23 DECOMPOSITION OF GRAPHS

Size: px
Start display at page:

Download "23 DECOMPOSITION OF GRAPHS"

Transcription

1 DATA STRUCTURES AND ALGORITHMS 23 DECOMPOSITION OF GRAPHS REPRESENTING & EXPLORING GRAPHS IMRAN IHSAN ASSISTANT PROFESSOR, AIR UNIVERSITY, ISLAMABAD LECTURES ADAPTED FROM: DANIEL KANE, NEIL RHODES DEPARTMENT OF CS & ENGINEERING UNIVERSITY OF CALIFORNIA, SAN DIEGO

2 GRAPHS Represents connections between objects. Describe many important phenomena. 2

3 INTERNET Webpages connected by links. This is important for Google's page rank. 3

4 MAPS Intersections connected by roads. 4

5 SOCIAL NETWORKS People connected by friendships. 5

6 CONFIGURATION SPACES Possible configurations connected by motions. 6

7 FORMAL DEFINITION Definition An (undirected) Graph is a collection V of vertices, and a collection E of edges each of which connects a pair of vertices. 7

8 DRAWING GRAPHS Vertices: Points. Edges: Lines. Vertices: A,B,C,D Edges: (A, B), (A, C), (A,D), (C,D) 8

9 PROBLEM How many edges are in the graph given below? 9

10 PROBLEM 12 10

11 LOOPS AND MULTIPLE EDGES Loops connect a vertex to itself. Multiple edges between same vertices. If a graph has neither, it is simple. 11

12 GRAPH REPRESENTATIONS 12

13 REPRESENTING GRAPHS To compute things about graphs we first need to represent them. There are many ways to do this. 13

14 EDGE LIST List of all edges: Edges: (A, B), (A, C), (A,D), (C,D) 14

15 ADJACENCY MATRIX Matrix. Entries 1 if there is an edge, 0 if there is not. A B C D A B C D

16 ADJACENCY LIST For each vertex, a list of adjacent vertices. A adjacent to B,C,D B adjacent to A C adjacent to A,D D adjacent to A,C 16

17 PROBLEM What are the neighbors of C? 17

18 PROBLEM A,B,D,F,H,I 18

19 EXPLORING GRAPHS 19

20 MOTIVATION You're playing a video game and want to make sure that you've found everything in a level before moving on. How do you ensure that you accomplish this? 20

21 EXAMPLES This notion of exploring a graph has many applications: Finding routes Ensuring connectivity Solving puzzles and mazes 21

22 PATHS We want to know what is reachable f rom a given vertex. Definition A path in a graph G is a sequence of vertices v 0, v 1,..., v n so that for all i, (v i, v i+1 ) is an edge of G. 22

23 FORMAL DESCRIPTION Reachability Input: Output: Graph G and vertex s The collection of vertices v of G so that there is a path from s to v. 23

24 PROBLEM Which vertices are reachable from A? 24

25 SOLUTION A, C, D, F, H, I 25

26 BASIC IDEA We want to make sure that we have explored every edge leaving every vertex we have found. 26

27 PSEUDOCODE Components (s) DiscoveredNodes {s} while there is an edge e leaving DiscoveredNodes that has not been explored: add vertex at other end of e to DiscoveredNodes return DiscoveredNodes 27

28 FORMAL SPECIFICATION We need to do some work to handle the bookkeeping for this algorithm. How do we keep track of which edges/vertices we have dealt with? What order do we explore new edges in? 28

29 VISIT MARKERS To keep track of vertices found: Give each vertex boolean visited(v). 29

30 UNPROCESSED VERTICES Keep a list of vertices with edges left to check. This will end up getting hidden in the program stack. 30

31 DEPTH FIRST ORDERING We will explore new edges in Depth First order. We will follow a long path forward, only backtracking when we hit a dead end. 31

32 ALGORITHM Explore(v) visited(v) true for (v, w) E: if not visited(w): Explore(w) //Need adjacency list representation! 32

33 EXAMPLE 33

34 EXAMPLE 34

35 EXAMPLE 35

36 EXAMPLE 36

37 EXAMPLE 37

38 EXAMPLE 38

39 EXAMPLE 39

40 EXAMPLE 40

41 EXAMPLE 41

42 EXAMPLE 42

43 EXAMPLE 43

44 EXAMPLE 44

45 EXAMPLE 45

46 EXAMPLE 46

47 EXAMPLE 47

48 EXAMPLE 48

49 RESULT Theorem If all vertices start unvisited, Explore(v) marks as visited exactly the vertices reachable from v. Proof Only explores things reachable from v. w not marked as visited unless explored. If w explored, all neighbors explored. 49

50 ALGORITHM DFS(G) for all v V : mark v unvisited for v V : if not visited(v): Explore(v) //Need adjacency list representation! 50

51 EXAMPLE 51

52 EXAMPLE 52

53 EXAMPLE 53

54 EXAMPLE 54

55 EXAMPLE 55

56 EXAMPLE 56

57 EXAMPLE 57

58 EXAMPLE 58

59 EXAMPLE 59

60 EXAMPLE 60

61 EXAMPLE 61

62 EXAMPLE 62

63 EXAMPLE 63

64 EXAMPLE 64

65 EXAMPLE 65

66 EXAMPLE 66

67 RUNTIME Number of calls to explore: Each explored vertex is marked visited. No vertex is explored after visited once. Each vertex is explored exactly once. Checking for neighbors: Each vertex checks each neighbor. Total number of neighbors over all vertices is O( E ). Total runtime: O(1) work per vertex. O(1) work per edge. Total O( V + E ). 67

LECTURE 17 GRAPH TRAVERSALS

LECTURE 17 GRAPH TRAVERSALS DATA STRUCTURES AND ALGORITHMS LECTURE 17 GRAPH TRAVERSALS IMRAN IHSAN ASSISTANT PROFESSOR AIR UNIVERSITY, ISLAMABAD STRATEGIES Traversals of graphs are also called searches We can use either breadth-first

More information

LECTURE 26 PRIM S ALGORITHM

LECTURE 26 PRIM S ALGORITHM DATA STRUCTURES AND ALGORITHMS LECTURE 26 IMRAN IHSAN ASSISTANT PROFESSOR AIR UNIVERSITY, ISLAMABAD STRATEGY Suppose we take a vertex Given a single vertex v 1, it forms a minimum spanning tree on one

More information

Inf 2B: Graphs, BFS, DFS

Inf 2B: Graphs, BFS, DFS Inf 2B: Graphs, BFS, DFS Kyriakos Kalorkoti School of Informatics University of Edinburgh Directed and Undirected Graphs I A graph is a mathematical structure consisting of a set of vertices and a set

More information

CS2 Algorithms and Data Structures Note 9

CS2 Algorithms and Data Structures Note 9 CS2 Algorithms and Data Structures Note 9 Graphs The remaining three lectures of the Algorithms and Data Structures thread will be devoted to graph algorithms. 9.1 Directed and Undirected Graphs A graph

More information

I A graph is a mathematical structure consisting of a set of. I Formally: G =(V, E), where V is a set and E V V.

I A graph is a mathematical structure consisting of a set of. I Formally: G =(V, E), where V is a set and E V V. Directed and Undirected Graphs Inf 2B: Graphs, BFS, DFS Kyriakos Kalorkoti School of Informatics University of Edinburgh I A graph is a mathematical structure consisting of a set of vertices and a set

More information

CS483 Design and Analysis of Algorithms

CS483 Design and Analysis of Algorithms CS483 Design and Analysis of Algorithms Lecture 9 Decompositions of Graphs Instructor: Fei Li lifei@cs.gmu.edu with subject: CS483 Office hours: STII, Room 443, Friday 4:00pm - 6:00pm or by appointments

More information

09 STACK APPLICATION DATA STRUCTURES AND ALGORITHMS REVERSE POLISH NOTATION

09 STACK APPLICATION DATA STRUCTURES AND ALGORITHMS REVERSE POLISH NOTATION DATA STRUCTURES AND ALGORITHMS 09 STACK APPLICATION REVERSE POLISH NOTATION IMRAN IHSAN ASSISTANT PROFESSOR, AIR UNIVERSITY, ISLAMABAD WWW.IMRANIHSAN.COM LECTURES ADAPTED FROM: DANIEL KANE, NEIL RHODES

More information

08 STACKS DATA STRUCTURES AND ALGORITHMS IMPLEMENTATION & APPLICATIONS IMRAN IHSAN ASSISTANT PROFESSOR, AIR UNIVERSITY, ISLAMABAD

08 STACKS DATA STRUCTURES AND ALGORITHMS IMPLEMENTATION & APPLICATIONS IMRAN IHSAN ASSISTANT PROFESSOR, AIR UNIVERSITY, ISLAMABAD DATA STRUCTURES AND ALGORITHMS 08 STACKS IMPLEMENTATION & APPLICATIONS IMRAN IHSAN ASSISTANT PROFESSOR, AIR UNIVERSITY, ISLAMABAD WWW.IMRANIHSAN.COM LECTURES ADAPTED FROM: DANIEL KANE, NEIL RHODES DEPARTMENT

More information

Inf 2B: Graphs II - Applications of DFS

Inf 2B: Graphs II - Applications of DFS Inf 2B: Graphs II - Applications of DFS Kyriakos Kalorkoti School of Informatics University of Edinburgh Reminder: Recursive DFS Algorithm dfs(g) 1. Initialise Boolean array visited by setting all entries

More information

Lecture 6. Register Allocation. I. Introduction. II. Abstraction and the Problem III. Algorithm

Lecture 6. Register Allocation. I. Introduction. II. Abstraction and the Problem III. Algorithm I. Introduction Lecture 6 Register Allocation II. Abstraction and the Problem III. Algorithm Reading: Chapter 8.8.4 Before next class: Chapter 10.1-10.2 CS243: Register Allocation 1 I. Motivation Problem

More information

11 TREES DATA STRUCTURES AND ALGORITHMS IMPLEMENTATION & APPLICATIONS IMRAN IHSAN ASSISTANT PROFESSOR, AIR UNIVERSITY, ISLAMABAD

11 TREES DATA STRUCTURES AND ALGORITHMS IMPLEMENTATION & APPLICATIONS IMRAN IHSAN ASSISTANT PROFESSOR, AIR UNIVERSITY, ISLAMABAD DATA STRUCTURES AND ALGORITHMS 11 TREES IMPLEMENTATION & APPLICATIONS IMRAN IHSAN ASSISTANT PROFESSOR, AIR UNIVERSITY, ISLAMABAD WWW.IMRANIHSAN.COM LECTURES ADAPTED FROM: DANIEL KANE, NEIL RHODES DEPARTMENT

More information

Trees. Arash Rafiey. 20 October, 2015

Trees. Arash Rafiey. 20 October, 2015 20 October, 2015 Definition Let G = (V, E) be a loop-free undirected graph. G is called a tree if G is connected and contains no cycle. Definition Let G = (V, E) be a loop-free undirected graph. G is called

More information

Depth-First Search Depth-first search (DFS) is another way to traverse the graph.

Depth-First Search Depth-first search (DFS) is another way to traverse the graph. Depth-First Search Depth-first search (DFS) is another way to traverse the graph. Motivating example: In a video game, you are searching for a path from a point in a maze to the exit. The maze can be modeled

More information

01 INTRODUCTION TO COURSE

01 INTRODUCTION TO COURSE DATA STRUCTURES AND ALGORITHMS 01 INTRODUCTION TO COURSE ALGORITHMS & DATA STRUCTURES IMRAN IHSAN ASSISTANT PROFESSOR, AIR UNIVERSITY, ISLAMABAD WWW.IMRANIHSAN.COM LECTURES ADAPTED FROM: DANIEL KANE, NEIL

More information

Introduction to Algorithms. Lecture 11. Prof. Patrick Jaillet

Introduction to Algorithms. Lecture 11. Prof. Patrick Jaillet 6.006- Introduction to Algorithms Lecture 11 Prof. Patrick Jaillet Lecture Overview Searching I: Graph Search and Representations Readings: CLRS 22.1-22.3, B.4 Graphs G=(V,E) V a set of vertices usually

More information

Graphs. The ultimate data structure. graphs 1

Graphs. The ultimate data structure. graphs 1 Graphs The ultimate data structure graphs 1 Definition of graph Non-linear data structure consisting of nodes & links between them (like trees in this sense) Unlike trees, graph nodes may be completely

More information

Scribes: Romil Verma, Juliana Cook (2015), Virginia Williams, Date: May 1, 2017 and Seth Hildick-Smith (2016), G. Valiant (2017), M.

Scribes: Romil Verma, Juliana Cook (2015), Virginia Williams, Date: May 1, 2017 and Seth Hildick-Smith (2016), G. Valiant (2017), M. Lecture 9 Graphs Scribes: Romil Verma, Juliana Cook (2015), Virginia Williams, Date: May 1, 2017 and Seth Hildick-Smith (2016), G. Valiant (2017), M. Wootters (2017) 1 Graphs A graph is a set of vertices

More information

Depth-first search in undirected graphs What parts of the graph are reachable from a given vertex?

Depth-first search in undirected graphs What parts of the graph are reachable from a given vertex? Why graphs? Chapter 3. Decompositions of graphs Awiderangeofproblemscanbeexpressedwithclarityandprecisionin the concise pictorial language of graphs. Graph coloring. Graph connectivity and reachability.

More information

LECTURE 11 TREE TRAVERSALS

LECTURE 11 TREE TRAVERSALS DATA STRUCTURES AND ALGORITHMS LECTURE 11 TREE TRAVERSALS IMRAN IHSAN ASSISTANT PROFESSOR AIR UNIVERSITY, ISLAMABAD BACKGROUND All the objects stored in an array or linked list can be accessed sequentially

More information

22.3 Depth First Search

22.3 Depth First Search 22.3 Depth First Search Depth-First Search(DFS) always visits a neighbour of the most recently visited vertex with an unvisited neighbour. This means the search moves forward when possible, and only backtracks

More information

Copyright 2000, Kevin Wayne 1

Copyright 2000, Kevin Wayne 1 Chapter 3 - Graphs Undirected Graphs Undirected graph. G = (V, E) V = nodes. E = edges between pairs of nodes. Captures pairwise relationship between objects. Graph size parameters: n = V, m = E. Directed

More information

Definition Example Solution

Definition Example Solution Section 11.4 Spanning Trees Definition: Let G be a simple graph. A spanning tree of G is a subgraph of G that is a tree containing every vertex of G. Example: Find the spanning tree of this simple graph:

More information

implementing the breadth-first search algorithm implementing the depth-first search algorithm

implementing the breadth-first search algorithm implementing the depth-first search algorithm Graph Traversals 1 Graph Traversals representing graphs adjacency matrices and adjacency lists 2 Implementing the Breadth-First and Depth-First Search Algorithms implementing the breadth-first search algorithm

More information

Data Structures. Elementary Graph Algorithms BFS, DFS & Topological Sort

Data Structures. Elementary Graph Algorithms BFS, DFS & Topological Sort Data Structures Elementary Graph Algorithms BFS, DFS & Topological Sort 1 Graphs A graph, G = (V, E), consists of two sets: V is a finite non-empty set of vertices. E is a set of pairs of vertices, called

More information

(Re)Introduction to Graphs and Some Algorithms

(Re)Introduction to Graphs and Some Algorithms (Re)Introduction to Graphs and Some Algorithms Graph Terminology (I) A graph is defined by a set of vertices V and a set of edges E. The edge set must work over the defined vertices in the vertex set.

More information

CS2 Algorithms and Data Structures Note 10. Depth-First Search and Topological Sorting

CS2 Algorithms and Data Structures Note 10. Depth-First Search and Topological Sorting CS2 Algorithms and Data Structures Note 10 Depth-First Search and Topological Sorting In this lecture, we will analyse the running time of DFS and discuss a few applications. 10.1 A recursive implementation

More information

Computational Optimization ISE 407. Lecture 19. Dr. Ted Ralphs

Computational Optimization ISE 407. Lecture 19. Dr. Ted Ralphs Computational Optimization ISE 407 Lecture 19 Dr. Ted Ralphs ISE 407 Lecture 19 1 Search Algorithms Search algorithms are fundamental techniques applied to solve a wide range of optimization problems.

More information

Module 11: Additional Topics Graph Theory and Applications

Module 11: Additional Topics Graph Theory and Applications Module 11: Additional Topics Graph Theory and Applications Topics: Introduction to Graph Theory Representing (undirected) graphs Basic graph algorithms 1 Consider the following: Traveling Salesman Problem

More information

Graphs. The ultimate data structure. graphs 1

Graphs. The ultimate data structure. graphs 1 Graphs The ultimate data structure graphs 1 Definition of graph Non-linear data structure consisting of nodes & links between them (like trees in this sense) Unlike trees, graph nodes may be completely

More information

13 BINARY TREES DATA STRUCTURES AND ALGORITHMS INORDER, PREORDER, POSTORDER TRAVERSALS

13 BINARY TREES DATA STRUCTURES AND ALGORITHMS INORDER, PREORDER, POSTORDER TRAVERSALS DATA STRUCTURES AND ALGORITHMS 13 BINARY TREES INORDER, PREORDER, POSTORDER TRAVERSALS IMRAN IHSAN ASSISTANT PROFESSOR, AIR UNIVERSITY, ISLAMABAD WWW.IMRANIHSAN.COM LECTURES ADAPTED FROM: DANIEL KANE,

More information

Undirected Graphs. V = { 1, 2, 3, 4, 5, 6, 7, 8 } E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 } n = 8 m = 11

Undirected Graphs. V = { 1, 2, 3, 4, 5, 6, 7, 8 } E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 } n = 8 m = 11 Chapter 3 - Graphs Undirected Graphs Undirected graph. G = (V, E) V = nodes. E = edges between pairs of nodes. Captures pairwise relationship between objects. Graph size parameters: n = V, m = E. V = {

More information

Graph traversal is a generalization of tree traversal except we have to keep track of the visited vertices.

Graph traversal is a generalization of tree traversal except we have to keep track of the visited vertices. Traversal Techniques for Graphs Graph traversal is a generalization of tree traversal except we have to keep track of the visited vertices. Applications: Strongly connected components, topological sorting,

More information

Graphs. The ultimate data structure. graphs 1

Graphs. The ultimate data structure. graphs 1 Graphs The ultimate data structure graphs 1 Definition of graph Non-linear data structure consisting of nodes & links between them (like trees in this sense) Unlike trees, graph nodes may be completely

More information

Quick Review of Graphs

Quick Review of Graphs COMP 102: Excursions in Computer Science Lecture 11: Graphs Instructor: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp102 Quick Review of Graphs A graph is an abstract representation

More information

1 Connected components in undirected graphs

1 Connected components in undirected graphs Lecture 10 Connected components of undirected and directed graphs Scribe: Luke Johnston (2016) and Mary Wootters (2017) Date: October 25, 2017 Much of the following notes were taken from Tim Roughgarden

More information

This course is intended for 3rd and/or 4th year undergraduate majors in Computer Science.

This course is intended for 3rd and/or 4th year undergraduate majors in Computer Science. Lecture 9 Graphs This course is intended for 3rd and/or 4th year undergraduate majors in Computer Science. You need to be familiar with the design and use of basic data structures such as Lists, Stacks,

More information

Graphs. The ultimate data structure. graphs 1

Graphs. The ultimate data structure. graphs 1 Graphs The ultimate data structure graphs 1 Definition of graph Non-linear data structure consisting of nodes & links between them (like trees in this sense) Unlike trees, graph nodes may be completely

More information

Graph Algorithms. Definition

Graph Algorithms. Definition Graph Algorithms Many problems in CS can be modeled as graph problems. Algorithms for solving graph problems are fundamental to the field of algorithm design. Definition A graph G = (V, E) consists of

More information

Graphs. Motivations: o Networks o Social networks o Program testing o Job Assignment Examples: o Code graph:

Graphs. Motivations: o Networks o Social networks o Program testing o Job Assignment Examples: o Code graph: Graphs Motivations: o Networks o Social networks o Program testing o Job Assignment Examples: o Code graph: S1: int x S2: If x > 0 then S3: X = x + 2; Else S4: X =x -1; End if S5: While x > 1 do S6: Print

More information

Algorithms: Lecture 10. Chalmers University of Technology

Algorithms: Lecture 10. Chalmers University of Technology Algorithms: Lecture 10 Chalmers University of Technology Today s Topics Basic Definitions Path, Cycle, Tree, Connectivity, etc. Graph Traversal Depth First Search Breadth First Search Testing Bipartatiness

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 5 Exploring graphs Adam Smith 9/5/2008 A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne Puzzles Suppose an undirected graph G is connected.

More information

Graph Algorithms. Andreas Klappenecker

Graph Algorithms. Andreas Klappenecker Graph Algorithms Andreas Klappenecker Graphs A graph is a set of vertices that are pairwise connected by edges. We distinguish between directed and undirected graphs. Why are we interested in graphs? Graphs

More information

Algorithms Activity 6: Applications of BFS

Algorithms Activity 6: Applications of BFS Algorithms Activity 6: Applications of BFS Suppose we have a graph G = (V, E). A given graph could have zero edges, or it could have lots of edges, or anything in between. Let s think about the range of

More information

An undirected graph G can be represented by G = (V, E), where

An undirected graph G can be represented by G = (V, E), where CISC 4080 Computer Algorithms Spring, 2017 Note Spring/2017 1 What is graph? A graph is a set of vertices (or nodes) V, and a set of edges E between pairs of vertices. Graph represents some kind of binary

More information

Figure 1: A directed graph.

Figure 1: A directed graph. 1 Graphs A graph is a data structure that expresses relationships between objects. The objects are called nodes and the relationships are called edges. For example, social networks can be represented as

More information

(Refer Slide Time: 02.06)

(Refer Slide Time: 02.06) Data Structures and Algorithms Dr. Naveen Garg Department of Computer Science and Engineering Indian Institute of Technology, Delhi Lecture 27 Depth First Search (DFS) Today we are going to be talking

More information

CS 161 Fall 2015 Final Exam

CS 161 Fall 2015 Final Exam CS 161 Fall 2015 Final Exam Name: Student ID: 1: 2: 3: 4: 5: 6: 7: 8: Total: 1. (15 points) Let H = [24, 21, 18, 15, 12, 9, 6, 3] be an array of eight numbers, interpreted as a binary heap with the maximum

More information

Graphs & Digraphs Tuesday, November 06, 2007

Graphs & Digraphs Tuesday, November 06, 2007 Graphs & Digraphs Tuesday, November 06, 2007 10:34 PM 16.1 Directed Graphs (digraphs) like a tree but w/ no root node & no guarantee of paths between nodes consists of: nodes/vertices - a set of elements

More information

CS 206 Introduction to Computer Science II

CS 206 Introduction to Computer Science II CS 206 Introduction to Computer Science II 04 / 06 / 2018 Instructor: Michael Eckmann Today s Topics Questions? Comments? Graphs Definition Terminology two ways to represent edges in implementation traversals

More information

CS 220: Discrete Structures and their Applications. graphs zybooks chapter 10

CS 220: Discrete Structures and their Applications. graphs zybooks chapter 10 CS 220: Discrete Structures and their Applications graphs zybooks chapter 10 directed graphs A collection of vertices and directed edges What can this represent? undirected graphs A collection of vertices

More information

CS4800: Algorithms & Data Jonathan Ullman

CS4800: Algorithms & Data Jonathan Ullman CS4800: Algorithms & Data Jonathan Ullman Lecture 11: Graphs Graph Traversals: BFS Feb 16, 2018 What s Next What s Next Graph Algorithms: Graphs: Key Definitions, Properties, Representations Exploring

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Design and Analysis of Algorithms CS 5311 Lecture 19 Topological Sort Junzhou Huang, Ph.D. Department of Computer Science and ngineering CS5311 Design and Analysis of Algorithms 1 Topological Sort Want

More information

Graph: representation and traversal

Graph: representation and traversal Graph: representation and traversal CISC4080, Computer Algorithms CIS, Fordham Univ. Instructor: X. Zhang! Acknowledgement The set of slides have use materials from the following resources Slides for textbook

More information

Data Structures and Algorithms Key to Homework Assignment 8

Data Structures and Algorithms Key to Homework Assignment 8 Data Structures and Algorithms Key to Homework Assignment 8. Apply the strong components algorithm to the digraph that has the following adjacency matrix: 0 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

More information

Lecture 9 Graph Traversal

Lecture 9 Graph Traversal Lecture 9 Graph Traversal Euiseong Seo (euiseong@skku.edu) SWE00: Principles in Programming Spring 0 Euiseong Seo (euiseong@skku.edu) Need for Graphs One of unifying themes of computer science Closely

More information

COP 4531 Complexity & Analysis of Data Structures & Algorithms

COP 4531 Complexity & Analysis of Data Structures & Algorithms COP Complexity & Analysis of Data Structures & Algorithms Overview of Graphs Breadth irst Search, and Depth irst Search hanks to several people who contributed to these slides including Piyush Kumar and

More information

W4231: Analysis of Algorithms

W4231: Analysis of Algorithms W4231: Analysis of Algorithms 10/21/1999 Definitions for graphs Breadth First Search and Depth First Search Topological Sort. Graphs AgraphG is given by a set of vertices V and a set of edges E. Normally

More information

CSC Design and Analysis of Algorithms. Lecture 4 Brute Force, Exhaustive Search, Graph Traversal Algorithms. Brute-Force Approach

CSC Design and Analysis of Algorithms. Lecture 4 Brute Force, Exhaustive Search, Graph Traversal Algorithms. Brute-Force Approach CSC 8301- Design and Analysis of Algorithms Lecture 4 Brute Force, Exhaustive Search, Graph Traversal Algorithms Brute-Force Approach Brute force is a straightforward approach to solving a problem, usually

More information

GRAPHS Lecture 17 CS2110 Spring 2014

GRAPHS Lecture 17 CS2110 Spring 2014 GRAPHS Lecture 17 CS2110 Spring 2014 These are not Graphs 2...not the kind we mean, anyway These are Graphs 3 K 5 K 3,3 = Applications of Graphs 4 Communication networks The internet is a huge graph Routing

More information

Graphs. CSE 2320 Algorithms and Data Structures Alexandra Stefan and Vassilis Athitsos University of Texas at Arlington

Graphs. CSE 2320 Algorithms and Data Structures Alexandra Stefan and Vassilis Athitsos University of Texas at Arlington Graphs CSE 2320 Algorithms and Data Structures Alexandra Stefan and Vassilis Athitsos University of Texas at Arlington 1 Representation Adjacency matrix??adjacency lists?? Review Graphs (from CSE 2315)

More information

Algorithms and Theory of Computation. Lecture 3: Graph Algorithms

Algorithms and Theory of Computation. Lecture 3: Graph Algorithms Algorithms and Theory of Computation Lecture 3: Graph Algorithms Xiaohui Bei MAS 714 August 20, 2018 Nanyang Technological University MAS 714 August 20, 2018 1 / 18 Connectivity In a undirected graph G

More information

Practical Session No. 12 Graphs, BFS, DFS, Topological sort

Practical Session No. 12 Graphs, BFS, DFS, Topological sort Practical Session No. 12 Graphs, BFS, DFS, Topological sort Graphs and BFS Graph G = (V, E) Graph Representations (V G ) v1 v n V(G) = V - Set of all vertices in G E(G) = E - Set of all edges (u,v) in

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms CS5-5S-6 Graph Traversals BFS & DFS David Galles Department of Computer Science University of San Francisco 6-: Graph Traversals Visit every vertex, in an order defined by

More information

Introduction to Graphs. CS2110, Spring 2011 Cornell University

Introduction to Graphs. CS2110, Spring 2011 Cornell University Introduction to Graphs CS2110, Spring 2011 Cornell University A graph is a data structure for representing relationships. Each graph is a set of nodes connected by edges. Synonym Graph Hostile Slick Icy

More information

Strongly Connected Components

Strongly Connected Components Strongly Connected Components Let G = (V, E) be a directed graph Write if there is a path from to in G Write if and is an equivalence relation: implies and implies s equivalence classes are called the

More information

Graph Traversals BFS & DFS 1 CS S-16

Graph Traversals BFS & DFS 1 CS S-16 CS-8S- BFS & DFS -: Visit every vertex, in an order defined by the topololgy of the graph. Two major traversals: Depth First Search Breadth First Search -: Depth First Search Starting from a specific node

More information

Graphs: Connectivity. Jordi Cortadella and Jordi Petit Department of Computer Science

Graphs: Connectivity. Jordi Cortadella and Jordi Petit Department of Computer Science Graphs: Connectivity Jordi Cortadella and Jordi Petit Department of Computer Science A graph Source: Wikipedia The network graph formed by Wikipedia editors (edges) contributing to different Wikipedia

More information

Graph Representations and Traversal

Graph Representations and Traversal COMPSCI 330: Design and Analysis of Algorithms 02/08/2017-02/20/2017 Graph Representations and Traversal Lecturer: Debmalya Panigrahi Scribe: Tianqi Song, Fred Zhang, Tianyu Wang 1 Overview This lecture

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms CSE, Winter 8 Design and Analysis of Algorithms Lecture : Graphs, DFS (Undirected, Directed), DAGs Class URL: http://vlsicad.ucsd.edu/courses/cse-w8/ Graphs Internet topology Graphs Gene-gene interactions

More information

CS/COE 1501 cs.pitt.edu/~bill/1501/ Graphs

CS/COE 1501 cs.pitt.edu/~bill/1501/ Graphs CS/COE 1501 cs.pitt.edu/~bill/1501/ Graphs 5 3 2 4 1 0 2 Graphs A graph G = (V, E) Where V is a set of vertices E is a set of edges connecting vertex pairs Example: V = {0, 1, 2, 3, 4, 5} E = {(0, 1),

More information

Data Structure Lecture#23: Graphs (Chapter 11) U Kang Seoul National University

Data Structure Lecture#23: Graphs (Chapter 11) U Kang Seoul National University Data Structure Lecture#23: Graphs (Chapter 11) U Kang Seoul National University U Kang 1 In This Lecture Basic terms and definitions of graphs How to represent graphs Graph traversal methods U Kang 2 Graphs

More information

Graph Search. Algorithms & Models of Computation CS/ECE 374, Fall Lecture 15. Thursday, October 19, 2017

Graph Search. Algorithms & Models of Computation CS/ECE 374, Fall Lecture 15. Thursday, October 19, 2017 Algorithms & Models of Computation CS/ECE 374, Fall 2017 Graph Search Lecture 15 Thursday, October 19, 2017 Sariel Har-Peled (UIUC) CS374 1 Fall 2017 1 / 50 Part I Graph Basics Sariel Har-Peled (UIUC)

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI. Department of Computer Science and Engineering CS6301 PROGRAMMING DATA STRUCTURES II

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI. Department of Computer Science and Engineering CS6301 PROGRAMMING DATA STRUCTURES II DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI Department of Computer Science and Engineering CS6301 PROGRAMMING DATA STRUCTURES II Anna University 2 & 16 Mark Questions & Answers Year / Semester: II / III

More information

CS 2336 Discrete Mathematics

CS 2336 Discrete Mathematics CS 2336 Discrete Mathematics Lecture 15 Graphs: Planar Graphs 1 Outline What is a Planar Graph? Euler Planar Formula Platonic Solids Five Color Theorem Kuratowski s Theorem 2 What is a Planar Graph? Definition

More information

Chapter 22 Elementary Graph Algorithms

Chapter 22 Elementary Graph Algorithms Chapter 22 Elementary Graph Algorithms Graph Representations Graph G = (V,E) Directed Undirected Adjacency Lists Adjacency Matrix Graph Representations Adjacency List: Undirected Memory: Adjacency: Graph

More information

Introduction To Graphs and Networks. Fall 2013 Carola Wenk

Introduction To Graphs and Networks. Fall 2013 Carola Wenk Introduction To Graphs and Networks Fall 2013 Carola Wenk What is a Network? We have thought of a computer as a single entity, but they can also be connected to one another. Internet What are the advantages

More information

ECE 242. Data Structures

ECE 242. Data Structures ECE 242 Data Structures Lecture 28 Introduction to Graphs Overview Problem: How do we represent irregular connections between locations? Graphs Definition Directed and Undirected graph Simple path and

More information

Graph. Vertex. edge. Directed Graph. Undirected Graph

Graph. Vertex. edge. Directed Graph. Undirected Graph Module : Graphs Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS E-mail: natarajan.meghanathan@jsums.edu Graph Graph is a data structure that is a collection

More information

CS302 - Data Structures using C++

CS302 - Data Structures using C++ CS302 - Data Structures using C++ Topic: Graphs - Introduction Kostas Alexis Terminology In the context of our course, graphs represent relations among data items G = {V,E} A graph is a set of vertices

More information

Jessica Su (some parts copied from CLRS / last quarter s notes)

Jessica Su (some parts copied from CLRS / last quarter s notes) 1 Max flow Consider a directed graph G with positive edge weights c that define the capacity of each edge. We can identify two special nodes in G: the source node s and the sink node t. We want to find

More information

Graph Representation

Graph Representation Graph Representation Adjacency list representation of G = (V, E) An array of V lists, one for each vertex in V Each list Adj[u] contains all the vertices v such that there is an edge between u and v Adj[u]

More information

Elementary Graph Algorithms. Ref: Chapter 22 of the text by Cormen et al. Representing a graph:

Elementary Graph Algorithms. Ref: Chapter 22 of the text by Cormen et al. Representing a graph: Elementary Graph Algorithms Ref: Chapter 22 of the text by Cormen et al. Representing a graph: Graph G(V, E): V set of nodes (vertices); E set of edges. Notation: n = V and m = E. (Vertices are numbered

More information

22.1 Representations of graphs

22.1 Representations of graphs 22.1 Representations of graphs There are two standard ways to represent a (directed or undirected) graph G = (V,E), where V is the set of vertices (or nodes) and E is the set of edges (or links). Adjacency

More information

Lecture 5: Graphs & their Representation

Lecture 5: Graphs & their Representation Lecture 5: Graphs & their Representation Why Do We Need Graphs Graph Algorithms: Many problems can be formulated as problems on graphs and can be solved with graph algorithms. To learn those graph algorithms,

More information

Graphs and Algorithms

Graphs and Algorithms Graphs and Algorithms Graphs are a mathematical concept readily adapted into computer programming. Graphs are not just data structures, that is, they are not solutions to simple data storage problems.

More information

CS 310 Advanced Data Structures and Algorithms

CS 310 Advanced Data Structures and Algorithms CS 31 Advanced Data Structures and Algorithms Graphs July 18, 17 Tong Wang UMass Boston CS 31 July 18, 17 1 / 4 Graph Definitions Graph a mathematical construction that describes objects and relations

More information

CSE 101. Algorithm Design and Analysis Miles Jones and Russell Impagliazzo Miles Office 4208 CSE Building

CSE 101. Algorithm Design and Analysis Miles Jones and Russell Impagliazzo  Miles Office 4208 CSE Building CSE 101 Algorithm Design and Analysis Miles Jones and Russell Impagliazzo mej016@eng.ucsd.edu russell@cs.ucsd.edu Miles Office 4208 CSE Building Russell s Office: 4248 CSE Building procedure DFS(G) cc

More information

3.1 Basic Definitions and Applications

3.1 Basic Definitions and Applications Graphs hapter hapter Graphs. Basic efinitions and Applications Graph. G = (V, ) n V = nodes. n = edges between pairs of nodes. n aptures pairwise relationship between objects: Undirected graph represents

More information

Announcements. HW3 is graded. Average is 81%

Announcements. HW3 is graded. Average is 81% CSC263 Week 9 Announcements HW3 is graded. Average is 81% Announcements Problem Set 4 is due this Tuesday! Due Tuesday (Nov 17) Recap The Graph ADT definition and data structures BFS gives us single-source

More information

GRAPH THEORY: AN INTRODUCTION

GRAPH THEORY: AN INTRODUCTION GRAPH THEORY: AN INTRODUCTION BEGINNERS 3/4/2018 1. GRAPHS AND THEIR PROPERTIES A graph G consists of two sets: a set of vertices V, and a set of edges E. A vertex is simply a labeled point. An edge is

More information

CS 206 Introduction to Computer Science II

CS 206 Introduction to Computer Science II CS 206 Introduction to Computer Science II 04 / 13 / 2018 Instructor: Michael Eckmann Today s Topics Questions? Comments? Graphs Depth First Search (DFS) Shortest path Shortest weight path (Dijkstra's

More information

Section Summary. Introduction to Trees Rooted Trees Trees as Models Properties of Trees

Section Summary. Introduction to Trees Rooted Trees Trees as Models Properties of Trees Chapter 11 Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. Chapter Summary Introduction to Trees Applications

More information

CSE 373: Data Structures and Algorithms

CSE 373: Data Structures and Algorithms CSE 373: Data Structures and Algorithms Lecture 15: Graph Data Structures, Topological Sort, and Traversals (DFS, BFS) Instructor: Lilian de Greef Quarter: Summer 2017 Today: Announcements Graph data structures

More information

CS/COE

CS/COE CS/COE 151 www.cs.pitt.edu/~lipschultz/cs151/ Graphs 5 3 2 4 1 Graphs A graph G = (V, E) Where V is a set of vertices E is a set of edges connecting vertex pairs Example: V = {, 1, 2, 3, 4, 5} E = {(,

More information

Proposition 1. The edges of an even graph can be split (partitioned) into cycles, no two of which have an edge in common.

Proposition 1. The edges of an even graph can be split (partitioned) into cycles, no two of which have an edge in common. Math 3116 Dr. Franz Rothe June 5, 2012 08SUM\3116_2012t1.tex Name: Use the back pages for extra space 1 Solution of Test 1.1 Eulerian graphs Proposition 1. The edges of an even graph can be split (partitioned)

More information

Lecture 5: Graphs. Graphs! Euler Definitions: model. Fact! Euler Again!! Planar graphs. Euler Again!!!!

Lecture 5: Graphs. Graphs! Euler Definitions: model. Fact! Euler Again!! Planar graphs. Euler Again!!!! Lecture 5: Graphs. Graphs! Euler Definitions: model. Fact! Euler Again!! Planar graphs. Euler Again!!!! Konigsberg bridges problem. Can you make a tour visiting each bridge exactly once? Konigsberg bridges

More information

Introduction to Algorithms

Introduction to Algorithms 6.006- Introduction to Algorithms Lecture 13 Prof. Constantinos Daskalakis CLRS 22.4-22.5 Graphs G=(V,E) V a set of vertices Usually number denoted by n E VxV a set of edges (pairs of vertices) Usually

More information

Outline. Graphs. Divide and Conquer.

Outline. Graphs. Divide and Conquer. GRAPHS COMP 321 McGill University These slides are mainly compiled from the following resources. - Professor Jaehyun Park slides CS 97SI - Top-coder tutorials. - Programming Challenges books. Outline Graphs.

More information

Graphs. Data Structures and Algorithms CSE 373 SU 18 BEN JONES 1

Graphs. Data Structures and Algorithms CSE 373 SU 18 BEN JONES 1 Graphs Data Structures and Algorithms CSE 373 SU 18 BEN JONES 1 Warmup Discuss with your neighbors: Come up with as many kinds of relational data as you can (data that can be represented with a graph).

More information

Graph Search. CS/ECE 374: Algorithms & Models of Computation, Fall Lecture 15. October 18, 2018

Graph Search. CS/ECE 374: Algorithms & Models of Computation, Fall Lecture 15. October 18, 2018 CS/ECE 374: Algorithms & Models of Computation, Fall 2018 Graph Search Lecture 15 October 18, 2018 Chandra Chekuri (UIUC) CS/ECE 374 1 Fall 2018 1 / 45 Part I Graph Basics Chandra Chekuri (UIUC) CS/ECE

More information