k-way Hypergraph Partitioning via n-level Recursive Bisection

Size: px
Start display at page:

Download "k-way Hypergraph Partitioning via n-level Recursive Bisection"

Transcription

1 k-way Hypergraph Partitioning via n-level Recursive Bisection Sebastian Schlag, Vitali Henne, Tobias Heuer, Henning Meyerhenke Peter Sanders, Christian Schulz January 10th, ALENEX 16 INSTITUTE OF THEORETICAL INFORMATICS ALGORITHMICS GROUP KIT University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

2 Hypergraphs Generalization of graphs hyperedges connect 2 nodes Graphs dyadic (2-ary) relationships Hypergraphs (d-ary) relationships Hypergraph H = (V, E, c, ω) Vertex set V = {1,..., n} Edge set E P (V ) \ Node weights c : V R 1 e 1 e 2 v 1 v 2 v 3 e 3 Edge weights ω : E R 1 v 6 e 4 v 5 v 6 v 7 e 5 v 4 v 7 1

3 Hypergraphs Generalization of graphs hyperedges connect 2 nodes Graphs dyadic (2-ary) relationships Hypergraphs (d-ary) relationships Hypergraph H = (V, E, c, ω) Vertex set V = {1,..., n} Edge set E P (V ) \ Node weights c : V R 1 pin e 1 e 2 v 1 v 2 v 3 e 3 Edge weights ω : E R 1 v 6 e 4 v 5 v 6 v 7 e 5 v 4 v 7 1

4 Hypergraph Partitioning Problem Partition hypergraph H = (V, E, c, ω) into k disjoint blocks Π = {V 1,..., V k } such that: blocks V i are roughly equal-sized: c(v i ) (1 + ε) c(v ) total weight of cut hyperedges is minimized k V 1 V 2 v 7 v 6 2

5 Hypergraph Partitioning Problem Partition hypergraph H = (V, E, c, ω) into k disjoint blocks Π = {V 1,..., V k } such that: blocks V i are roughly equal-sized: c(v i ) (1 + ε) c(v ) total weight of cut hyperedges is minimized k imbalance parameter V 1 V 2 v 7 v 6 2

6 Hypergraph Partitioning Problem Partition hypergraph H = (V, E, c, ω) into k disjoint blocks Π = {V 1,..., V k } such that: blocks V i are roughly equal-sized: c(v i ) (1 + ε) c(v ) total weight of cut hyperedges is minimized k imbalance parameter V 1 V 2 v 7 v 6 2

7 Hypergraph Partitioning Problem Partition hypergraph H = (V, E, c, ω) into k disjoint blocks Π = {V 1,..., V k } such that: blocks V i are roughly equal-sized: c(v i ) (1 + ε) c(v ) total weight of cut hyperedges is minimized k imbalance parameter hyperedge connecting multiple blocks V 1 V 2 v 7 v 6 2

8 Applications VLSI Design Application Domain Scientific Computing Hypergraph Model facilitate floorplanning & placement Goal minimize communication 3

9 Multilevel Paradigm input hypergraph Coarsening match / contract cluster 4

10 Multilevel Paradigm input hypergraph Coarsening match / contract cluster initial partitioning 4

11 Multilevel Paradigm input hypergraph output partition Coarsening match / contract cluster local search uncontract Uncoarsening 4 initial partitioning

12 Taxonomy of Hypergraph Partitioning Tools Recursive Bisection MLPart Direct k-way 1998 PaToH hmetis-r VLSI hmetis-k 1999 Sparse Matrices Mondriaan 2005 Zoltan parallel 2006 Parkway 2008 UMPa multi-objective

13 Taxonomy of Hypergraph Partitioning Tools Recursive Bisection MLPart Direct k-way 1998 PaToH hmetis-r VLSI hmetis-k 1999 Sparse Matrices Mondriaan 2005 Zoltan parallel 2006 Parkway 2008 UMPa multi-objective 2013 KaHyPar n-level

14 Why Yet Another Multilevel Algorithm? input hypergraph output partition match / cluster local search contract uncontract 6 initial partitioning

15 Why Yet Another Multilevel Algorithm? match / cluster Tradeoff: input hypergraph # levels : + quality running time output partition local search contract uncontract 6 initial partitioning

16 Why Yet Another Multilevel Algorithm? input hypergraph # levels : + quality running time match / cluster Tradeoff: output partition Our Contribution: evade tradeoff n levels local search contract combine high quality with good performance uncontract initial partitioning 6

17 Why Yet Another Multilevel Algorithm? input hypergraph # levels : + quality running time match / cluster Tradeoff: output partition Our Contribution: evade tradeoff n levels local search contract combine high quality with good performance uncontract Motivation: KaSPar n-level graph partitioning initial partitioning 6

18 Coarsening 7

19 n-level Coarsening Phase contract only a single pair of vertices at each level 8

20 n-level Coarsening Phase contract only a single pair of vertices at each level How to determine that pair? compute rating r for all pairs of adjacent hypernodes choose pair (u, v) with highest rating (priority queue) update ratings for neighbors of contracted pair 8

21 n-level Coarsening Phase contract only a single pair of vertices at each level How to determine that pair? compute rating r for all pairs of adjacent hypernodes choose pair (u, v) with highest rating (priority queue) update ratings for neighbors of contracted pair r(u, v) := 1 c(v) c(u) hyperedge e containing u,v ω(e) e 1 8

22 n-level Coarsening Phase contract only a single pair of vertices at each level How to determine that pair? compute rating r for all pairs of adjacent hypernodes choose pair (u, v) with highest rating (priority queue) update ratings for neighbors of contracted pair r(u, v) := 1 c(v) c(u) hyperedge e containing u,v ω(e) e 1 large number... 8

23 n-level Coarsening Phase contract only a single pair of vertices at each level How to determine that pair? compute rating r for all pairs of adjacent hypernodes choose pair (u, v) with highest rating (priority queue) update ratings for neighbors of contracted pair r(u, v) := 1 c(v) c(u) hyperedge e containing u,v of heavy hyperedges... ω(e) e 1 large number... 8

24 n-level Coarsening Phase contract only a single pair of vertices at each level How to determine that pair? compute rating r for all pairs of adjacent hypernodes choose pair (u, v) with highest rating (priority queue) update ratings for neighbors of contracted pair r(u, v) := 1 c(v) c(u) large number... hyperedge e containing u,v of heavy hyperedges... ω(e) e 1... with small size 8

25 n-level Coarsening Phase contract only a single pair of vertices at each level How to determine that pair? compute rating r for all pairs of adjacent hypernodes choose pair (u, v) with highest rating (priority queue) update ratings for neighbors of contracted pair prefer light hypernodes r(u, v) := 1 c(v) c(u) large number... hyperedge e containing u,v of heavy hyperedges... ω(e) e 1... with small size 8

26 n-level Coarsening Phase contract only a single pair of vertices at each level How to determine that pair? compute rating r for all pairs of adjacent hypernodes choose pair (u, v) with highest rating (priority queue) update ratings for neighbors of contracted pair repeat until: t hypernodes remain no valid pair remains (size constraint on hypernodes) 8

27 n-level Coarsening Phase contract only a single pair of vertices at each level How to determine that pair? compute rating r for all pairs of adjacent hypernodes choose pair (u, v) with highest rating (priority queue) update ratings for neighbors of contracted pair repeat until: t hypernodes remain no valid pair remains (size constraint on hypernodes) update can be expensive! 8

28 n-level Coarsening Phase Problem: # neighbors potentially large high-degree hypernodes large hyperedges,,, update all pins of all hyperedges incident to contracted pair 9

29 n-level Coarsening Phase Problem: # neighbors potentially large high-degree hypernodes large hyperedges,,, update all pins of all hyperedges incident to contracted pair Solution: lazy updates invalidate neighboring hypernodes re-calculate rating on demand 9

30 Initial Partitioning 10

31 Initial Partitioning not affected by n-level paradigm use portfolio of algorithms diversification random partitioning breadth-first search greedy hypergraph growing size-constrained label propagation try all algorithms multiple times select partition with best cut & lowest imbalance as initial partition initial partition 11

32 Local Search 12

33 Localized Local Search Idea traditional multilevel algorithms uncontract one level local search around complete border n-level localized local search [KaSPar] uncontract a single pair of nodes local search around 2 nodes fine-grained optimization limit search to constant # of moves per level otherwise V 2 local search steps in total stop pass after x fruitless moves 13

34 Localized FM Local Search Outline hypernodes unmarked, active, marked start around uncontracted vertex pair 14

35 Localized FM Local Search Outline hypernodes unmarked, active, marked start around uncontracted vertex pair compute gain for{ move to other block: +ω(e) if # pins in source = 1 g(v) = ω(e) if # pins in target = 0 hyperedge e containing v border hypernodes become active 14

36 Localized FM Local Search Outline hypernodes unmarked, active, marked start around uncontracted vertex pair compute gain for{ move to other block: +ω(e) if # pins in source = 1 g(v) = ω(e) if # pins in target = 0 hyperedge e containing v border hypernodes become active move highest-gain node to opposite block node becomes marked 14

37 Localized FM Local Search Outline hypernodes unmarked, active, marked start around uncontracted vertex pair compute gain for{ move to other block: +ω(e) if # pins in source = 1 g(v) = ω(e) if # pins in target = 0 hyperedge e containing v border hypernodes become active move highest-gain node to opposite block node becomes marked unmarked neighbors active (if border node) active neighbors update gain 14

38 Localized FM Local Search Outline hypernodes unmarked, active, marked start around uncontracted vertex pair compute gain for{ move to other block: +ω(e) if # pins in source = 1 g(v) = ω(e) if # pins in target = 0 hyperedge e containing v border hypernodes become active move highest-gain node to opposite block node becomes marked unmarked neighbors active (if border node) active neighbors update gain update & activation can be expensive! 14

39 Localized FM Local Search Engineering Problem: # neighbors potentially large high-degree hypernodes large hyperedges,,, large number of activations & updates on each level 15

40 Localized FM Local Search Engineering Problem: # neighbors potentially large high-degree hypernodes large hyperedges,,, large number of activations & updates on each level Known solutions for updates: perform δ-gain updates [Papa, Markov] exclude locked hyperedges from gain update [Krishnamurthy] will remain cut 15

41 Localized FM Local Search Engineering Problem: # neighbors potentially large high-degree hypernodes large hyperedges,,, large number of activations & updates on each level Known solutions for updates: perform δ-gain updates [Papa, Markov] exclude locked hyperedges from gain update [Krishnamurthy] will remain cut New solution for activations: cache gain values compute gain g(v) at most once along the n-level hierarchy 15

42 Experiments Benchmark Setup System: 1 core of 2 Intel Xeon 2.6 Ghz, 64 GB RAM # Hypergraphs: [publicly available] -UF Sparse Matrix Collection 192 -SAT Competition 2014 Application Track 100 -ISPD98 VLSI Circuit Benchmark Suite 18 k {2, 4, 8, 16, 32, 64, 128} imbalance: ε = 3% 250 min time limit 2170 instances Comparison with: hmetis-r & hmetis-k PaToH-Default & PaToH-Quality 16

43 Experimental Results Partitioning Quality 1 Algorithm Best Algorithm 1 Algorithm 2 Algorithm 3 Example # Instances

44 Experimental Results Partitioning Quality 1 Algorithm Best Algorithm 1 Algorithm 2 Algorithm 3 Example # Instances

45 Experimental Results Partitioning Quality 1 Algorithm Best Algorithm 1 Algorithm 2 Algorithm 3 Example # Instances

46 Experimental Results Partitioning Quality 1 Algorithm Best Algorithm 1 Algorithm 2 Algorithm 3 Example # Instances

47 Experimental Results Partitioning Quality 1 Algorithm Best Algorithm 1 Algorithm 2 Algorithm 3 Example # Instances

48 Experimental Results Partitioning Quality All Instances Algorithm Best Algorithm hmetis-k hmetis-r KaHyPar PaToH-D PaToH-Q # Instances

49 Experimental Results Partitioning Quality 1 Algorithm Best Algorithm hmetis-k hmetis-r KaHyPar PaToH-D PaToH-Q Sparse Matrices # Instances

50 Experimental Results Partitioning Quality 0.20 ISPD98 VLSI 1 Algorithm Best Algorithm hmetis-k hmetis-r KaHyPar PaToH-D PaToH-Q # Instances

51 Experimental Results Smaller Imbalance 1 Algorithm Best Subset of all Instances ( ε = 1%) Algorithm hmetis-k hmetis-r KaHyPar PaToH-D PaToH-Q # Instances

52 Experimental Results Larger Imbalance 1 Algorithm Best Subset of all Instances ( ε = 10%) Algorithm hmetis-k hmetis-r KaHyPar PaToH-D PaToH-Q # Instances

53 Experimental Results Running Time All Instances (ε = 3%) T (Best) T (Algorithm) Algorithm hmetis-k hmetis-r KaHyPar PaToH-D PaToH-Q # Instances

54 Future Work improve running time: ignore large hyperedges [PaToH] stop local search if improvement becomes unlikely [KaSPar] aaa improve quality: introduce V-cycles evolutionary algorithm [KaHIP] aaa improve balancing: optimize locally - rebalance globally 24

55 Conclusion & Discussion evade running time / quality tradeoff of multilevel algorithms n-level hierarchy engineered coarsening phase portfolio-based approach to initial partitioning highly tuned local search algorithm All Instances Algorithm Best Algorithm hmetis-k hmetis-r KaHyPar PaToH-D PaToH-Q # Instances

56 Coffee Break! 26

57 Benchmark Set Details 10 7 Hypernodes 10 7 Hyperedges 10 8 Pins SPM SAT ISPD SPM SAT ISPD SPM SAT ISPD 27

58 Benchmark Results Partitioning Quality 1-(Best/Algorithm) Algorithm hmetis-k hmetis-r KaHyPar PaToH-D PaToH-Q SAT # Instances

Combining Recursive Bisection and k-way Local Search for Hypergraph Partitioning Charel Mercatoris

Combining Recursive Bisection and k-way Local Search for Hypergraph Partitioning Charel Mercatoris Bachelor Thesis Combining Recursive Bisection and k-way Local Search for Hypergraph Partitioning Charel Mercatoris Date: 8. November 2018 Supervisors: Prof. Dr. rer. nat. Peter Sanders Sebastian Schlag,

More information

Parallel Graph Partitioning for Complex Networks

Parallel Graph Partitioning for Complex Networks Parallel Graph Partitioning for Complex Networks Henning Meyerhenke, Peter Sanders, Christian Schulz High-performance Graph Algorithms and Applications in Computational Science Dagstuhl 1 Christian Schulz:

More information

Engineering Multilevel Graph Partitioning Algorithms

Engineering Multilevel Graph Partitioning Algorithms Engineering Multilevel Graph Partitioning Algorithms Peter Sanders, Christian Schulz Institute for Theoretical Computer Science, Algorithmics II 1 Nov. 10, 2011 Peter Sanders, Christian Schulz Institute

More information

Graph and Hypergraph Partitioning for Parallel Computing

Graph and Hypergraph Partitioning for Parallel Computing Graph and Hypergraph Partitioning for Parallel Computing Edmond Chow School of Computational Science and Engineering Georgia Institute of Technology June 29, 2016 Graph and hypergraph partitioning References:

More information

Engineering Multilevel Graph Partitioning Algorithms

Engineering Multilevel Graph Partitioning Algorithms Engineering Multilevel Graph Partitioning Algorithms Manuel Holtgrewe, Vitaly Osipov, Peter Sanders, Christian Schulz Institute for Theoretical Computer Science, Algorithmics II 1 Mar. 3, 2011 Manuel Holtgrewe,

More information

Improvements in Dynamic Partitioning. Aman Arora Snehal Chitnavis

Improvements in Dynamic Partitioning. Aman Arora Snehal Chitnavis Improvements in Dynamic Partitioning Aman Arora Snehal Chitnavis Introduction Partitioning - Decomposition & Assignment Break up computation into maximum number of small concurrent computations that can

More information

Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering

Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering George Karypis and Vipin Kumar Brian Shi CSci 8314 03/09/2017 Outline Introduction Graph Partitioning Problem Multilevel

More information

arxiv: v2 [cs.ds] 3 Feb 2018

arxiv: v2 [cs.ds] 3 Feb 2018 Memetic Multilevel Hypergraph Partitioning Robin Andre, Sebastian Schlag and Christian Schulz Karlsruhe Institute of Technology, Karlsruhe, Germany robin.andre@ira.uka.de, {sebastian.schlag,christian.schulz}@kit.edu

More information

Multilevel Algorithms for Multi-Constraint Hypergraph Partitioning

Multilevel Algorithms for Multi-Constraint Hypergraph Partitioning Multilevel Algorithms for Multi-Constraint Hypergraph Partitioning George Karypis University of Minnesota, Department of Computer Science / Army HPC Research Center Minneapolis, MN 55455 Technical Report

More information

Multi-Objective Hypergraph Partitioning Algorithms for Cut and Maximum Subdomain Degree Minimization

Multi-Objective Hypergraph Partitioning Algorithms for Cut and Maximum Subdomain Degree Minimization IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL XX, NO. XX, 2005 1 Multi-Objective Hypergraph Partitioning Algorithms for Cut and Maximum Subdomain Degree Minimization Navaratnasothie Selvakkumaran and

More information

Parallel Greedy Matching Algorithms

Parallel Greedy Matching Algorithms Parallel Greedy Matching Algorithms Fredrik Manne Department of Informatics University of Bergen, Norway Rob Bisseling, University of Utrecht Md. Mostofa Patwary, University of Bergen 1 Outline Background

More information

Problem Definition. Clustering nonlinearly separable data:

Problem Definition. Clustering nonlinearly separable data: Outlines Weighted Graph Cuts without Eigenvectors: A Multilevel Approach (PAMI 2007) User-Guided Large Attributed Graph Clustering with Multiple Sparse Annotations (PAKDD 2016) Problem Definition Clustering

More information

Optimizing Parallel Sparse Matrix-Vector Multiplication by Corner Partitioning

Optimizing Parallel Sparse Matrix-Vector Multiplication by Corner Partitioning Optimizing Parallel Sparse Matrix-Vector Multiplication by Corner Partitioning Michael M. Wolf 1,2, Erik G. Boman 2, and Bruce A. Hendrickson 3 1 Dept. of Computer Science, University of Illinois at Urbana-Champaign,

More information

PuLP: Scalable Multi-Objective Multi-Constraint Partitioning for Small-World Networks

PuLP: Scalable Multi-Objective Multi-Constraint Partitioning for Small-World Networks PuLP: Scalable Multi-Objective Multi-Constraint Partitioning for Small-World Networks George M. Slota 1,2 Kamesh Madduri 2 Sivasankaran Rajamanickam 1 1 Sandia National Laboratories, 2 The Pennsylvania

More information

Lesson 2 7 Graph Partitioning

Lesson 2 7 Graph Partitioning Lesson 2 7 Graph Partitioning The Graph Partitioning Problem Look at the problem from a different angle: Let s multiply a sparse matrix A by a vector X. Recall the duality between matrices and graphs:

More information

Parallel Graph Partitioning for Complex Networks

Parallel Graph Partitioning for Complex Networks Parallel Graph Partitioning for Complex Networks Henning Meyerhenke Karlsruhe Institute of Technology (KIT) Karlsruhe, Germany meyerhenke@kit.edu Peter Sanders Karlsruhe Institute of Technology (KIT) Karlsruhe,

More information

Think Locally, Act Globally: Highly Balanced Graph Partitioning

Think Locally, Act Globally: Highly Balanced Graph Partitioning Think Locally, Act Globally: Highly Balanced Graph Partitioning Peter Sanders, Christian Schulz Karlsruhe Institute of Technology, Karlsruhe, Germany {sanders, christian.schulz}@kit.edu Abstract. We present

More information

Multi-Threaded Graph Partitioning

Multi-Threaded Graph Partitioning Multi-Threaded Graph Partitioning Dominique LaSalle and George Karypis Department of Computer Science & Engineering University of Minnesota Minneapolis, Minnesota 5555, USA {lasalle,karypis}@cs.umn.edu

More information

Minimum Spanning Trees My T. UF

Minimum Spanning Trees My T. UF Introduction to Algorithms Minimum Spanning Trees @ UF Problem Find a low cost network connecting a set of locations Any pair of locations are connected There is no cycle Some applications: Communication

More information

Shape Optimizing Load Balancing for Parallel Adaptive Numerical Simulations Using MPI

Shape Optimizing Load Balancing for Parallel Adaptive Numerical Simulations Using MPI Parallel Adaptive Institute of Theoretical Informatics Karlsruhe Institute of Technology (KIT) 10th DIMACS Challenge Workshop, Feb 13-14, 2012, Atlanta 1 Load Balancing by Repartitioning Application: Large

More information

Seminar on. A Coarse-Grain Parallel Formulation of Multilevel k-way Graph Partitioning Algorithm

Seminar on. A Coarse-Grain Parallel Formulation of Multilevel k-way Graph Partitioning Algorithm Seminar on A Coarse-Grain Parallel Formulation of Multilevel k-way Graph Partitioning Algorithm Mohammad Iftakher Uddin & Mohammad Mahfuzur Rahman Matrikel Nr: 9003357 Matrikel Nr : 9003358 Masters of

More information

Hypergraph-Partitioning Based Decomposition for Parallel Sparse-Matrix Vector Multiplication

Hypergraph-Partitioning Based Decomposition for Parallel Sparse-Matrix Vector Multiplication Hypergraph-Partitioning Based Decomposition for Parallel Sparse-Matrix Vector Multiplication Ümit V. Çatalyürek and Cevdet Aykanat, Member, IEEE Computer Engineering Department, Bilkent University 06 Bilkent,

More information

Can Recursive Bisection Alone Produce Routable Placements?

Can Recursive Bisection Alone Produce Routable Placements? Supported by Cadence Can Recursive Bisection Alone Produce Routable Placements? Andrew E. Caldwell Andrew B. Kahng Igor L. Markov http://vlsicad.cs.ucla.edu Outline l Routability and the placement context

More information

Engineering State-of-the-Art Graph Partitioning

Engineering State-of-the-Art Graph Partitioning Engineering State-of-the-Art Graph Partitioning Libraries @KIT Vitaly Osipov, Peter Sanders, Christian Schulz, Manuel Holtgrewe Karlsruhe Institute of Technology, Karlsruhe, Germany Email: {osipov, sanders,

More information

Multilevel k-way Hypergraph Partitioning

Multilevel k-way Hypergraph Partitioning _ Multilevel k-way Hypergraph Partitioning George Karypis and Vipin Kumar fkarypis, kumarg@cs.umn.edu Department of Computer Science & Engineering, University of Minnesota, Minneapolis, MN 55455 Abstract

More information

Par$$oning Sparse Matrices

Par$$oning Sparse Matrices SIAM CSE 09 Minisymposium on Parallel Sparse Matrix Computa:ons and Enabling Algorithms March 2, 2009, Miami, FL Par$$oning Sparse Matrices Ümit V. Çatalyürek Associate Professor Biomedical Informa5cs

More information

Multi-Objective Hypergraph Partitioning Algorithms for Cut and Maximum Subdomain Degree Minimization

Multi-Objective Hypergraph Partitioning Algorithms for Cut and Maximum Subdomain Degree Minimization Multi-Objective Hypergraph Partitioning Algorithms for Cut and Maximum Subdomain Degree Minimization Navaratnasothie Selvakkumaran and George Karypis Department of Computer Science / Army HPC Research

More information

Parkway A Parallel Hypergraph Partitioning Tool

Parkway A Parallel Hypergraph Partitioning Tool Parkway A Parallel Hypergraph Partitioning Tool Version 2.0 Aleksandar Trifunovic and William Knottenbelt Department of Computing, Imperial College, London Email: {at701,wjk}@doc.ic.ac.uk January 11, 2005

More information

CHAPTER 6 DEVELOPMENT OF PARTICLE SWARM OPTIMIZATION BASED ALGORITHM FOR GRAPH PARTITIONING

CHAPTER 6 DEVELOPMENT OF PARTICLE SWARM OPTIMIZATION BASED ALGORITHM FOR GRAPH PARTITIONING CHAPTER 6 DEVELOPMENT OF PARTICLE SWARM OPTIMIZATION BASED ALGORITHM FOR GRAPH PARTITIONING 6.1 Introduction From the review, it is studied that the min cut k partitioning problem is a fundamental partitioning

More information

Multi-Resource Aware Partitioning Algorithms for FPGAs with Heterogeneous Resources

Multi-Resource Aware Partitioning Algorithms for FPGAs with Heterogeneous Resources Multi-Resource Aware Partitioning Algorithms for FPGAs with Heterogeneous Resources Navaratnasothie Selvakkumaran Abhishek Ranjan HierDesign Inc Salil Raje HierDesign Inc George Karypis Department of Computer

More information

KaHIP v2.00 Karlsruhe High Quality Partitioning User Guide

KaHIP v2.00 Karlsruhe High Quality Partitioning User Guide KaHIP v2.00 Karlsruhe High Quality Partitioning User Guide Peter Sanders and Christian Schulz Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany Email: {sanders, christian.schulz}@kit.edu Abstract

More information

Penalized Graph Partitioning for Static and Dynamic Load Balancing

Penalized Graph Partitioning for Static and Dynamic Load Balancing Penalized Graph Partitioning for Static and Dynamic Load Balancing Tim Kiefer, Dirk Habich, Wolfgang Lehner Euro-Par 06, Grenoble, France, 06-08-5 Task Allocation Challenge Application (Workload) = Set

More information

Lecture 19: Graph Partitioning

Lecture 19: Graph Partitioning Lecture 19: Graph Partitioning David Bindel 3 Nov 2011 Logistics Please finish your project 2. Please start your project 3. Graph partitioning Given: Graph G = (V, E) Possibly weights (W V, W E ). Possibly

More information

PULP: Fast and Simple Complex Network Partitioning

PULP: Fast and Simple Complex Network Partitioning PULP: Fast and Simple Complex Network Partitioning George Slota #,* Kamesh Madduri # Siva Rajamanickam * # The Pennsylvania State University *Sandia National Laboratories Dagstuhl Seminar 14461 November

More information

Genetic Algorithm for Circuit Partitioning

Genetic Algorithm for Circuit Partitioning Genetic Algorithm for Circuit Partitioning ZOLTAN BARUCH, OCTAVIAN CREŢ, KALMAN PUSZTAI Computer Science Department, Technical University of Cluj-Napoca, 26, Bariţiu St., 3400 Cluj-Napoca, Romania {Zoltan.Baruch,

More information

Evolutionary k-way Node Separators

Evolutionary k-way Node Separators Bachelor thesis Evolutionary k-way Node Separators Robert Williger Date: 6. November 2016 Supervisors: Prof. Dr. Peter Sanders Dr. Christian Schulz Dr. Darren Strash Institute of Theoretical Informatics,

More information

COP 4531 Complexity & Analysis of Data Structures & Algorithms

COP 4531 Complexity & Analysis of Data Structures & Algorithms COP 4531 Complexity & Analysis of Data Structures & Algorithms Lecture 9 Minimum Spanning Trees Thanks to the text authors who contributed to these slides Why Minimum Spanning Trees (MST)? Example 1 A

More information

UNIVERSITY OF CALGARY. Force-Directed Partitioning Technique for 3D IC. Aysa Fakheri Tabrizi A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

UNIVERSITY OF CALGARY. Force-Directed Partitioning Technique for 3D IC. Aysa Fakheri Tabrizi A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES UNIVERSITY OF CALGARY Force-Directed Partitioning Technique for 3D IC by Aysa Fakheri Tabrizi A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

More information

A Semi-Persistent Clustering Technique for VLSI Circuit Placement

A Semi-Persistent Clustering Technique for VLSI Circuit Placement A Semi-Persistent Clustering Technique for VLSI Circuit Placement Charles Alpert, Andrew Kahng, Gi-Joon Nam, Sherief Reda and Paul Villarrubia IBM Corp. 114 Burnet Road, Austin, Texas, 78758 Department

More information

Hypergraph Sparsifica/on and Its Applica/on to Par//oning

Hypergraph Sparsifica/on and Its Applica/on to Par//oning Hypergraph Sparsifica/on and Its Applica/on to Par//oning Mehmet Deveci 1,3, Kamer Kaya 1, Ümit V. Çatalyürek 1,2 1 Dept. of Biomedical Informa/cs, The Ohio State University 2 Dept. of Electrical & Computer

More information

Multilevel Graph Partitioning

Multilevel Graph Partitioning Multilevel Graph Partitioning George Karypis and Vipin Kumar Adapted from Jmes Demmel s slide (UC-Berkely 2009) and Wasim Mohiuddin (2011) Cover image from: Wang, Wanyi, et al. "Polygonal Clustering Analysis

More information

Technical Report. OSUBMI-TR-2009-n02/ BU-CE Hypergraph Partitioning-Based Fill-Reducing Ordering

Technical Report. OSUBMI-TR-2009-n02/ BU-CE Hypergraph Partitioning-Based Fill-Reducing Ordering Technical Report OSUBMI-TR-2009-n02/ BU-CE-0904 Hypergraph Partitioning-Based Fill-Reducing Ordering Ümit V. Çatalyürek, Cevdet Aykanat and Enver Kayaaslan April 2009 The Ohio State University Department

More information

VLSI Physical Design: From Graph Partitioning to Timing Closure

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter Netlist and System Partitioning Original Authors: Andrew B. Kahng, Jens, Igor L. Markov, Jin Hu Chapter Netlist and System Partitioning. Introduction. Terminology. Optimization Goals. Partitioning

More information

Study and Implementation of CHAMELEON algorithm for Gene Clustering

Study and Implementation of CHAMELEON algorithm for Gene Clustering [1] Study and Implementation of CHAMELEON algorithm for Gene Clustering 1. Motivation Saurav Sahay The vast amount of gathered genomic data from Microarray and other experiments makes it extremely difficult

More information

KaHIP v0.73 Karlsruhe High Quality Partitioning User Guide

KaHIP v0.73 Karlsruhe High Quality Partitioning User Guide KaHIP v0.73 Karlsruhe High Quality Partitioning User Guide Peter Sanders and Christian Schulz Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany Email: {sanders, christian.schulz}@kit.edu Abstract

More information

Partitioning Complex Networks via Size-constrained Clustering

Partitioning Complex Networks via Size-constrained Clustering Partitioning Complex Networks via Size-constrained Clustering Henning Meyerhenke, Peter Sanders and Christian Schulz Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany Email: {meyerhenke, sanders,

More information

Local Unidirectional Bias for Smooth Cutsize-Delay Tradeoff in Performance-Driven Bipartitioning

Local Unidirectional Bias for Smooth Cutsize-Delay Tradeoff in Performance-Driven Bipartitioning Local Unidirectional Bias for Smooth Cutsize-Delay Tradeoff in Performance-Driven Bipartitioning Andrew B. Kahng CSE and ECE Departments UCSD La Jolla, CA 92093 abk@ucsd.edu Xu Xu CSE Department UCSD La

More information

New Challenges In Dynamic Load Balancing

New Challenges In Dynamic Load Balancing New Challenges In Dynamic Load Balancing Karen D. Devine, et al. Presentation by Nam Ma & J. Anthony Toghia What is load balancing? Assignment of work to processors Goal: maximize parallel performance

More information

Parallel Algorithms for Hypergraph Partitioning

Parallel Algorithms for Hypergraph Partitioning University of London Imperial College of Science, Technology and Medicine Department of Computing Parallel Algorithms for Hypergraph Partitioning Aleksandar Trifunović Submitted in part fulfilment of the

More information

Decreasing a key FIB-HEAP-DECREASE-KEY(,, ) 3.. NIL. 2. error new key is greater than current key 6. CASCADING-CUT(, )

Decreasing a key FIB-HEAP-DECREASE-KEY(,, ) 3.. NIL. 2. error new key is greater than current key 6. CASCADING-CUT(, ) Decreasing a key FIB-HEAP-DECREASE-KEY(,, ) 1. if >. 2. error new key is greater than current key 3.. 4.. 5. if NIL and.

More information

Graph Partitioning for Scalable Distributed Graph Computations

Graph Partitioning for Scalable Distributed Graph Computations Graph Partitioning for Scalable Distributed Graph Computations Aydın Buluç ABuluc@lbl.gov Kamesh Madduri madduri@cse.psu.edu 10 th DIMACS Implementation Challenge, Graph Partitioning and Graph Clustering

More information

Efficient Programming of Nanowire-based Sublithographic PLAs: A Multilevel Algorithm for Partitioning Graphs

Efficient Programming of Nanowire-based Sublithographic PLAs: A Multilevel Algorithm for Partitioning Graphs Efficient Programming of Nanowire-based Sublithographic PLAs: A Multilevel Algorithm for Partitioning Graphs Vivek Rajkumar (University of Washington CSE) Contact: California Institute

More information

Engineering Multilevel Graph Partitioning Algorithms

Engineering Multilevel Graph Partitioning Algorithms Engineering Multilevel Graph Partitioning Algorithms Peter Sanders, Christian Schulz Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany {sanders,christian.schulz}@kit.edu Abstract. We present

More information

High-Quality Shared-Memory Graph Partitioning

High-Quality Shared-Memory Graph Partitioning High-Quality Shared-Memory Graph Partitioning Yaroslav Akhremtsev Karlsruhe Institute of Technology (KIT) yaroslav.akhremtsev@kit.edu Peter Sanders Karlsruhe Institute of Technology (KIT) peter.sanders@kit.edu

More information

Efficient Nested Dissection for Multicore Architectures

Efficient Nested Dissection for Multicore Architectures Efficient Nested Dissection for Multicore Architectures Dominique Lasalle and George Karypis Department of Computer Science & Engineering, University of Minnesota, Minneapolis, MN 55455, USA {lasalle,karypis}@cs.umn.edu

More information

Hypergraph-Partitioning-Based Decomposition for Parallel Sparse-Matrix Vector Multiplication

Hypergraph-Partitioning-Based Decomposition for Parallel Sparse-Matrix Vector Multiplication IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 7, JULY 1999 673 Hypergraph-Partitioning-Based Decomposition for Parallel Sparse-Matrix Vector Multiplication UÈ mitv.cëatalyuè rek and

More information

arxiv: v1 [cs.ne] 6 Feb 2017

arxiv: v1 [cs.ne] 6 Feb 2017 Distributed Evolutionary k-way Node Separators arxiv:1702.01692v1 [cs.ne] 6 Feb 2017 ABSTRACT Peter Sanders Karlsruhe Institute of Technology Karlsruhe, Germany sanders@kit.edu Darren Strash Colgate University

More information

Graph Partitioning for High-Performance Scientific Simulations. Advanced Topics Spring 2008 Prof. Robert van Engelen

Graph Partitioning for High-Performance Scientific Simulations. Advanced Topics Spring 2008 Prof. Robert van Engelen Graph Partitioning for High-Performance Scientific Simulations Advanced Topics Spring 2008 Prof. Robert van Engelen Overview Challenges for irregular meshes Modeling mesh-based computations as graphs Static

More information

XtraPuLP. Partitioning Trillion-edge Graphs in Minutes. State University

XtraPuLP. Partitioning Trillion-edge Graphs in Minutes. State University XtraPuLP Partitioning Trillion-edge Graphs in Minutes George M. Slota 1 Sivasankaran Rajamanickam 2 Kamesh Madduri 3 Karen Devine 2 1 Rensselaer Polytechnic Institute, 2 Sandia National Labs, 3 The Pennsylvania

More information

Abusing a hypergraph partitioner for unweighted graph partitioning

Abusing a hypergraph partitioner for unweighted graph partitioning Abusing a hypergraph partitioner for unweighted graph partitioning B. O. Fagginger Auer R. H. Bisseling Utrecht University February 13, 2012 Fagginger Auer, Bisseling (UU) Mondriaan Graph Partitioning

More information

SafeChoice: A Novel Approach to Hypergraph Clustering for Wirelength-Driven Placement

SafeChoice: A Novel Approach to Hypergraph Clustering for Wirelength-Driven Placement IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, 2011 1 SafeChoice: A Novel Approach to Hypergraph Clustering for Wirelength-Driven Placement Jackey Z. Yan, Chris Chu and Wai-Kei Mak Abstract This paper presents

More information

Parallel Multilevel Algorithms for Hypergraph Partitioning

Parallel Multilevel Algorithms for Hypergraph Partitioning Parallel Multilevel Algorithms for Hypergraph Partitioning Aleksandar Trifunović William J. Knottenbelt Department of Computing, Imperial College London, South Kensington Campus, London SW7 2AZ, United

More information

Partitioning. Course contents: Readings. Kernighang-Lin partitioning heuristic Fiduccia-Mattheyses heuristic. Chapter 7.5.

Partitioning. Course contents: Readings. Kernighang-Lin partitioning heuristic Fiduccia-Mattheyses heuristic. Chapter 7.5. Course contents: Partitioning Kernighang-Lin partitioning heuristic Fiduccia-Mattheyses heuristic Readings Chapter 7.5 Partitioning 1 Basic Definitions Cell: a logic block used to build larger circuits.

More information

arxiv: v2 [math.oc] 5 May 2015

arxiv: v2 [math.oc] 5 May 2015 Incorporating Road Networks into Territory Design Nitin Ahuja, Matthias Bender, Peter Sanders, Christian Schulz and Andreas Wagner a,b,c,c,a a PTV AG, {nitin.ahuja, andreas.wagner}@ptvgroup.com b FZI Research

More information

Mincut Placement with FM Partitioning featuring Terminal Propagation. Brett Wilson Lowe Dantzler

Mincut Placement with FM Partitioning featuring Terminal Propagation. Brett Wilson Lowe Dantzler Mincut Placement with FM Partitioning featuring Terminal Propagation Brett Wilson Lowe Dantzler Project Overview Perform Mincut Placement using the FM Algorithm to perform partitioning. Goals: Minimize

More information

Partitioning and Partitioning Tools. Tim Barth NASA Ames Research Center Moffett Field, California USA

Partitioning and Partitioning Tools. Tim Barth NASA Ames Research Center Moffett Field, California USA Partitioning and Partitioning Tools Tim Barth NASA Ames Research Center Moffett Field, California 94035-00 USA 1 Graph/Mesh Partitioning Why do it? The graph bisection problem What are the standard heuristic

More information

Large Scale Circuit Partitioning

Large Scale Circuit Partitioning Large Scale Circuit Partitioning With Loose/Stable Net Removal And Signal Flow Based Clustering Jason Cong Honching Li Sung-Kyu Lim Dongmin Xu UCLA VLSI CAD Lab Toshiyuki Shibuya Fujitsu Lab, LTD Support

More information

Mathematics and Computer Science

Mathematics and Computer Science Technical Report TR-2006-010 Revisiting hypergraph models for sparse matrix decomposition by Cevdet Aykanat, Bora Ucar Mathematics and Computer Science EMORY UNIVERSITY REVISITING HYPERGRAPH MODELS FOR

More information

CAD Algorithms. Circuit Partitioning

CAD Algorithms. Circuit Partitioning CAD Algorithms Partitioning Mohammad Tehranipoor ECE Department 13 October 2008 1 Circuit Partitioning Partitioning: The process of decomposing a circuit/system into smaller subcircuits/subsystems, which

More information

CS 140: Sparse Matrix-Vector Multiplication and Graph Partitioning

CS 140: Sparse Matrix-Vector Multiplication and Graph Partitioning CS 140: Sparse Matrix-Vector Multiplication and Graph Partitioning Parallel sparse matrix-vector product Lay out matrix and vectors by rows y(i) = sum(a(i,j)*x(j)) Only compute terms with A(i,j) 0 P0 P1

More information

Minimum Spanning Trees

Minimum Spanning Trees Chapter 23 Minimum Spanning Trees Let G(V, E, ω) be a weighted connected graph. Find out another weighted connected graph T(V, E, ω), E E, such that T has the minimum weight among all such T s. An important

More information

Parallel FEM Computation and Multilevel Graph Partitioning Xing Cai

Parallel FEM Computation and Multilevel Graph Partitioning Xing Cai Parallel FEM Computation and Multilevel Graph Partitioning Xing Cai Simula Research Laboratory Overview Parallel FEM computation how? Graph partitioning why? The multilevel approach to GP A numerical example

More information

arxiv: v1 [cs.ds] 14 Feb 2017

arxiv: v1 [cs.ds] 14 Feb 2017 Optimal Longest Paths by Dynamic Programming Tomáš Balyo 1, Kai Fieger 1, and Christian Schulz 1,2 1 Karlsruhe Institute of Technology, Karlsruhe, Germany {tomas.balyo, christian.schulz}@kit.edu, fieger@ira.uka.de

More information

Network-on-chip (NOC) Topologies

Network-on-chip (NOC) Topologies Network-on-chip (NOC) Topologies 1 Network Topology Static arrangement of channels and nodes in an interconnection network The roads over which packets travel Topology chosen based on cost and performance

More information

UMPa: A multi-objective, multi-level partitioner for communication minimization

UMPa: A multi-objective, multi-level partitioner for communication minimization Contemporary Mathematics Volume 588, 2013 http://dx.doi.org/10.1090/conm/588/11704 UMPa: A multi-objective, multi-level partitioner for communication minimization Ümit V. Çatalyürek, Mehmet Deveci, Kamer

More information

A GPU Algorithm for Greedy Graph Matching

A GPU Algorithm for Greedy Graph Matching A GPU Algorithm for Greedy Graph Matching B. O. Fagginger Auer R. H. Bisseling Utrecht University September 29, 2011 Fagginger Auer, Bisseling (UU) GPU Greedy Graph Matching September 29, 2011 1 / 27 Outline

More information

Evolutionary Multi-Level Acyclic Graph Partitioning

Evolutionary Multi-Level Acyclic Graph Partitioning lutionary Acyclic Graph Partitioning Orlando Moreira Intel Corporation Eindhoven, The Netherlands orlando.moreira@intel.com Merten Popp Intel Corporation Eindhoven, The Netherlands merten.popp@intel.com

More information

Order or Shuffle: Empirically Evaluating Vertex Order Impact on Parallel Graph Computations

Order or Shuffle: Empirically Evaluating Vertex Order Impact on Parallel Graph Computations Order or Shuffle: Empirically Evaluating Vertex Order Impact on Parallel Graph Computations George M. Slota 1 Sivasankaran Rajamanickam 2 Kamesh Madduri 3 1 Rensselaer Polytechnic Institute, 2 Sandia National

More information

Native mesh ordering with Scotch 4.0

Native mesh ordering with Scotch 4.0 Native mesh ordering with Scotch 4.0 François Pellegrini INRIA Futurs Project ScAlApplix pelegrin@labri.fr Abstract. Sparse matrix reordering is a key issue for the the efficient factorization of sparse

More information

Parallel static and dynamic multi-constraint graph partitioning

Parallel static and dynamic multi-constraint graph partitioning CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE Concurrency Computat.: Pract. Exper. 2002; 14:219 240 (DOI: 10.1002/cpe.605) Parallel static and dynamic multi-constraint graph partitioning Kirk Schloegel,,

More information

Graph Partitioning and Graph Clustering

Graph Partitioning and Graph Clustering 588 Graph Partitioning and Graph Clustering 10th DIMACS Implementation Challenge Workshop February 13 14, 2012 Georgia Institute of Technology Atlanta, GA David A. Bader Henning Meyerhenke Peter Sanders

More information

Contraction Hierarchies briefly explained

Contraction Hierarchies briefly explained Contraction Hierarchies briefly explained Stefan Funke January 12, 2017 Abstract We give a brief explanation of Contraction Hierachies (CH) as introduced by Geisberger et al. in 2008. 1 Outline of the

More information

algorithms, i.e., they attempt to construct a solution piece by piece and are not able to offer a complete solution until the end. The FM algorithm, l

algorithms, i.e., they attempt to construct a solution piece by piece and are not able to offer a complete solution until the end. The FM algorithm, l The FMSAT Satisfiability Solver: Hypergraph Partitioning meets Boolean Satisfiability Arathi Ramani, Igor Markov framania, imarkovg@eecs.umich.edu February 6, 2002 Abstract This report is intended to present

More information

Graph Coarsening and Clustering on the GPU

Graph Coarsening and Clustering on the GPU Graph Coarsening and Clustering on the GPU B. O. Fagginger Auer R. H. Bisseling Utrecht University February 14, 2012 Introduction We will discuss coarsening and greedy clustering of graphs. Introduction

More information

Greedy Algorithms. At each step in the algorithm, one of several choices can be made.

Greedy Algorithms. At each step in the algorithm, one of several choices can be made. Greedy Algorithms At each step in the algorithm, one of several choices can be made. Greedy Strategy: make the choice that is the best at the moment. After making a choice, we are left with one subproblem

More information

A Fine-Grain Hypergraph Model for 2D Decomposition of Sparse Matrices

A Fine-Grain Hypergraph Model for 2D Decomposition of Sparse Matrices A Fine-Grain Hypergraph Model for 2D Decomposition of Sparse Matrices Ümit V. Çatalyürek Dept. of Pathology, Division of Informatics Johns Hopkins Medical Institutions Baltimore, MD 21287 umit@jhmi.edu

More information

K-Ways Partitioning of Polyhedral Process Networks: a Multi-Level Approach

K-Ways Partitioning of Polyhedral Process Networks: a Multi-Level Approach 2015 IEEE International Parallel and Distributed Processing Symposium Workshops K-Ways Partitioning of Polyhedral Process Networks: a Multi-Level Approach Riccardo Cattaneo, Mahdi Moradmand, Donatella

More information

Improving Graph Partitioning for Modern Graphs and Architectures

Improving Graph Partitioning for Modern Graphs and Architectures Improving Graph Partitioning for Modern Graphs and Architectures Dominique LaSalle lasalle@cs.umn.edu Narayanan Sundaram * narayanan.sundaram@intel.com Md Mostofa Ali Patwary * mostofa.ali.patwary@intel.com

More information

Circuit Placement: 2000-Caldwell,Kahng,Markov; 2002-Kennings,Markov; 2006-Kennings,Vorwerk

Circuit Placement: 2000-Caldwell,Kahng,Markov; 2002-Kennings,Markov; 2006-Kennings,Vorwerk Circuit Placement: 2000-Caldwell,Kahng,Markov; 2002-Kennings,Markov; 2006-Kennings,Vorwerk Andrew A. Kennings, Univ. of Waterloo, Canada, http://gibbon.uwaterloo.ca/ akenning/ Igor L. Markov, Univ. of

More information

Graph Operators for Coupling-aware Graph Partitioning Algorithms

Graph Operators for Coupling-aware Graph Partitioning Algorithms Graph Operators for Coupling-aware Graph Partitioning lgorithms Maria Predari, urélien Esnard To cite this version: Maria Predari, urélien Esnard. Graph Operators for Coupling-aware Graph Partitioning

More information

MULTI-LEVEL GRAPH PARTITIONING

MULTI-LEVEL GRAPH PARTITIONING MULTI-LEVEL GRAPH PARTITIONING By PAWAN KUMAR AURORA A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

More information

PuLP. Complex Objective Partitioning of Small-World Networks Using Label Propagation. George M. Slota 1,2 Kamesh Madduri 2 Sivasankaran Rajamanickam 1

PuLP. Complex Objective Partitioning of Small-World Networks Using Label Propagation. George M. Slota 1,2 Kamesh Madduri 2 Sivasankaran Rajamanickam 1 PuLP Complex Objective Partitioning of Small-World Networks Using Label Propagation George M. Slota 1,2 Kamesh Madduri 2 Sivasankaran Rajamanickam 1 1 Sandia National Laboratories, 2 The Pennsylvania State

More information

Improved Algorithms for Hypergraph Bipartitioning

Improved Algorithms for Hypergraph Bipartitioning Improved Algorithms for Hypergraph Bipartitioning Andrew E. Caldwell, Andrew B. Kahng and Igor L. Markov* UCLA Computer Science Dept., Los Angeles, CA 90095-1596 {caldwell,abk,imarkov}@cs.ucla.edu Abstract

More information

Lecture 4: Graph Algorithms

Lecture 4: Graph Algorithms Lecture 4: Graph Algorithms Definitions Undirected graph: G =(V, E) V finite set of vertices, E finite set of edges any edge e = (u,v) is an unordered pair Directed graph: edges are ordered pairs If e

More information

A New Parallel Algorithm for Connected Components in Dynamic Graphs. Robert McColl Oded Green David Bader

A New Parallel Algorithm for Connected Components in Dynamic Graphs. Robert McColl Oded Green David Bader A New Parallel Algorithm for Connected Components in Dynamic Graphs Robert McColl Oded Green David Bader Overview The Problem Target Datasets Prior Work Parent-Neighbor Subgraph Results Conclusions Problem

More information

Topology and affinity aware hierarchical and distributed load-balancing in Charm++

Topology and affinity aware hierarchical and distributed load-balancing in Charm++ Topology and affinity aware hierarchical and distributed load-balancing in Charm++ Emmanuel Jeannot, Guillaume Mercier, François Tessier Inria - IPB - LaBRI - University of Bordeaux - Argonne National

More information

Unit 5A: Circuit Partitioning

Unit 5A: Circuit Partitioning Course contents: Unit 5A: Circuit Partitioning Kernighang-Lin partitioning heuristic Fiduccia-Mattheyses heuristic Simulated annealing based partitioning algorithm Readings Chapter 7.5 Unit 5A 1 Course

More information

A New 2-way Multi-level Partitioning Algorithm*

A New 2-way Multi-level Partitioning Algorithm* VLSI DESIGN 2000, Vol. ll, No. 3, pp. 301-310 Reprints available directly from the publisher Photocopying permitted by license only 2000 OPA (Overseas Publishers Association) N.V. Published by license

More information

Parallel repartitioning and remapping in

Parallel repartitioning and remapping in Parallel repartitioning and remapping in Sébastien Fourestier François Pellegrini November 21, 2012 Joint laboratory workshop Table of contents Parallel repartitioning Shared-memory parallel algorithms

More information

Multithreaded Clustering for Multi-level Hypergraph Partitioning

Multithreaded Clustering for Multi-level Hypergraph Partitioning 2012 IEEE 26th International Parallel and Distributed Processing Symposium Multithreaded Clustering for Multi-level Hypergraph Partitioning Ümit V. Çatalyürek, Mehmet Deveci, Kamer Kaya The Ohio State

More information