exists and operates in time and space.

More information

Multidisciplinary design optimization (MDO) of a typical low aspect ratio wing using Isight

Multidisciplinary design optimization (MDO) of a typical low aspect ratio wing using Isight Multidisciplinary design optimization (MDO) of a typical low aspect ratio wing using Isight Mahadesh Kumar A 1 and Ravishankar Mariayyah 2 1 Aeronautical Development Agency and 2 Dassault Systemes India

More information

NX and LMS Test.Lab Integration at AAM. NX CAE Symposium Title

NX and LMS Test.Lab Integration at AAM. NX CAE Symposium Title Title 11/5/ 1 Introduction: About AAM NX and LMS Test.Lab Integration at AAM Company Background Europe North America Asia South America World Headquarters Key Facts $2.93 Billion USD Sales (2012) 33 Locations

More information

LS-DYNA Model Compare in Visual-Environment

LS-DYNA Model Compare in Visual-Environment 11 th International LS-DYNA Users Conference Automotive (1) LS-DYNA Model Compare in Visual-Environment Shivakumara H. Shetty, Velayudham Ganesan, Milind Parab*, Sreedhar Kandagatla** ESI Group 32605,

More information

RHEOMOLD ENGINEERING SOLUTIONS LLP

RHEOMOLD ENGINEERING SOLUTIONS LLP RHEOMOLD ENGINEERING SOLUTIONS LLP 1 Content Rheomold Services & Capabilities Rheomold Capacity Design Projects executed CAE Projects executed Manufacturing Simulations (Moldflow, Casting & Forming) Customers

More information

TOPOLOGICAL OPTIMIZATION OF STEERING KNUCKLE BY USING ADDITIVE MANUFACTURING PROCESS

TOPOLOGICAL OPTIMIZATION OF STEERING KNUCKLE BY USING ADDITIVE MANUFACTURING PROCESS TOPOLOGICAL OPTIMIZATION OF STEERING KNUCKLE BY USING ADDITIVE MANUFACTURING PROCESS Prof.P.S.Gorane 1,Mr. Piyush Jain 2 Mechanical engineering, G. S.Mozecollege of engineering, Savitri Bai Phule Pune

More information

APPROACHING A RELIABLE PROCESS SIMULATION FOR THE VIRTUAL PRODUCT DEVELOPMENT

APPROACHING A RELIABLE PROCESS SIMULATION FOR THE VIRTUAL PRODUCT DEVELOPMENT APPROACHING A RELIABLE PROCESS SIMULATION FOR THE VIRTUAL PRODUCT DEVELOPMENT K. Kose, B. Rietman, D. Tikhomirov, N. Bessert INPRO GmbH, Berlin, Germany Summary In this paper an outline for a strategy

More information

FEA Applications I MET 415 Review Course Structure: 15 week course Weekly Schedule 50 minute lecture 2.5 hour laboratory 50 minute lecture

FEA Applications I MET 415 Review Course Structure: 15 week course Weekly Schedule 50 minute lecture 2.5 hour laboratory 50 minute lecture FEA Applications I MET 415 Review Course Structure: 15 week course Weekly Schedule 50 minute lecture 2.5 hour laboratory 50 minute lecture Goal: Obtain feedback from Industry Users on course presentation

More information

Free-Shape Optimization of a 3-D Bracket using the Free-shape Method

Free-Shape Optimization of a 3-D Bracket using the Free-shape Method Free-Shape Optimization of a 3-D Bracket using the Free-shape Method In this exercise, shape optimization on a solid bracket model will be performed using the Free- Shape optimization method. The objective

More information

Multi-Disciplinary Design of an Aircraft Landing Gear with Altair HyperWorks

Multi-Disciplinary Design of an Aircraft Landing Gear with Altair HyperWorks Multi-Disciplinary Design of an Aircraft Landing Gear with Altair HyperWorks Altair Engineering, October 2008 Introduction Task: To design an aircraft landing gear that meets design requirements of several

More information

For Structural analysis, Thermal analysis, Mechanisms simulation and other Fields

For Structural analysis, Thermal analysis, Mechanisms simulation and other Fields What is SAMCEF Field? An Integrated Environment for CAE Modeling, Analysis and Results processing For Structural analysis, Thermal analysis, Mechanisms simulation and other Fields SAMTECH s.a. - www.samcef.com

More information

Lesson 6: Assembly Structural Analysis

Lesson 6: Assembly Structural Analysis Lesson 6: Assembly Structural Analysis In this lesson you will learn different approaches to analyze the assembly using assembly analysis connection properties between assembly components. In addition

More information

Vehicle Load Area Division Wall Integrity during Frontal Crash

Vehicle Load Area Division Wall Integrity during Frontal Crash Vehicle Load Area Division Wall Integrity during Frontal Crash H. Türkmen TOFAS Türk Otomobil Fabrikasi A.S. Abstract : This study addresses design efforts of a vehicle load area division wall and the

More information

Abaqus CAE Tutorial 6: Contact Problem

Abaqus CAE Tutorial 6: Contact Problem ENGI 7706/7934: Finite Element Analysis Abaqus CAE Tutorial 6: Contact Problem Problem Description In this problem, a segment of an electrical contact switch (steel) is modeled by displacing the upper

More information

Development of a Modeling Tool for Collaborative Finite Element Analysis

Development of a Modeling Tool for Collaborative Finite Element Analysis Development of a Modeling Tool for Collaborative Finite Element Analysis Åke Burman and Martin Eriksson Division of Machine Design, Department of Design Sciences, Lund Institute of Technology at Lund Unversity,

More information

Analysis Steps 1. Start Abaqus and choose to create a new model database

Analysis Steps 1. Start Abaqus and choose to create a new model database Source: Online tutorials for ABAQUS Problem Description The two dimensional bridge structure, which consists of steel T sections (b=0.25, h=0.25, I=0.125, t f =t w =0.05), is simply supported at its lower

More information

Become a Black Belt in ANSYS Workbench, Volume 3. We dedicate this book to God s Ecstatic Beauty and Beatific Love: Tripura Sundari

Become a Black Belt in ANSYS Workbench, Volume 3. We dedicate this book to God s Ecstatic Beauty and Beatific Love: Tripura Sundari 2 We dedicate this book to God s Ecstatic Beauty and Beatific Love: Tripura Sundari 3 Foreword Hi all! I held your hand in the first 2 volumes, now it s not the case anymore; this means that you need to

More information

Manual for Abaqus CAE Topology Optimization

Manual for Abaqus CAE Topology Optimization Abaqus CAE access: Manual for Abaqus CAE Topology Optimization 1. Open Exceed ondemand Client -> login and pass 2FA 2. Select Desktop_Mode_Full_Screen (or other user preferred resolution) for XConfig and

More information

Targeting Composite Wing Performance Optimising the Composite Lay-Up Design

Targeting Composite Wing Performance Optimising the Composite Lay-Up Design Targeting Composite Wing Performance Optimising the Composite Lay-Up Design Sam Patten Optimisation Specialist, Altair Engineering Ltd Imperial House, Holly Walk, Royal Leamington Spa, CV32 4JG sam.patten@uk.altair.com

More information

SOLIDWORKS Simulation

SOLIDWORKS Simulation SOLIDWORKS Simulation Length: 3 days Prerequisite: SOLIDWORKS Essentials Description: SOLIDWORKS Simulation is designed to make SOLIDWORKS users more productive with the SOLIDWORKS Simulation Bundle. This

More information

SIMPACK - A Tool for Off-Line and Real- Time Simulation

SIMPACK - A Tool for Off-Line and Real- Time Simulation SIMPACK - A Tool for Off-Line and Real- Time Simulation Real-Time for ECU Testing: State of the Art and Open Demands SIMPACK - Code Export: A Newly Emerging Module for Real-Time Models Application Example

More information

Turn around time reduction

Turn around time reduction Turn around time reduction in early attribute assessments using latest software tools like SFE CONCEPT, Perl and HyperMesh Jörgen Hilmann, Ford of Europe, Basic Design Safety Hans Zimmer, SFE GmbH President

More information

Customisation and Automation using the LUSAS Programmable Interface (LPI)

Customisation and Automation using the LUSAS Programmable Interface (LPI) Customisation and Automation using the LUSAS Programmable Interface (LPI) LUSAS Programmable Interface The LUSAS Programmable Interface (LPI) allows the customisation and automation of modelling and results

More information

Analysis Run Exercise

Analysis Run Exercise Analysis Run Exercise In this exercise you will setup and run an analysis on the original design and the optimized design to compare the results. The exercise follows very closely the video in the See

More information