Penalized Graph Partitioning for Static and Dynamic Load Balancing

Size: px
Start display at page:

Download "Penalized Graph Partitioning for Static and Dynamic Load Balancing"

Transcription

1 Penalized Graph Partitioning for Static and Dynamic Load Balancing Tim Kiefer, Dirk Habich, Wolfgang Lehner Euro-Par 06, Grenoble, France,

2 Task Allocation Challenge Application (Workload) = Set of Tasks Consolidation Task Allocation (Load Balancing) Combine various tasks on a single infrastructure node Infrastructure = Set of Nodes

3 Modeling Problems as Graph GRAPH Problem reduced to smaller, independent tasks Processing cost of tasks are modelled as vertex weights (possibly multiple per vertex) Communication between tasks is modelled as edge weights TASK ALLOCATION CHALLENGE Given a workload graph and an infrastructure, find a valid and balanced allocation that minimizes communication costs. (0.,0GB) (,0GB) (0.,7GB) (0.,0GB) (0.,0GB) (0.,0GB) (0.,GB) (0.,GB) (,0GB) (0.,7GB) Graph partitioning is an appropriate technique for that area (0.,5GB) (,0GB) (0.,5GB) (,0GB)

4 Classical Performance Model of Nodes COMBINED LOAD PREDICTOR Tasks are consolidated on nodes (i.e., tasks share nodes) Linear model: combined load is sum of all individual loads [Schaffner0]

5 Penalized Performance Model COMBINED LOAD PREDICTOR Tasks are consolidated on nodes (i.e., tasks share nodes) Linear model: combined load is sum of all individual loads Non-linear model: combined load is greater than sum of individual loads (congestion) Special case: linearly combined load and non-linear penalty [Schaffner0] 5

6 Motivating Example WORKLOAD GRAPH workload graph contains,000 heterogeneous tasks with weights following a Zipf distribution each task is communicating with 0 to 0 other tasks (again Zipf distributed). INFRASTRUCTURE nodes and each node can execute 6 parallel tasks before contention occurs 6

7 Overview Introduction Task Allocation Challenge Penalized Resource Model Graph Partitioning Multi-Level Graph Partitioning Penalized Graph Partitioning Static Case Dynamic Case Evaluation Scalability Experiments 7

8 Graph Partitioning Definitions by Example BALANCED K-WAY MIN-CUT GRAPH PARTITIONING Find k partitions Minimize the sum of edges that are cut Keep the sizes of all parts in balance NP-complete problem [Hyafil and Rivest, 97] NOTATION Vertex Identifiers Vertex Weights Vertex weights Edge weights Graph partitioning Cut edge Total cut Balance constraint Edge Weights Partitioning 8

9 Multilevel Graph Partitioning Framework. COARSENING input graph match and contract vertices refine partitioning extract vertices final partitioning. UNCOARSENING AND REFINEMENT. INITIAL PARTITIONING [Karypis and Kumar 995, Buluç et. al 0] 9

10 Multilevel Graph Partitioning Framework. COARSENING Find matching and contract vertices Balanced cut in the coarse graph equals balanced cut in the fine graph with same cut value E.g., heavy edge heuristic 0

11 Multilevel Graph Partitioning Framework. COARSENING Find matching and contract vertices Balanced cut in the coarse graph equals balanced cut in the fine graph with same cut value E.g., heavy edge heuristic. INITIAL PARTITIONING Many possible algorithms/heuristics Region growing Repeated bisection or direct k-way

12 Multilevel Graph Partitioning Framework. COARSENING Find matching and contract vertices Balanced cut in the coarse graph equals balanced cut in the fine graph with same cut value E.g., heavy edge heuristic. INITIAL PARTITIONING Many possible algorithms/heuristics Region growing Repeated bisection or direct k-way. UNCOARSENING AND REFINEMENT Uncoarsen by extracting collapsed vertices Refinement with local vertex-swapping heuristics Kernighan-Lin (KL) [Kenighan and Lin 970] Fiduccia-Mattheyses (KL/FM) [Fiduccia and Mattheyses 98] Karypis and Kumar [Karypis and Kumar 995 and 998]????

13 Overview Introduction Task Allocation Challenge Penalized Resource Model Graph Partitioning Multi-Level Graph Partitioning Penalized Graph Partitioning Static Case Dynamic Case Evaluation Scalability Experiments

14 Non-Linear Graph Partitioning PENALIZED GRAPH PARTITIONING no penalty: p( V ) = 0 Penalized partition weight: sum of vertex weights plus penalty w V $ w v ' ) + p V sum of vertex weights penalty partition weight total cut V V V V V V linear penalty: p( V ) = V sum of vertex weights penalty partition weight total cut V V square penalty: p( V ) = V V V sum of vertex weights penalty partition weight total cut V V

15 Non-Linear Graph Partitioning PENALIZED GRAPH PARTITIONING total vertex weight total partition weight Penalized partition weight: sum of vertex weights plus penalty Penalized partition weights are not additive: w(v È V ) w(v ) + w(v ) Total vertex weight vs. total partition weigh Total partition weight is not constant w ) $ w ) v ' ) V + p V w, $ w ) V -. -/0 V V V V V sum of vertex weights square penalty partition weight 76 total vertex weight total partition weight 5

16 Non-Linear Graph Partitioning PENALIZED GRAPH PARTITIONING Penalized partition weight: sum of vertex weights plus penalty Penalized partition weights are not additive: w(v È V ) w(v ) + w(v ) Total vertex weight vs. total partition weigh Total partition weight is not constant MOVING A VERTEX w ' V 0 v = $ 5 ) 6 ' w ) u + p V 0 v = $ w ) u w ) v + p V 0 5 ) 6 = w ) V 0 w ) v p V 0 + p V 0 w ) V 9 v = w ) V 9 + w ) v p V 9 + p V 9 + MODIFIED GRAPH PARTITIONING FRAMEWORK Modifications in. Coarsening. Initial partitioning. Refinement New operations/implementations for. Moving a vertex. Combining partitions COMBINING PARTITIONS w ' V 0 V 9 = $ w ) v 5 ) 6 ) ; + p V 0 V 9 = $ w ) v ' ) 6 + $ w ) v + p V 0 + V 9 ' ) ; = w ) V 0 + w ) V 9 + p V 0 + V 9 p V 0 p V 9 6

17 Dynamic Load Balancing CHANGES IN WORKLOAD OR INFRASTRUCTURE Change weights Add or remove vertices or edges MIGRATION COSTS Incremental update is trade off between partition quality and migration costs HYBRID STRATEGY Local Refinement: use KL/FM method to balance/refine partitioning Complete Repartitioning: partition from scratch and try to map partitions such that migration costs are minimal Local refinement if possible, complete repartitioning if not 7

18 Overview Introduction Task Allocation Challenge Penalized Resource Model Graph Partitioning Multi-Level Graph Partitioning Penalized Graph Partitioning Static Case Dynamic Case Evaluation Scalability Experiments 8

19 Partitioning Time Comparison IMPLEMENTATION OF OUR PENALIZED GRAPH PARTITIONING PenMETIS based on METIS (v5.) Walshaw Benchmark: Graph Partitioning Archive ( graphs and best known partitioning) 6 partitions, max. % imbalance V = E =..6 V =.69 E =.07.9 V =.765 E =

20 Scalability GRAPH SIZE PenMETIS scales linearly with the number of vertices and the number of edges 0

21 Scalability GRAPH SIZE PenMETIS scales linearly with the number of vertices and the number of edges PARTITION COUNT PenMETIS scales linearly with the number of partitions

22 Summary and Conclusion Application (Workload) = Set of Tasks Task Allocation (Load Balancing) Penalized Graph Partitioning Infrastructure = Set of Nodes

Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering

Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering George Karypis and Vipin Kumar Brian Shi CSci 8314 03/09/2017 Outline Introduction Graph Partitioning Problem Multilevel

More information

Requirements of Load Balancing Algorithm

Requirements of Load Balancing Algorithm LOAD BALANCING Programs and algorithms as graphs Geometric Partitioning Graph Partitioning Recursive Graph Bisection partitioning Recursive Spectral Bisection Multilevel Graph partitioning Hypergraph Partitioning

More information

Graph and Hypergraph Partitioning for Parallel Computing

Graph and Hypergraph Partitioning for Parallel Computing Graph and Hypergraph Partitioning for Parallel Computing Edmond Chow School of Computational Science and Engineering Georgia Institute of Technology June 29, 2016 Graph and hypergraph partitioning References:

More information

Multilevel Graph Partitioning

Multilevel Graph Partitioning Multilevel Graph Partitioning George Karypis and Vipin Kumar Adapted from Jmes Demmel s slide (UC-Berkely 2009) and Wasim Mohiuddin (2011) Cover image from: Wang, Wanyi, et al. "Polygonal Clustering Analysis

More information

Graph Partitioning for High-Performance Scientific Simulations. Advanced Topics Spring 2008 Prof. Robert van Engelen

Graph Partitioning for High-Performance Scientific Simulations. Advanced Topics Spring 2008 Prof. Robert van Engelen Graph Partitioning for High-Performance Scientific Simulations Advanced Topics Spring 2008 Prof. Robert van Engelen Overview Challenges for irregular meshes Modeling mesh-based computations as graphs Static

More information

Multilevel Algorithms for Multi-Constraint Hypergraph Partitioning

Multilevel Algorithms for Multi-Constraint Hypergraph Partitioning Multilevel Algorithms for Multi-Constraint Hypergraph Partitioning George Karypis University of Minnesota, Department of Computer Science / Army HPC Research Center Minneapolis, MN 55455 Technical Report

More information

Preclass Warmup. ESE535: Electronic Design Automation. Motivation (1) Today. Bisection Width. Motivation (2)

Preclass Warmup. ESE535: Electronic Design Automation. Motivation (1) Today. Bisection Width. Motivation (2) ESE535: Electronic Design Automation Preclass Warmup What cut size were you able to achieve? Day 4: January 28, 25 Partitioning (Intro, KLFM) 2 Partitioning why important Today Can be used as tool at many

More information

Shape Optimizing Load Balancing for Parallel Adaptive Numerical Simulations Using MPI

Shape Optimizing Load Balancing for Parallel Adaptive Numerical Simulations Using MPI Parallel Adaptive Institute of Theoretical Informatics Karlsruhe Institute of Technology (KIT) 10th DIMACS Challenge Workshop, Feb 13-14, 2012, Atlanta 1 Load Balancing by Repartitioning Application: Large

More information

Seminar on. A Coarse-Grain Parallel Formulation of Multilevel k-way Graph Partitioning Algorithm

Seminar on. A Coarse-Grain Parallel Formulation of Multilevel k-way Graph Partitioning Algorithm Seminar on A Coarse-Grain Parallel Formulation of Multilevel k-way Graph Partitioning Algorithm Mohammad Iftakher Uddin & Mohammad Mahfuzur Rahman Matrikel Nr: 9003357 Matrikel Nr : 9003358 Masters of

More information

Lecture 19: Graph Partitioning

Lecture 19: Graph Partitioning Lecture 19: Graph Partitioning David Bindel 3 Nov 2011 Logistics Please finish your project 2. Please start your project 3. Graph partitioning Given: Graph G = (V, E) Possibly weights (W V, W E ). Possibly

More information

Multi-Objective Hypergraph Partitioning Algorithms for Cut and Maximum Subdomain Degree Minimization

Multi-Objective Hypergraph Partitioning Algorithms for Cut and Maximum Subdomain Degree Minimization IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL XX, NO. XX, 2005 1 Multi-Objective Hypergraph Partitioning Algorithms for Cut and Maximum Subdomain Degree Minimization Navaratnasothie Selvakkumaran and

More information

Parallel Multilevel Algorithms for Multi-constraint Graph Partitioning

Parallel Multilevel Algorithms for Multi-constraint Graph Partitioning Parallel Multilevel Algorithms for Multi-constraint Graph Partitioning Kirk Schloegel, George Karypis, and Vipin Kumar Army HPC Research Center Department of Computer Science and Engineering University

More information

Parallel repartitioning and remapping in

Parallel repartitioning and remapping in Parallel repartitioning and remapping in Sébastien Fourestier François Pellegrini November 21, 2012 Joint laboratory workshop Table of contents Parallel repartitioning Shared-memory parallel algorithms

More information

Parallel static and dynamic multi-constraint graph partitioning

Parallel static and dynamic multi-constraint graph partitioning CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE Concurrency Computat.: Pract. Exper. 2002; 14:219 240 (DOI: 10.1002/cpe.605) Parallel static and dynamic multi-constraint graph partitioning Kirk Schloegel,,

More information

Partitioning and Partitioning Tools. Tim Barth NASA Ames Research Center Moffett Field, California USA

Partitioning and Partitioning Tools. Tim Barth NASA Ames Research Center Moffett Field, California USA Partitioning and Partitioning Tools Tim Barth NASA Ames Research Center Moffett Field, California 94035-00 USA 1 Graph/Mesh Partitioning Why do it? The graph bisection problem What are the standard heuristic

More information

CHAPTER 6 DEVELOPMENT OF PARTICLE SWARM OPTIMIZATION BASED ALGORITHM FOR GRAPH PARTITIONING

CHAPTER 6 DEVELOPMENT OF PARTICLE SWARM OPTIMIZATION BASED ALGORITHM FOR GRAPH PARTITIONING CHAPTER 6 DEVELOPMENT OF PARTICLE SWARM OPTIMIZATION BASED ALGORITHM FOR GRAPH PARTITIONING 6.1 Introduction From the review, it is studied that the min cut k partitioning problem is a fundamental partitioning

More information

Partitioning. Course contents: Readings. Kernighang-Lin partitioning heuristic Fiduccia-Mattheyses heuristic. Chapter 7.5.

Partitioning. Course contents: Readings. Kernighang-Lin partitioning heuristic Fiduccia-Mattheyses heuristic. Chapter 7.5. Course contents: Partitioning Kernighang-Lin partitioning heuristic Fiduccia-Mattheyses heuristic Readings Chapter 7.5 Partitioning 1 Basic Definitions Cell: a logic block used to build larger circuits.

More information

A Divisive clustering technique for maximizing the modularity

A Divisive clustering technique for maximizing the modularity A Divisive clustering technique for maximizing the modularity Ümit V. Çatalyürek, Kamer Kaya, Johannes Langguth, and Bora Uçar February 13, 2012 1 Introduction 2 Clustering Paradigms 3 Algorithm 4 Results

More information

CS 140: Sparse Matrix-Vector Multiplication and Graph Partitioning

CS 140: Sparse Matrix-Vector Multiplication and Graph Partitioning CS 140: Sparse Matrix-Vector Multiplication and Graph Partitioning Parallel sparse matrix-vector product Lay out matrix and vectors by rows y(i) = sum(a(i,j)*x(j)) Only compute terms with A(i,j) 0 P0 P1

More information

MULTI-LEVEL GRAPH PARTITIONING

MULTI-LEVEL GRAPH PARTITIONING MULTI-LEVEL GRAPH PARTITIONING By PAWAN KUMAR AURORA A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

More information

Unit 5A: Circuit Partitioning

Unit 5A: Circuit Partitioning Course contents: Unit 5A: Circuit Partitioning Kernighang-Lin partitioning heuristic Fiduccia-Mattheyses heuristic Simulated annealing based partitioning algorithm Readings Chapter 7.5 Unit 5A 1 Course

More information

Allocation Strategies for Data-Oriented Architectures

Allocation Strategies for Data-Oriented Architectures Allocation Strategies for Data-Oriented Architectures Kurzfassung der Dissertation zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.) vorgelegt an der Technischen Universität Dresden Fakultät

More information

Multilevel k-way Hypergraph Partitioning

Multilevel k-way Hypergraph Partitioning _ Multilevel k-way Hypergraph Partitioning George Karypis and Vipin Kumar fkarypis, kumarg@cs.umn.edu Department of Computer Science & Engineering, University of Minnesota, Minneapolis, MN 55455 Abstract

More information

Application of Fusion-Fission to the multi-way graph partitioning problem

Application of Fusion-Fission to the multi-way graph partitioning problem Application of Fusion-Fission to the multi-way graph partitioning problem Charles-Edmond Bichot Laboratoire d Optimisation Globale, École Nationale de l Aviation Civile/Direction des Services de la Navigation

More information

Native mesh ordering with Scotch 4.0

Native mesh ordering with Scotch 4.0 Native mesh ordering with Scotch 4.0 François Pellegrini INRIA Futurs Project ScAlApplix pelegrin@labri.fr Abstract. Sparse matrix reordering is a key issue for the the efficient factorization of sparse

More information

Efficient Programming of Nanowire-based Sublithographic PLAs: A Multilevel Algorithm for Partitioning Graphs

Efficient Programming of Nanowire-based Sublithographic PLAs: A Multilevel Algorithm for Partitioning Graphs Efficient Programming of Nanowire-based Sublithographic PLAs: A Multilevel Algorithm for Partitioning Graphs Vivek Rajkumar (University of Washington CSE) Contact: California Institute

More information

Lesson 2 7 Graph Partitioning

Lesson 2 7 Graph Partitioning Lesson 2 7 Graph Partitioning The Graph Partitioning Problem Look at the problem from a different angle: Let s multiply a sparse matrix A by a vector X. Recall the duality between matrices and graphs:

More information

Parallel Graph Partitioning on a CPU-GPU Architecture

Parallel Graph Partitioning on a CPU-GPU Architecture Parallel Graph Partitioning on a CPU-GPU Architecture Bahareh Goodarzi Martin Burtscher Dhrubajyoti Goswami Department of Computer Science Department of Computer Science Department of Computer Science

More information

Graph Operators for Coupling-aware Graph Partitioning Algorithms

Graph Operators for Coupling-aware Graph Partitioning Algorithms Graph Operators for Coupling-aware Graph Partitioning lgorithms Maria Predari, urélien Esnard To cite this version: Maria Predari, urélien Esnard. Graph Operators for Coupling-aware Graph Partitioning

More information

Multi-Resource Aware Partitioning Algorithms for FPGAs with Heterogeneous Resources

Multi-Resource Aware Partitioning Algorithms for FPGAs with Heterogeneous Resources Multi-Resource Aware Partitioning Algorithms for FPGAs with Heterogeneous Resources Navaratnasothie Selvakkumaran Abhishek Ranjan HierDesign Inc Salil Raje HierDesign Inc George Karypis Department of Computer

More information

Advanced Topics in Numerical Analysis: High Performance Computing

Advanced Topics in Numerical Analysis: High Performance Computing Advanced Topics in Numerical Analysis: High Performance Computing MATH-GA 2012.001 & CSCI-GA 2945.001 Georg Stadler Courant Institute, NYU stadler@cims.nyu.edu Spring 2017, Thursday, 5:10 7:00PM, WWH #512

More information

Problem Definition. Clustering nonlinearly separable data:

Problem Definition. Clustering nonlinearly separable data: Outlines Weighted Graph Cuts without Eigenvectors: A Multilevel Approach (PAMI 2007) User-Guided Large Attributed Graph Clustering with Multiple Sparse Annotations (PAKDD 2016) Problem Definition Clustering

More information

Applying Graph Partitioning Methods in Measurement-based Dynamic Load Balancing

Applying Graph Partitioning Methods in Measurement-based Dynamic Load Balancing Applying Graph Partitioning Methods in Measurement-based Dynamic Load Balancing HARSHITHA MENON, University of Illinois at Urbana-Champaign ABHINAV BHATELE, Lawrence Livermore National Laboratory SÉBASTIEN

More information

Parallel FEM Computation and Multilevel Graph Partitioning Xing Cai

Parallel FEM Computation and Multilevel Graph Partitioning Xing Cai Parallel FEM Computation and Multilevel Graph Partitioning Xing Cai Simula Research Laboratory Overview Parallel FEM computation how? Graph partitioning why? The multilevel approach to GP A numerical example

More information

PARALLEL DECOMPOSITION OF 100-MILLION DOF MESHES INTO HIERARCHICAL SUBDOMAINS

PARALLEL DECOMPOSITION OF 100-MILLION DOF MESHES INTO HIERARCHICAL SUBDOMAINS Technical Report of ADVENTURE Project ADV-99-1 (1999) PARALLEL DECOMPOSITION OF 100-MILLION DOF MESHES INTO HIERARCHICAL SUBDOMAINS Hiroyuki TAKUBO and Shinobu YOSHIMURA School of Engineering University

More information

k-way Hypergraph Partitioning via n-level Recursive Bisection

k-way Hypergraph Partitioning via n-level Recursive Bisection k-way Hypergraph Partitioning via n-level Recursive Bisection Sebastian Schlag, Vitali Henne, Tobias Heuer, Henning Meyerhenke Peter Sanders, Christian Schulz January 10th, 2016 @ ALENEX 16 INSTITUTE OF

More information

Multi-Objective Hypergraph Partitioning Algorithms for Cut and Maximum Subdomain Degree Minimization

Multi-Objective Hypergraph Partitioning Algorithms for Cut and Maximum Subdomain Degree Minimization Multi-Objective Hypergraph Partitioning Algorithms for Cut and Maximum Subdomain Degree Minimization Navaratnasothie Selvakkumaran and George Karypis Department of Computer Science / Army HPC Research

More information

VLSI Physical Design: From Graph Partitioning to Timing Closure

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter Netlist and System Partitioning Original Authors: Andrew B. Kahng, Jens, Igor L. Markov, Jin Hu Chapter Netlist and System Partitioning. Introduction. Terminology. Optimization Goals. Partitioning

More information

Multi-Threaded Graph Partitioning

Multi-Threaded Graph Partitioning Multi-Threaded Graph Partitioning Dominique LaSalle and George Karypis Department of Computer Science & Engineering University of Minnesota Minneapolis, Minnesota 5555, USA {lasalle,karypis}@cs.umn.edu

More information

Graph Partitioning Algorithms for Distributing Workloads of Parallel Computations

Graph Partitioning Algorithms for Distributing Workloads of Parallel Computations Graph Partitioning Algorithms for Distributing Workloads of Parallel Computations Bradford L. Chamberlain October 13, 1998 Abstract This paper surveys graph partitioning algorithms used for parallel computing,

More information

Hybrid metaheuristics for the graph partitioning problem

Hybrid metaheuristics for the graph partitioning problem Hybrid metaheuristics for the graph partitioning problem Una Benlic and Jin-Kao Hao Abstract The Graph Partitioning Problem (GPP) is one of the most studied NPcomplete problems notable for its broad spectrum

More information

MULTILEVEL OPTIMIZATION OF GRAPH BISECTION WITH PHEROMONES

MULTILEVEL OPTIMIZATION OF GRAPH BISECTION WITH PHEROMONES MULTILEVEL OPTIMIZATION OF GRAPH BISECTION WITH PHEROMONES Peter Korošec Computer Systems Department Jožef Stefan Institute, Ljubljana, Slovenia peter.korosec@ijs.si Jurij Šilc Computer Systems Department

More information

Partitioning the Internet

Partitioning the Internet Partitioning the Internet Matthias Wachs Christian Grothoff 1 Ramakrishna Thurimella 2 Technische Universität München 1 University of Denver 2 CRiSIS 2012, Cork, Ireland FSNSG (TUM) Partitioning the Internet

More information

Advances in Parallel Partitioning, Load Balancing and Matrix Ordering for Scientific Computing

Advances in Parallel Partitioning, Load Balancing and Matrix Ordering for Scientific Computing Advances in Parallel Partitioning, Load Balancing and Matrix Ordering for Scientific Computing Erik G. Boman 1, Umit V. Catalyurek 2, Cédric Chevalier 1, Karen D. Devine 1, Ilya Safro 3, Michael M. Wolf

More information

Applying Graph Partitioning Methods in Measurement-based Dynamic Load Balancing

Applying Graph Partitioning Methods in Measurement-based Dynamic Load Balancing Applying Graph Partitioning Methods in Measurement-based Dynamic Load Balancing HARSHITHA MENON, University of Illinois at Urbana-Champaign ABHINAV BHATELE, Lawrence Livermore National Laboratory SÉBASTIEN

More information

Combining Recursive Bisection and k-way Local Search for Hypergraph Partitioning Charel Mercatoris

Combining Recursive Bisection and k-way Local Search for Hypergraph Partitioning Charel Mercatoris Bachelor Thesis Combining Recursive Bisection and k-way Local Search for Hypergraph Partitioning Charel Mercatoris Date: 8. November 2018 Supervisors: Prof. Dr. rer. nat. Peter Sanders Sebastian Schlag,

More information

Heuristic Graph Bisection with Less Restrictive Balance Constraints

Heuristic Graph Bisection with Less Restrictive Balance Constraints Heuristic Graph Bisection with Less Restrictive Balance Constraints Stefan Schamberger Fakultät für Elektrotechnik, Informatik und Mathematik Universität Paderborn Fürstenallee 11, D-33102 Paderborn schaum@uni-paderborn.de

More information

The Potential of Diffusive Load Balancing at Large Scale

The Potential of Diffusive Load Balancing at Large Scale Center for Information Services and High Performance Computing The Potential of Diffusive Load Balancing at Large Scale EuroMPI 2016, Edinburgh, 27 September 2016 Matthias Lieber, Kerstin Gößner, Wolfgang

More information

Place and Route for FPGAs

Place and Route for FPGAs Place and Route for FPGAs 1 FPGA CAD Flow Circuit description (VHDL, schematic,...) Synthesize to logic blocks Place logic blocks in FPGA Physical design Route connections between logic blocks FPGA programming

More information

New Challenges In Dynamic Load Balancing

New Challenges In Dynamic Load Balancing New Challenges In Dynamic Load Balancing Karen D. Devine, et al. Presentation by Nam Ma & J. Anthony Toghia What is load balancing? Assignment of work to processors Goal: maximize parallel performance

More information

Multilevel Acyclic Partitioning of Directed Acyclic Graphs for Enhancing Data Locality

Multilevel Acyclic Partitioning of Directed Acyclic Graphs for Enhancing Data Locality Multilevel Acyclic Partitioning of Directed Acyclic Graphs for Enhancing Data Locality Julien Herrmann 1, Bora Uçar 2, Kamer Kaya 3, Aravind Sukumaran Rajam 4, Fabrice Rastello 5, P. Sadayappan 4, Ümit

More information

A Parallel Shape Optimizing Load Balancer

A Parallel Shape Optimizing Load Balancer A Parallel Shape Optimizing Load Balancer Henning Meyerhenke and Stefan Schamberger Universität Paderborn, Fakultät für Elektrotechnik, Informatik und Mathematik Fürstenallee 11, D-33102 Paderborn {henningm

More information

Analysis of Multilevel Graph Partitioning

Analysis of Multilevel Graph Partitioning A short version of this paper appears in Supercomputing 995 The algorithms described in this paper are implemented by the METIS: Unstructured Graph Partitioning and Sparse Matrix Ordering System. METIS

More information

Graph Partitioning Algorithms

Graph Partitioning Algorithms Graph Partitioning Algorithms Leonid E. Zhukov School of Applied Mathematics and Information Science National Research University Higher School of Economics 03.03.2014 Leonid E. Zhukov (HSE) Lecture 8

More information

Shape Optimizing Load Balancing for MPI-Parallel Adaptive Numerical Simulations

Shape Optimizing Load Balancing for MPI-Parallel Adaptive Numerical Simulations Shape Optimizing Load Balancing for MPI-Parallel Adaptive Numerical Simulations Henning Meyerhenke Abstract. Load balancing is important for the efficient execution of numerical simulations on parallel

More information

K-Ways Partitioning of Polyhedral Process Networks: a Multi-Level Approach

K-Ways Partitioning of Polyhedral Process Networks: a Multi-Level Approach 2015 IEEE International Parallel and Distributed Processing Symposium Workshops K-Ways Partitioning of Polyhedral Process Networks: a Multi-Level Approach Riccardo Cattaneo, Mahdi Moradmand, Donatella

More information

Parallel Graph Partitioning and Sparse Matrix Ordering Library Version 4.0

Parallel Graph Partitioning and Sparse Matrix Ordering Library Version 4.0 PARMETIS Parallel Graph Partitioning and Sparse Matrix Ordering Library Version 4.0 George Karypis and Kirk Schloegel University of Minnesota, Department of Computer Science and Engineering Minneapolis,

More information

Improvements in Dynamic Partitioning. Aman Arora Snehal Chitnavis

Improvements in Dynamic Partitioning. Aman Arora Snehal Chitnavis Improvements in Dynamic Partitioning Aman Arora Snehal Chitnavis Introduction Partitioning - Decomposition & Assignment Break up computation into maximum number of small concurrent computations that can

More information

Algorithms for Graph Partitioning and Fill Reducing Ordering for Domain Decomposition Methods

Algorithms for Graph Partitioning and Fill Reducing Ordering for Domain Decomposition Methods Algorithms for Graph Partitioning and Fill Reducing Ordering for Domain Decomposition Methods Irene Moulitsas and George Karypis University of Minnesota, Department of Computer Science and Engineering

More information

Shared memory parallel algorithms in Scotch 6

Shared memory parallel algorithms in Scotch 6 Shared memory parallel algorithms in Scotch 6 François Pellegrini EQUIPE PROJET BACCHUS Bordeaux Sud-Ouest 29/05/2012 Outline of the talk Context Why shared-memory parallelism in Scotch? How to implement

More information

Graph partitioning. Prof. Richard Vuduc Georgia Institute of Technology CSE/CS 8803 PNA: Parallel Numerical Algorithms [L.27] Tuesday, April 22, 2008

Graph partitioning. Prof. Richard Vuduc Georgia Institute of Technology CSE/CS 8803 PNA: Parallel Numerical Algorithms [L.27] Tuesday, April 22, 2008 Graph partitioning Prof. Richard Vuduc Georgia Institute of Technology CSE/CS 8803 PNA: Parallel Numerical Algorithms [L.27] Tuesday, April 22, 2008 1 Today s sources CS 194/267 at UCB (Yelick/Demmel)

More information

Multiscale Methods. Introduction to Network Analysis 1

Multiscale Methods. Introduction to Network Analysis 1 Multiscale Methods In many complex systems, a big scale gap can be observed between micro- and macroscopic scales of problems because of the difference in physical (social, biological, mathematical, etc.)

More information

ADAPTIVE LOAD BALANCING TECHNIQUES IN GLOBAL SCALE GRID ENVIRONMENT

ADAPTIVE LOAD BALANCING TECHNIQUES IN GLOBAL SCALE GRID ENVIRONMENT International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 6367(Print) ISSN 0976 6375(Online) Volume 1 Number 2, Sept - Oct (2010), pp. 85-96 IAEME, http://www.iaeme.com/ijcet.html

More information

The JOSTLE executable user guide : Version 3.1

The JOSTLE executable user guide : Version 3.1 The JOSTLE executable user guide : Version 3.1 Chris Walshaw School of Computing & Mathematical Sciences, University of Greenwich, London, SE10 9LS, UK email: jostle@gre.ac.uk July 6, 2005 Contents 1 The

More information

A Parallel Hill-Climbing Refinement Algorithm for Graph Partitioning

A Parallel Hill-Climbing Refinement Algorithm for Graph Partitioning A Parallel Hill-Climbing Refinement Algorithm for Graph Partitioning Dominique LaSalle and George Karypis Department of Computer Science & Engineering, University of Minnesota, Minneapolis, MN 55455, USA

More information

Efficient Nested Dissection for Multicore Architectures

Efficient Nested Dissection for Multicore Architectures Efficient Nested Dissection for Multicore Architectures Dominique Lasalle and George Karypis Department of Computer Science & Engineering, University of Minnesota, Minneapolis, MN 55455, USA {lasalle,karypis}@cs.umn.edu

More information

On Partitioning FEM Graphs using Diffusion

On Partitioning FEM Graphs using Diffusion On Partitioning FEM Graphs using Diffusion Stefan Schamberger Universität Paderborn, Fakultät für Elektrotechnik, Informatik und Mathematik Fürstenallee 11, D-33102 Paderborn email: schaum@uni-paderborn.de

More information

Multi-level sequential circuit partitioning for test vector generation for low power test in VLSI

Multi-level sequential circuit partitioning for test vector generation for low power test in VLSI MultiCraft International Journal of Engineering, Science and Technology INTERNATIONAL JOURNAL OF ENGINEERING, SCIENCE AND TECHNOLOGY www.ijest-ng.com 2010 MultiCraft Limited. All rights reserved Multi-level

More information

CAD Algorithms. Circuit Partitioning

CAD Algorithms. Circuit Partitioning CAD Algorithms Partitioning Mohammad Tehranipoor ECE Department 13 October 2008 1 Circuit Partitioning Partitioning: The process of decomposing a circuit/system into smaller subcircuits/subsystems, which

More information

Evolving Multi-level Graph Partitioning Algorithms

Evolving Multi-level Graph Partitioning Algorithms Evolving Multi-level Graph Partitioning Algorithms Aaron S. Pope, Daniel R. Tauritz and Alexander D. Kent Department of Computer Science, Missouri University of Science and Technology, Rolla, Missouri

More information

A Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering

A Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering Appears in the Journal of Parallel and Distributed Computing A short version of this paper appears in International Parallel Processing Symposium 996 The serial algorithms described in this paper are implemented

More information

Algorithm XXX: Mongoose, A Graph Coarsening and Partitioning Library

Algorithm XXX: Mongoose, A Graph Coarsening and Partitioning Library 0 Algorithm XXX: Mongoose, A Graph Coarsening and Partitioning Library TIMOTHY A. DAVIS, Texas A&M University WILLIAM W. HAGER, University of Florida SCOTT P. KOLODZIEJ, Texas A&M University S. NURI YERALAN,

More information

Allocation Strategies for Data-Oriented Architectures

Allocation Strategies for Data-Oriented Architectures Allocation Strategies for Data-Oriented Architectures Dissertation zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.) vorgelegt an der Technischen Universität Dresden Fakultät Informatik

More information

Hypergraph-Partitioning-Based Decomposition for Parallel Sparse-Matrix Vector Multiplication

Hypergraph-Partitioning-Based Decomposition for Parallel Sparse-Matrix Vector Multiplication IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 7, JULY 1999 673 Hypergraph-Partitioning-Based Decomposition for Parallel Sparse-Matrix Vector Multiplication UÈ mitv.cëatalyuè rek and

More information

Efficient Algorithms for Graph Bisection of Sparse Planar Graphs. Gerold Jäger University of Halle Germany

Efficient Algorithms for Graph Bisection of Sparse Planar Graphs. Gerold Jäger University of Halle Germany Efficient Algorithms for Graph Bisection of Sparse Planar Graphs Gerold Jäger University of Halle Germany Overview 1 Definition of MINBISECTION 2 Approximation Results 3 Previous Algorithms Notations Simple-Greedy-Algorithm

More information

Hypergraph-Partitioning Based Decomposition for Parallel Sparse-Matrix Vector Multiplication

Hypergraph-Partitioning Based Decomposition for Parallel Sparse-Matrix Vector Multiplication Hypergraph-Partitioning Based Decomposition for Parallel Sparse-Matrix Vector Multiplication Ümit V. Çatalyürek and Cevdet Aykanat, Member, IEEE Computer Engineering Department, Bilkent University 06 Bilkent,

More information

Analysis of Multilevel Graph Partitioning

Analysis of Multilevel Graph Partitioning Analysis of Multilevel Graph Partitioning GEORGE KARYPIS AND VIPIN KUMAR University of Minnesota, Department of Computer Science Minneapolis, MN 55455 {karypis, kumar}@cs.umn.edu Abstract Recently, a number

More information

Very Large Graph Partitioning by Means of Parallel DBMS

Very Large Graph Partitioning by Means of Parallel DBMS Advances in Databases and Information Systems Genoa, September, 2013 Very Large Graph Partitioning by Means of Parallel DBMS Constantin Pan, Mikhail Zymbler South Ural State University, Chelyabinsk, Russia

More information

Contributions au partitionnement de graphes parallèle multi-niveaux

Contributions au partitionnement de graphes parallèle multi-niveaux 1 Habilitation à Diriger des Recherches École doctorale de Mathématiques et d'informatique Université de Bordeaux 1 Contributions au partitionnement de graphes parallèle multi-niveaux (Contributions to

More information

PT-Scotch: A tool for efficient parallel graph ordering

PT-Scotch: A tool for efficient parallel graph ordering PT-Scotch: A tool for efficient parallel graph ordering C. Chevalier a, F. Pellegrini b a LaBRI & Project ScAlApplix of INRIA Futurs 351, cours de la Libération, 33400 Talence, France b ENSEIRB, LaBRI

More information

Think Locally, Act Globally: Highly Balanced Graph Partitioning

Think Locally, Act Globally: Highly Balanced Graph Partitioning Think Locally, Act Globally: Highly Balanced Graph Partitioning Peter Sanders, Christian Schulz Karlsruhe Institute of Technology, Karlsruhe, Germany {sanders, christian.schulz}@kit.edu Abstract. We present

More information

A Recursive Coalescing Method for Bisecting Graphs

A Recursive Coalescing Method for Bisecting Graphs A Recursive Coalescing Method for Bisecting Graphs The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Accessed Citable

More information

Scalable Clustering of Signed Networks Using Balance Normalized Cut

Scalable Clustering of Signed Networks Using Balance Normalized Cut Scalable Clustering of Signed Networks Using Balance Normalized Cut Kai-Yang Chiang,, Inderjit S. Dhillon The 21st ACM International Conference on Information and Knowledge Management (CIKM 2012) Oct.

More information

Fennel: Streaming Graph Partitioning for Massive Scale Graphs

Fennel: Streaming Graph Partitioning for Massive Scale Graphs Fennel: Streaming Graph Partitioning for Massive Scale Graphs Charalampos E. Tsourakakis 1 Christos Gkantsidis 2 Bozidar Radunovic 2 Milan Vojnovic 2 1 Aalto University, Finland 2 Microsoft Research, Cambridge

More information

Multilevel Algorithms for Partitioning Power-Law Graphs

Multilevel Algorithms for Partitioning Power-Law Graphs Multilevel Algorithms for Partitioning Power-Law Graphs Amine Abou-Rjeili and George Karypis Department of Computer Science & Engineering, Army HPC Research Center, & Digital Technology Center University

More information

Parallel Algorithms for Hypergraph Partitioning

Parallel Algorithms for Hypergraph Partitioning University of London Imperial College of Science, Technology and Medicine Department of Computing Parallel Algorithms for Hypergraph Partitioning Aleksandar Trifunović Submitted in part fulfilment of the

More information

PuLP: Scalable Multi-Objective Multi-Constraint Partitioning for Small-World Networks

PuLP: Scalable Multi-Objective Multi-Constraint Partitioning for Small-World Networks PuLP: Scalable Multi-Objective Multi-Constraint Partitioning for Small-World Networks George M. Slota 1,2 Kamesh Madduri 2 Sivasankaran Rajamanickam 1 1 Sandia National Laboratories, 2 The Pennsylvania

More information

Parallel Multilevel Algorithms for Hypergraph Partitioning

Parallel Multilevel Algorithms for Hypergraph Partitioning Parallel Multilevel Algorithms for Hypergraph Partitioning Aleksandar Trifunović William J. Knottenbelt Department of Computing, Imperial College London, South Kensington Campus, London SW7 2AZ, United

More information

Co-optimizing Application Partitioning and Network Topology for a Reconfigurable Interconnect

Co-optimizing Application Partitioning and Network Topology for a Reconfigurable Interconnect Co-optimizing Application Partitioning and Network Topology for a Reconfigurable Interconnect Deepak Ajwani a,, Adam Hackett b, Shoukat Ali c, John P. Morrison d, Stephen Kirkland b a Bell Labs, Alcatel-Lucent,

More information

Study of a Multilevel Approach to Partitioning for Parallel Logic Simulation Λ

Study of a Multilevel Approach to Partitioning for Parallel Logic Simulation Λ Study of a Multilevel Approach to Partitioning for Parallel Logic Simulation Λ Swaminathan Subramanian, Dhananjai M. Rao,andPhilip A. Wilsey Experimental Computing Laboratory, Cincinnati, OH 45221 0030

More information

A STUDY OF LOAD IMBALANCE FOR PARALLEL RESERVOIR SIMULATION WITH MULTIPLE PARTITIONING STRATEGIES. A Thesis XUYANG GUO

A STUDY OF LOAD IMBALANCE FOR PARALLEL RESERVOIR SIMULATION WITH MULTIPLE PARTITIONING STRATEGIES. A Thesis XUYANG GUO A STUDY OF LOAD IMBALANCE FOR PARALLEL RESERVOIR SIMULATION WITH MULTIPLE PARTITIONING STRATEGIES A Thesis by XUYANG GUO Submitted to the Office of Graduate and Professional Studies of Texas A&M University

More information

Genetic Algorithm for Circuit Partitioning

Genetic Algorithm for Circuit Partitioning Genetic Algorithm for Circuit Partitioning ZOLTAN BARUCH, OCTAVIAN CREŢ, KALMAN PUSZTAI Computer Science Department, Technical University of Cluj-Napoca, 26, Bariţiu St., 3400 Cluj-Napoca, Romania {Zoltan.Baruch,

More information

BACKEND DESIGN. Circuit Partitioning

BACKEND DESIGN. Circuit Partitioning BACKEND DESIGN Circuit Partitioning Partitioning System Design Decomposition of a complex system into smaller subsystems. Each subsystem can be designed independently. Decomposition scheme has to minimize

More information

Parallel Logic Synthesis Optimization for Digital Sequential Circuit

Parallel Logic Synthesis Optimization for Digital Sequential Circuit Kasetsart J. (Nat. Sci.) 36 : 319-326 (2002) Parallel Logic Synthesis Optimization for Digital Sequential Circuit Aswit Pungsema and Pradondet Nilagupta ABSTRACT High-level synthesis tools are very important

More information

GRAPH MATCHING ALGORITHM FOR TASK ASSIGNMENT PROBLEM

GRAPH MATCHING ALGORITHM FOR TASK ASSIGNMENT PROBLEM GRAPH MATCHING ALGORITHM FOR TASK ASSIGNMENT PROBLEM R.Mohan 1 and Amitava Gupta 2 1 Dept. of Computer Science and Engineering, National Institute of Technology Tiruchirapalli Tamil Nadu 620015, India

More information

Generic Topology Mapping Strategies for Large-scale Parallel Architectures

Generic Topology Mapping Strategies for Large-scale Parallel Architectures Generic Topology Mapping Strategies for Large-scale Parallel Architectures Torsten Hoefler and Marc Snir Scientific talk at ICS 11, Tucson, AZ, USA, June 1 st 2011, Hierarchical Sparse Networks are Ubiquitous

More information

Topology and affinity aware hierarchical and distributed load-balancing in Charm++

Topology and affinity aware hierarchical and distributed load-balancing in Charm++ Topology and affinity aware hierarchical and distributed load-balancing in Charm++ Emmanuel Jeannot, Guillaume Mercier, François Tessier Inria - IPB - LaBRI - University of Bordeaux - Argonne National

More information

Implementing the MPI Process Topology Mechanism

Implementing the MPI Process Topology Mechanism Implementing the MPI Process Topology Mechanism Jesper Larsson Träff C&C Research Laboratories, NEC Europe Ltd. Rathausallee 10, D-53757 Sankt Augustin, Germany traff@ccrl-nece.de Abstract The topology

More information

Hypergraph Partitioning With Fixed Vertices

Hypergraph Partitioning With Fixed Vertices Hypergraph Partitioning With Fixed Vertices Andrew E. Caldwell, Andrew B. Kahng and Igor L. Markov UCLA Computer Science Department, Los Angeles, CA 90095-596 Abstract We empirically assess the implications

More information

UNIVERSITY OF CALGARY. Force-Directed Partitioning Technique for 3D IC. Aysa Fakheri Tabrizi A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

UNIVERSITY OF CALGARY. Force-Directed Partitioning Technique for 3D IC. Aysa Fakheri Tabrizi A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES UNIVERSITY OF CALGARY Force-Directed Partitioning Technique for 3D IC by Aysa Fakheri Tabrizi A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

More information