Human Engineering in Stereoscopic Viewing Devices

Size: px
Start display at page:

Download "Human Engineering in Stereoscopic Viewing Devices"

Transcription

1 Human Engineering in Stereoscopic Viewing Devices

2 ADVANCES IN COMPUTER VISION AND MACHINE INTELLIGENCE Series Editor: Martin D. Levine McGill University Montrial. Quibec. Canada COMPUTER VISION FOR ELECTRONICS MANUFACTURING L. F. Pau HUMAN ENGINEERING IN STEREOSCOPIC VIEWING DEVICES Daniel B. Diner and Derek H. Fender PYRAMIDAL ARCmTECTURES FOR COMPUTER VISION Virginio Cantoni and Marco Ferretti SIGMA: A Knowledge-Based Aerial Image Understanding System Takashi Matsuyama and Vincent Shang-Shouq Hwang A Continuation Order Plan is available for this series. A continuation order will bring delivery of each new volume immediately upon publication. Volumes are billed only upon actual shipment. For further information please contact the publisher.

3 Human Engineering in Stereoscopic Viewing Devices DANIEL B. DINER Jet Propulsion Laboratory Pasadena. California and DEREK H. FENDER California Institute of Technology Pasadena. California Springer Science+Business Media, LLC

4 Diner, Daniel B. Hunan engineering m stereoscopic viewing devices / Daniel B. Diner and Derek H. Fender. p. CM. (Advances 1n conputer vision and Machine Intel 1Igence) Includes bibliographical references and Index. 1. Optical pattern recognition. 2. Human engineering. 3. Stereoscopic views. 4. Conputer vision. I. Fender, Derek, H. II. Title. III. Title: Stereoscopic viewing devices. IV. Series. TA1650.D ' 7 dc CIP ISBN DOI / ISBN (ebook) Springer Science+Business Media New York 1993 Originally published by Plenum Press, New York in 1993 Softcover reprint of the hardcover 1st edition 1993 Allrightsreserved No part of this book may be reproduced, stored in retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permissionfromthe Publisher

5 Acknowledgements We wish to thank Dr Charles H. Anderson, Dr Antal K. Bejczy, Debra D. Camp, Roy Chafin, Alecia Chen, Dave Coufal, Dr Michel Delpech, Antony R.H. Fender, Dr Donald B. Gennery, Peter German, Shane Groff, Dr Blake Hannaford, Stephen P. Hines, Dr Michael Hyson, Eric C. Johnson, Daniel J. Kerrisk, Dr Gerhard Knieper, Douglas A. McAffee, Carol Mullenax, Dr Jeremiah I. Nelson, Hoang X. Pham, Dr Antonio Medina Puerta, Howard C. Primus, Dr L. Barkus Stark, Dr Wen-King Su, Steven C. Venema, Marika von Sydow, and Brian H. Wilcox for participating in many discussions during the progress of this work. This book has been developed from a Jet Propulsion Laboratory report number JPL D-8186 dated 15 January We wish to thank Jim Rooney for his help. v

6 Contents 1. Introduction Scope and Structure of This Book 1 2. Stereoscopic Properties of the Human Visual System Visual Anatomy and Neurophysiology Gross Anatomy of the Eye, Optic Nerve, and Optic Tract Neuroanatomy and Neurophysiology of the Visual System The Phenomenon of Fusion The Sense of Direction Fusion Retinal Disparity and the Percept of Depth Neurophysiology of the Binocular System Functional Models of the Binocular System Control Systems of the Eye Curvature of Stereoscopic Space The Vieth-Muller Circle 22 vii

7 viii Contents The Horopter Panum's Fusional Area Appendices The Curvature of Binocular Space Curvature at Other Points on the Centerline Curvature at Points not on the Centerline References Methods of Viewing 3-D Images Non-stereoscopic 3-D Viewers Variable Focal-length Mirror and High-speed Monitor The Shaking Camera Classes of Stereoscopic Images Separate Left-eye and Right-eye Recorded Images Combined Left-eye and Right-eye Recorded Images Presentation Techniques of Stereoscopic Images Presentation Techniques with Separate Images Presentation Techniques with Combined Images References Double Camera Systems Definition of Two-camera Systems Twin-lens Stereoscopic Photographic Systems Aerial Reconnaissance Photographs Television Camera Systems Typical Two-camera Stereoscopic Systems Stereoscopic Magnification Magnified Stereoscopic Depth Curvature of Stereoscopic Space Curvature at the Point of Convergence Curvature Corrected for Tangents of Angles Perceived Curvature of Stereoscopic Space Non-linearities of Time-bases 64

8 Contents ix 5. Single Camera Systems 67 5.l. Discussion of Single-camera Viewing Systems Folded and Unfolded Systems Precision Requirements of Mirror Mountings Advantages of Single-camera Systems I. Lens Focal Length Iris Opening Instabilities and Noise Disadvantages of Single-camera Systems l. Loss of Redundancy Asymmetric Adjustments Mirror Alignment and Size 72 I 6. Spatially-sampling Cameras and Monitors 73 6.l. Curvature of Binocular Space Depth Distortion of the Fronto-parallel Plane l. Perceived Curvature of the Fronto-parallel Plane The Effect of Inter-viewpoint Distance The Source of Depth Distortions l. Hyperstereoscopy, Orthostereoscopy and Hypostereoscopy Parallel Camera Configurations Curves of Apparent Equal Depth l. Family of Curves for Converged Cameras Location of the Images on the Camera Image Plates Height and the Fronto-parallel Planes l. Depth Distortions Caused by Telephoto Lenses Vertical Disparity Depth Resolution and Lozenge Size l. Converged Cameras Parallel Cameras Cameras and Monitors Appendices - Additional Mathematics l. Lozenge Length as a Function of Inter-viewpoint Distance The Pixel Rays - Singularities 119

9 x Contents The Denominators of the Ellipses and Hyperbolae The ~ Singularities n The Axes of the Ellipses The n, and nr Singularities References The Observer The Individual Observer Sub-pixel Depth Resolution The Apparent Location of Stereoscopic Images Converged cameras Parallel Cameras Moving Observers Head Motion Towards and Away from the Monitor Horizontal Head Motion - the Inverse Parallax Problem Vertical Head Motion 7.5. The Orthostereoscopic Distortion 7.6. References Moving Objects in the Work Space 8.1. Apparent Size Changes of a Moving Object 8.2. Apparent Depth of Moving Objects Converged Cameras Parallel Cameras Reducing Depth Distortions for Converged Cameras Distortion and Resolution The Region of Stereoscopic Viewing- Converged Cameras Reduction of Depth Distortion Reduction of Static Depth Distortion Reduction of Dynamic Depth Distortion 161

10 Contents Dynamic Distortion Caused by Panning the Camera Rig 9.3. Symmetrically Shifted Stereoscopic Images 9.4. References xi Setting up a Stereoscopic Camera System Designing a Stereoscopic Camera Rig The Desired Capabilities and Tasks Camera Resolution Observer-dependent Needs Other Camera Characteristics Calibrating the Cameras Specifications and Tolerances Image Collection Plate Alignment Setting up a Stereoscopic Camera Rig The System Variables Independent Variables Dependent Variables Independent Variables Using a Frame Buffer The Controllable Dependent Variables References 189 Index 191

Basic distinctions. Definitions. Epstein (1965) familiar size experiment. Distance, depth, and 3D shape cues. Distance, depth, and 3D shape cues

Basic distinctions. Definitions. Epstein (1965) familiar size experiment. Distance, depth, and 3D shape cues. Distance, depth, and 3D shape cues Distance, depth, and 3D shape cues Pictorial depth cues: familiar size, relative size, brightness, occlusion, shading and shadows, aerial/ atmospheric perspective, linear perspective, height within image,

More information

CS 563 Advanced Topics in Computer Graphics Stereoscopy. by Sam Song

CS 563 Advanced Topics in Computer Graphics Stereoscopy. by Sam Song CS 563 Advanced Topics in Computer Graphics Stereoscopy by Sam Song Stereoscopy Introduction Parallax Camera Displaying and Viewing Results Stereoscopy What is it? seeing in three dimensions creates the

More information

Prof. Feng Liu. Spring /27/2014

Prof. Feng Liu. Spring /27/2014 Prof. Feng Liu Spring 2014 http://www.cs.pdx.edu/~fliu/courses/cs510/ 05/27/2014 Last Time Video Stabilization 2 Today Stereoscopic 3D Human depth perception 3D displays 3 Stereoscopic media Digital Visual

More information

Natural Viewing 3D Display

Natural Viewing 3D Display We will introduce a new category of Collaboration Projects, which will highlight DoCoMo s joint research activities with universities and other companies. DoCoMo carries out R&D to build up mobile communication,

More information

Stereoscopic Models and Plotting

Stereoscopic Models and Plotting Stereoscopic Models and Plotting Stereoscopic Viewing Stereoscopic viewing is the way the depth perception of the objects through BINOCULAR vision with much greater accuracy. رؤيه البعد الثالث و االحساس

More information

Omni Stereo Vision of Cooperative Mobile Robots

Omni Stereo Vision of Cooperative Mobile Robots Omni Stereo Vision of Cooperative Mobile Robots Zhigang Zhu*, Jizhong Xiao** *Department of Computer Science **Department of Electrical Engineering The City College of the City University of New York (CUNY)

More information

PERCEIVING DEPTH AND SIZE

PERCEIVING DEPTH AND SIZE PERCEIVING DEPTH AND SIZE DEPTH Cue Approach Identifies information on the retina Correlates it with the depth of the scene Different cues Previous knowledge Slide 3 Depth Cues Oculomotor Monocular Binocular

More information

ARCHITECTURE AND CAD FOR DEEP-SUBMICRON FPGAs

ARCHITECTURE AND CAD FOR DEEP-SUBMICRON FPGAs ARCHITECTURE AND CAD FOR DEEP-SUBMICRON FPGAs THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE ARCHITECTURE AND CAD FOR DEEP-SUBMICRON FPGAs Vaughn Betz Jonathan Rose Alexander Marquardt

More information

Mahdi Amiri. May Sharif University of Technology

Mahdi Amiri. May Sharif University of Technology Course Presentation Multimedia Systems 3D Technologies Mahdi Amiri May 2014 Sharif University of Technology Binocular Vision (Two Eyes) Advantages A spare eye in case one is damaged. A wider field of view

More information

Stereo CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz

Stereo CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz Stereo CSE 576 Ali Farhadi Several slides from Larry Zitnick and Steve Seitz Why do we perceive depth? What do humans use as depth cues? Motion Convergence When watching an object close to us, our eyes

More information

Victor S. Grinberg M. W. Siegel. Robotics Institute, School of Computer Science, Carnegie Mellon University 5000 Forbes Ave., Pittsburgh, PA, 15213

Victor S. Grinberg M. W. Siegel. Robotics Institute, School of Computer Science, Carnegie Mellon University 5000 Forbes Ave., Pittsburgh, PA, 15213 Geometry of binocular imaging III : Wide-Angle and Fish-Eye Lenses Victor S. Grinberg M. W. Siegel Robotics Institute, School of Computer Science, Carnegie Mellon University 5000 Forbes Ave., Pittsburgh,

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 26 Propagation of Light Hecht, chapter 5 Spring 2015 Semester Matthew Jones Geometric Optics Typical problems in geometric optics: Given an optical system, what

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 26.1 The Reflection of Light 26.2 Forming Images With a Plane Mirror 26.3 Spherical Mirrors 26.4 Ray Tracing and the Mirror Equation 26.5 The Refraction of Light 26.6 Ray

More information

Perception, Part 2 Gleitman et al. (2011), Chapter 5

Perception, Part 2 Gleitman et al. (2011), Chapter 5 Perception, Part 2 Gleitman et al. (2011), Chapter 5 Mike D Zmura Department of Cognitive Sciences, UCI Psych 9A / Psy Beh 11A February 27, 2014 T. M. D'Zmura 1 Visual Reconstruction of a Three-Dimensional

More information

AP Physics: Curved Mirrors and Lenses

AP Physics: Curved Mirrors and Lenses The Ray Model of Light Light often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but is very useful for geometric

More information

Complex Sensors: Cameras, Visual Sensing. The Robotics Primer (Ch. 9) ECE 497: Introduction to Mobile Robotics -Visual Sensors

Complex Sensors: Cameras, Visual Sensing. The Robotics Primer (Ch. 9) ECE 497: Introduction to Mobile Robotics -Visual Sensors Complex Sensors: Cameras, Visual Sensing The Robotics Primer (Ch. 9) Bring your laptop and robot everyday DO NOT unplug the network cables from the desktop computers or the walls Tuesday s Quiz is on Visual

More information

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments Chapter 23 Geometrical Optics: Mirrors and Lenses and other Instruments HITT1 A small underwater pool light is 1 m below the surface of a swimming pool. What is the radius of the circle of light on the

More information

Binocular cues to depth PSY 310 Greg Francis. Lecture 21. Depth perception

Binocular cues to depth PSY 310 Greg Francis. Lecture 21. Depth perception Binocular cues to depth PSY 310 Greg Francis Lecture 21 How to find the hidden word. Depth perception You can see depth in static images with just one eye (monocular) Pictorial cues However, motion and

More information

Physics 1C Lecture 26A. Beginning of Chapter 26

Physics 1C Lecture 26A. Beginning of Chapter 26 Physics 1C Lecture 26A Beginning of Chapter 26 Mirrors and Lenses! As we have noted before, light rays can be diverted by optical systems to fool your eye into thinking an object is somewhere that it is

More information

Real-time Generation and Presentation of View-dependent Binocular Stereo Images Using a Sequence of Omnidirectional Images

Real-time Generation and Presentation of View-dependent Binocular Stereo Images Using a Sequence of Omnidirectional Images Real-time Generation and Presentation of View-dependent Binocular Stereo Images Using a Sequence of Omnidirectional Images Abstract This paper presents a new method to generate and present arbitrarily

More information

Think-Pair-Share. What visual or physiological cues help us to perceive 3D shape and depth?

Think-Pair-Share. What visual or physiological cues help us to perceive 3D shape and depth? Think-Pair-Share What visual or physiological cues help us to perceive 3D shape and depth? [Figure from Prados & Faugeras 2006] Shading Focus/defocus Images from same point of view, different camera parameters

More information

Important concepts in binocular depth vision: Corresponding and non-corresponding points. Depth Perception 1. Depth Perception Part II

Important concepts in binocular depth vision: Corresponding and non-corresponding points. Depth Perception 1. Depth Perception Part II Depth Perception Part II Depth Perception 1 Binocular Cues to Depth Depth Information Oculomotor Visual Accomodation Convergence Binocular Monocular Static Cues Motion Parallax Perspective Size Interposition

More information

Miniature faking. In close-up photo, the depth of field is limited.

Miniature faking. In close-up photo, the depth of field is limited. Miniature faking In close-up photo, the depth of field is limited. http://en.wikipedia.org/wiki/file:jodhpur_tilt_shift.jpg Miniature faking Miniature faking http://en.wikipedia.org/wiki/file:oregon_state_beavers_tilt-shift_miniature_greg_keene.jpg

More information

AN INVESTIGATION IrJTO FACrORS AFFECTING VER'I'ICAL EXAGGERATION

AN INVESTIGATION IrJTO FACrORS AFFECTING VER'I'ICAL EXAGGERATION AN INVESTIGATION IrJTO FACrORS AFFECTING VER'I'ICAL EXAGGERATION By Dr. Ali Radwan Sltawer Assistant Professor Civil Department, College of Engineering University of Riyadh Abstract When a pair of overlapping

More information

Geometric Optics. The Law of Reflection. Physics Waves & Oscillations 3/20/2016. Spring 2016 Semester Matthew Jones

Geometric Optics. The Law of Reflection. Physics Waves & Oscillations 3/20/2016. Spring 2016 Semester Matthew Jones Physics 42200 Waves & Oscillations Lecture 27 Propagation of Light Hecht, chapter 5 Spring 2016 Semester Matthew Jones Geometric Optics Typical problems in geometric optics: Given an optical system, what

More information

USE R/G GLASSES. Binocular Combina0on of Images. What can happen when images are combined by the two eyes?

USE R/G GLASSES. Binocular Combina0on of Images. What can happen when images are combined by the two eyes? Binocular Combina0on of Images 3D D USE R/G GLASSES What can happen when images are combined by the two eyes? Fusion- when images are similar and disparity is small Monocular Suppression / Rivalry- when

More information

Stereoscopic Systems Part 1

Stereoscopic Systems Part 1 Stereoscopic Systems Part 1 Terminology: Stereoscopic vs. 3D 3D Animation refers to computer animation created with programs (like Maya) that manipulate objects in a 3D space, though the rendered image

More information

Binocular stereo. Given a calibrated binocular stereo pair, fuse it to produce a depth image. Where does the depth information come from?

Binocular stereo. Given a calibrated binocular stereo pair, fuse it to produce a depth image. Where does the depth information come from? Binocular Stereo Binocular stereo Given a calibrated binocular stereo pair, fuse it to produce a depth image Where does the depth information come from? Binocular stereo Given a calibrated binocular stereo

More information

Proc. Int. Symp. Robotics, Mechatronics and Manufacturing Systems 92 pp , Kobe, Japan, September 1992

Proc. Int. Symp. Robotics, Mechatronics and Manufacturing Systems 92 pp , Kobe, Japan, September 1992 Proc. Int. Symp. Robotics, Mechatronics and Manufacturing Systems 92 pp.957-962, Kobe, Japan, September 1992 Tracking a Moving Object by an Active Vision System: PANTHER-VZ Jun Miura, Hideharu Kawarabayashi,

More information

Chapter 34. Images. In this chapter we define and classify images, and then classify several basic ways in which they can be produced.

Chapter 34. Images. In this chapter we define and classify images, and then classify several basic ways in which they can be produced. Chapter 34 Images One of the most important uses of the basic laws governing light is the production of images. Images are critical to a variety of fields and industries ranging from entertainment, security,

More information

Stereovision. Binocular disparity

Stereovision. Binocular disparity Stereovision Binocular disparity Retinal correspondence Uncrossed disparity Horoptor Crossed disparity Horoptor, crossed and uncrossed disparity Wheatsteone stereoscope (c. 1838) Red-green anaglyph How

More information

The image is virtual and erect. When a mirror is rotated through a certain angle, the reflected ray is rotated through twice this angle.

The image is virtual and erect. When a mirror is rotated through a certain angle, the reflected ray is rotated through twice this angle. 1 Class XII: Physics Chapter 9: Ray optics and Optical Instruments Top Concepts 1. Laws of Reflection. The reflection at a plane surface always takes place in accordance with the following two laws: (i)

More information

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Chapter 23 Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Reflection and Refraction at a Plane Surface The light radiate from a point object in all directions The light reflected from a plane

More information

The Lens. Refraction and The Lens. Figure 1a:

The Lens. Refraction and The Lens. Figure 1a: Lenses are used in many different optical devices. They are found in telescopes, binoculars, cameras, camcorders and eyeglasses. Even your eye contains a lens that helps you see objects at different distances.

More information

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light.

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light. Chapter 7: Geometrical Optics The branch of physics which studies the properties of light using the ray model of light. Overview Geometrical Optics Spherical Mirror Refraction Thin Lens f u v r and f 2

More information

Welcome to: Physics I. I m Dr Alex Pettitt, and I ll be your guide!

Welcome to: Physics I. I m Dr Alex Pettitt, and I ll be your guide! Welcome to: Physics I I m Dr Alex Pettitt, and I ll be your guide! Physics I: x Mirrors and lenses Lecture 13: 6-11-2018 Last lecture: Reflection & Refraction Reflection: Light ray hits surface Ray moves

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision CS 1674: Intro to Computer Vision Epipolar Geometry and Stereo Vision Prof. Adriana Kovashka University of Pittsburgh October 5, 2016 Announcement Please send me three topics you want me to review next

More information

Robert Collins CSE486, Penn State Lecture 08: Introduction to Stereo

Robert Collins CSE486, Penn State Lecture 08: Introduction to Stereo Lecture 08: Introduction to Stereo Reading: T&V Section 7.1 Stereo Vision Inferring depth from images taken at the same time by two or more cameras. Basic Perspective Projection Scene Point Perspective

More information

34.2: Two Types of Image

34.2: Two Types of Image Chapter 34 Images 34.2: Two Types of Image For you to see an object, your eye intercepts some of the light rays spreading from the object and then redirect them onto the retina at the rear of the eye.

More information

Rigid Body Motion and Image Formation. Jana Kosecka, CS 482

Rigid Body Motion and Image Formation. Jana Kosecka, CS 482 Rigid Body Motion and Image Formation Jana Kosecka, CS 482 A free vector is defined by a pair of points : Coordinates of the vector : 1 3D Rotation of Points Euler angles Rotation Matrices in 3D 3 by 3

More information

Chapter 34: Geometrical Optics

Chapter 34: Geometrical Optics Chapter 34: Geometrical Optics Mirrors Plane Spherical (convex or concave) Lenses The lens equation Lensmaker s equation Combination of lenses E! Phys Phys 2435: 22: Chap. 34, 3, Pg Mirrors New Topic Phys

More information

PH 222-2A Spring 2015

PH 222-2A Spring 2015 PH 222-2A Spring 2015 Images Lectures 24-25 Chapter 34 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) 3 Chapter 34 Images One of the most important uses of the basic laws governing light

More information

Minimizing Noise and Bias in 3D DIC. Correlated Solutions, Inc.

Minimizing Noise and Bias in 3D DIC. Correlated Solutions, Inc. Minimizing Noise and Bias in 3D DIC Correlated Solutions, Inc. Overview Overview of Noise and Bias Digital Image Correlation Background/Tracking Function Minimizing Noise Focus Contrast/Lighting Glare

More information

Theory of Automatic Robot Assembly and Programming

Theory of Automatic Robot Assembly and Programming Theory of Automatic Robot Assembly and Programming Theory of Automatic Robot Assembly and Programming Bartholomew o. Nnaji Professor and Director Automation and Robotics Laboratory Department of Industrial

More information

Optics Course (Phys 311) Geometrical Optics Refraction through Lenses

Optics Course (Phys 311) Geometrical Optics Refraction through Lenses Optics Course (Phys ) Geometrical Optics Refraction through Lenses Lecturer: Dr Zeina Hashim Slide 1 Objectives covered in this lesson : 1. Refraction through single spherical refracting surfaces. 2. Lenses:

More information

Essential Physics I. Lecture 13:

Essential Physics I. Lecture 13: Essential Physics I E I Lecture 13: 11-07-16 Reminders No lecture: Monday 18th July (holiday) Essay due: Monday 25th July, 4:30 pm 2 weeks!! Exam: Monday 1st August, 4:30 pm Announcements 250 word essay

More information

Interaxial Distance and Convergence Control for Efficient Stereoscopic Shooting using Horizontal Moving 3D Camera Rig

Interaxial Distance and Convergence Control for Efficient Stereoscopic Shooting using Horizontal Moving 3D Camera Rig Interaxial Distance and Convergence Control for Efficient Stereoscopic Shooting using Horizontal Moving 3D Camera Rig Seong-Mo An, Rohit Ramesh, Young-Sook Lee and Wan-Young Chung Abstract The proper assessment

More information

lecture 10 - depth from blur, binocular stereo

lecture 10 - depth from blur, binocular stereo This lecture carries forward some of the topics from early in the course, namely defocus blur and binocular disparity. The main emphasis here will be on the information these cues carry about depth, rather

More information

There are many cues in monocular vision which suggests that vision in stereo starts very early from two similar 2D images. Lets see a few...

There are many cues in monocular vision which suggests that vision in stereo starts very early from two similar 2D images. Lets see a few... STEREO VISION The slides are from several sources through James Hays (Brown); Srinivasa Narasimhan (CMU); Silvio Savarese (U. of Michigan); Bill Freeman and Antonio Torralba (MIT), including their own

More information

Laser Eye a new 3D sensor for active vision

Laser Eye a new 3D sensor for active vision Laser Eye a new 3D sensor for active vision Piotr Jasiobedzki1, Michael Jenkin2, Evangelos Milios2' Brian Down1, John Tsotsos1, Todd Campbell3 1 Dept. of Computer Science, University of Toronto Toronto,

More information

Chapter 34. Thin Lenses

Chapter 34. Thin Lenses Chapter 34 Thin Lenses Thin Lenses Mirrors Lenses Optical Instruments MFMcGraw-PHY 2426 Chap34a-Lenses-Revised: 7/13/2013 2 Inversion A right-handed coordinate system becomes a left-handed coordinate system

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 5: Projection Reading: Szeliski 2.1 Projection Reading: Szeliski 2.1 Projection Müller Lyer Illusion http://www.michaelbach.de/ot/sze_muelue/index.html Modeling

More information

Refraction and Lenses. Honors Physics

Refraction and Lenses. Honors Physics Refraction and Lenses Honors Physics Refraction Refraction is based on the idea that LIGHT is passing through one MEDIUM into another. The question is, WHAT HAPPENS? Suppose you are running on the beach

More information

Practice Exam Sample Solutions

Practice Exam Sample Solutions CS 675 Computer Vision Instructor: Marc Pomplun Practice Exam Sample Solutions Note that in the actual exam, no calculators, no books, and no notes allowed. Question 1: out of points Question 2: out of

More information

Exterior Orientation Parameters

Exterior Orientation Parameters Exterior Orientation Parameters PERS 12/2001 pp 1321-1332 Karsten Jacobsen, Institute for Photogrammetry and GeoInformation, University of Hannover, Germany The georeference of any photogrammetric product

More information

Perceptual Optics for Prisms and Lenses (for vision therapists)

Perceptual Optics for Prisms and Lenses (for vision therapists) Perceptual Optics for Prisms and Lenses (for vision therapists) Goal of lecture: Understand optical characteristics in order to improve the uses of lenses and prisms in optometric vision therapy. Kellye

More information

MULTIMEDIA DATABASE MANAGEMENT SYSTEMS

MULTIMEDIA DATABASE MANAGEMENT SYSTEMS MULTIMEDIA DATABASE MANAGEMENT SYSTEMS THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE MULTIMEDIA SYSTEMS AND APPLICATIONS Recently Published Titles: Consulting Editor Borko Furht Florida

More information

GOPRO CAMERAS MATRIX AND DEPTH MAP IN COMPUTER VISION

GOPRO CAMERAS MATRIX AND DEPTH MAP IN COMPUTER VISION Tutors : Mr. Yannick Berthoumieu Mrs. Mireille El Gheche GOPRO CAMERAS MATRIX AND DEPTH MAP IN COMPUTER VISION Delmi Elias Kangou Ngoma Joseph Le Goff Baptiste Naji Mohammed Hamza Maamri Kenza Randriamanga

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics The Reflection of Light: Mirrors: Mirrors produce images because the light that strikes them is reflected, rather than absorbed. Reflected light does much more than produce

More information

A Simple Viewfinder for Stereoscopic Video Capture Systems

A Simple Viewfinder for Stereoscopic Video Capture Systems A Simple Viewfinder for Stereoscopic Video Capture Systems Cary Kornfeld Departement Informatik ETH Zürich CH 8092 Zürich, Switzerland Cary.Kornfeld@inf.ethz.ch Abstract The emergence of low cost digital

More information

Project 4 Results. Representation. Data. Learning. Zachary, Hung-I, Paul, Emanuel. SIFT and HoG are popular and successful.

Project 4 Results. Representation. Data. Learning. Zachary, Hung-I, Paul, Emanuel. SIFT and HoG are popular and successful. Project 4 Results Representation SIFT and HoG are popular and successful. Data Hugely varying results from hard mining. Learning Non-linear classifier usually better. Zachary, Hung-I, Paul, Emanuel Project

More information

Basic Concepts in Information Theory and Coding. The Adventures of Secret Agent 00111

Basic Concepts in Information Theory and Coding. The Adventures of Secret Agent 00111 Basic Concepts in Information Theory and Coding The Adventures of Secret Agent 00111 Applications of Communications Theory Series Editor: R. W Lucky, Bellcore Recent volumes In the series: BASIC CONCEPTS

More information

Multidimensional image retargeting

Multidimensional image retargeting Multidimensional image retargeting 9:00: Introduction 9:10: Dynamic range retargeting Tone mapping Apparent contrast and brightness enhancement 10:45: Break 11:00: Color retargeting 11:30: LDR to HDR 12:20:

More information

Chapter 12-Close-Up and Macro Photography

Chapter 12-Close-Up and Macro Photography Chapter 12-Close-Up and Macro Photography Close-up images all taken with Hipstamatic on the iphone Close-up and Macro Examples All taken with close-up filter or reverse mount lens Macro Close-up Photography

More information

Digital Imaging Study Questions Chapter 8 /100 Total Points Homework Grade

Digital Imaging Study Questions Chapter 8 /100 Total Points Homework Grade Name: Class: Date: Digital Imaging Study Questions Chapter 8 _/100 Total Points Homework Grade True/False Indicate whether the sentence or statement is true or false. 1. You can change the lens on most

More information

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Basic Experiments in Optics on the Optical Bench U17145 Instruction sheet 5/11/ALF/MEC Experiment 1: Experiment 2: Experiment 3: Experiment 4: Experiment 5: Experiment 6: Experiment

More information

Integrating 3D Vision Measurements into Industrial Robot Applications

Integrating 3D Vision Measurements into Industrial Robot Applications Integrating 3D Vision Measurements into Industrial Robot Applications by Frank S. Cheng cheng1fs@cmich.edu Engineering and echnology Central Michigan University Xiaoting Chen Graduate Student Engineering

More information

Machine vision. Summary # 11: Stereo vision and epipolar geometry. u l = λx. v l = λy

Machine vision. Summary # 11: Stereo vision and epipolar geometry. u l = λx. v l = λy 1 Machine vision Summary # 11: Stereo vision and epipolar geometry STEREO VISION The goal of stereo vision is to use two cameras to capture 3D scenes. There are two important problems in stereo vision:

More information

Stereo Vision A simple system. Dr. Gerhard Roth Winter 2012

Stereo Vision A simple system. Dr. Gerhard Roth Winter 2012 Stereo Vision A simple system Dr. Gerhard Roth Winter 2012 Stereo Stereo Ability to infer information on the 3-D structure and distance of a scene from two or more images taken from different viewpoints

More information

Stereo SLAM. Davide Migliore, PhD Department of Electronics and Information, Politecnico di Milano, Italy

Stereo SLAM. Davide Migliore, PhD Department of Electronics and Information, Politecnico di Milano, Italy Stereo SLAM, PhD migliore@elet.polimi.it Department of Electronics and Information, Politecnico di Milano, Italy What is a Stereo Camera? Slide n 2 Do you remember the pin-hole camera? What is a Stereo

More information

Chapters 1 7: Overview

Chapters 1 7: Overview Chapters 1 7: Overview Chapter 1: Introduction Chapters 2 4: Data acquisition Chapters 5 7: Data manipulation Chapter 5: Vertical imagery Chapter 6: Image coordinate measurements and refinements Chapter

More information

Machine Vision Systems

Machine Vision Systems Overview Function Image types The optical path of the lens is defined by its construction. For spherical lenses the solid angle depends on the focal length, focus adjustment and aperture; all rays run

More information

FEATURE. Measurement of Static Convergence and Accommodation Responses to Images of Integral Photography

FEATURE. Measurement of Static Convergence and Accommodation Responses to Images of Integral Photography Measurement of Static onvergence and ccommodation Responses to Images of Integral Photography Hitoshi HIUR, Kazuteru KOMINE, Jun RI and Tomoyuki MISHIN Integral photography is a method to display 3 optical

More information

zspace Developer SDK Guide - Introduction Version 1.0 Rev 1.0

zspace Developer SDK Guide - Introduction Version 1.0 Rev 1.0 zspace Developer SDK Guide - Introduction Version 1.0 zspace.com Developer s Guide Rev 1.0 zspace, Inc. 2015. zspace is a registered trademark of zspace, Inc. All other trademarks are the property of their

More information

Camera Calibration for Video See-Through Head-Mounted Display. Abstract. 1.0 Introduction. Mike Bajura July 7, 1993

Camera Calibration for Video See-Through Head-Mounted Display. Abstract. 1.0 Introduction. Mike Bajura July 7, 1993 Camera Calibration for Video See-Through Head-Mounted Display Mike Bajura July 7, 1993 Abstract This report describes a method for computing the parameters needed to model a television camera for video

More information

PHYSICS. Light FORM 4. Chapter 5. Compiled by Cikgu Desikan

PHYSICS. Light FORM 4. Chapter 5. Compiled by Cikgu Desikan PHYSICS RM 4 Chapter 5 Light Compiled by Cikgu Desikan PRE SPM PHYSICS 2016 Chapter 5 Light Dear students, The two basic processes of education are knowing and valuing. Learning bjectives : 1. Understanding

More information

Camera Calibration for a Robust Omni-directional Photogrammetry System

Camera Calibration for a Robust Omni-directional Photogrammetry System Camera Calibration for a Robust Omni-directional Photogrammetry System Fuad Khan 1, Michael Chapman 2, Jonathan Li 3 1 Immersive Media Corporation Calgary, Alberta, Canada 2 Ryerson University Toronto,

More information

A concave mirror is a converging mirror because parallel rays will. A convex mirror is a diverging mirror because parallel rays will

A concave mirror is a converging mirror because parallel rays will. A convex mirror is a diverging mirror because parallel rays will Ray Diagrams Convex Mirror A concave mirror is a converging mirror because parallel rays will. A convex mirror is a diverging mirror because parallel rays will. Quick Activity obtain a ray box and a curved

More information

LUMS Mine Detector Project

LUMS Mine Detector Project LUMS Mine Detector Project Using visual information to control a robot (Hutchinson et al. 1996). Vision may or may not be used in the feedback loop. Visual (image based) features such as points, lines

More information

CSE 4392/5369. Dr. Gian Luca Mariottini, Ph.D.

CSE 4392/5369. Dr. Gian Luca Mariottini, Ph.D. University of Texas at Arlington CSE 4392/5369 Introduction to Vision Sensing Dr. Gian Luca Mariottini, Ph.D. Department of Computer Science and Engineering University of Texas at Arlington WEB : http://ranger.uta.edu/~gianluca

More information

Algebra Based Physics

Algebra Based Physics Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Table of ontents Slide 3 / 66 lick on the topic to go to that section Reflection Spherical Mirror Refraction and

More information

Victor S. Grinberg Gregg W. Podnar M. W. Siegel

Victor S. Grinberg Gregg W. Podnar M. W. Siegel Geometry of binocular imaging II : The augmented eye Victor S. Grinberg Gregg W. Podnar M. W. Siegel Robotics Institute, School of Computer Science, Carnegie Mellon University 5000 Forbes Ave., Pittsburgh,

More information

LEICA TS-APO-ElmAr-S 120 MM f/5.6 ASPH.

LEICA TS-APO-ElmAr-S 120 MM f/5.6 ASPH. LEICA TS-APO-ElmAr-S 12 MM f/5.6 ASPH. Technical Data. Illustration 1:2 TECHNICAL DATA Order no. 1179 Image angle (diagonal, horizontal, vertical) 23.6 / 2. / 13.6, corresponds to approx. 96 focal length

More information

Smoothing Region Boundaries in Variable Depth Mapping for Real Time Stereoscopic Images

Smoothing Region Boundaries in Variable Depth Mapping for Real Time Stereoscopic Images Smoothing Region Boundaries in Variable Depth Mapping for Real Time Stereoscopic Images Nick Holliman Department of Computer Science, University of Durham, Durham, United Kingdom ABSTRACT We believe the

More information

DEPTH PERCEPTION. Learning Objectives: 7/31/2018. Intro & Overview of DEPTH PERCEPTION** Speaker: Michael Patrick Coleman, COT, ABOC, & former CPOT

DEPTH PERCEPTION. Learning Objectives: 7/31/2018. Intro & Overview of DEPTH PERCEPTION** Speaker: Michael Patrick Coleman, COT, ABOC, & former CPOT DEPTH PERCEPTION Speaker: Michael Patrick Coleman, COT, ABOC, & former CPOT Learning Objectives: Attendees will be able to 1. Explain what the primary cue to depth perception is (vs. monocular cues) 2.

More information

Automatic Disparity Control in Stereo Panoramas (OmniStereo) Λ

Automatic Disparity Control in Stereo Panoramas (OmniStereo) Λ Automatic Disparity Control in Stereo Panoramas (OmniStereo) Λ Yael Pritch Moshe Ben-Ezra Shmuel Peleg School of Computer Science and Engineering The Hebrew University of Jerusalem 91904 Jerusalem, ISRAEL

More information

VS 117 LABORATORY III: FIXATION DISPARITY INTRODUCTION

VS 117 LABORATORY III: FIXATION DISPARITY INTRODUCTION VS 117 LABORATORY III: FIXATION DISPARITY INTRODUCTION Under binocular viewing, subjects generally do not gaze directly at the visual target. Fixation disparity is defined as the difference between the

More information

ROSS AND ASSOCIATED PATENTS

ROSS AND ASSOCIATED PATENTS ROSS AND ASSOCIATED PATENTS Although A.ROSS makes reference to Patents in his Will ( 1858 ) none have been traced Patent Ref Date of Applicants Application 2193/1859 28-9-1859 T.Sutton Design for a Panoramic

More information

4. Refraction. glass, air, Perspex and water.

4. Refraction. glass, air, Perspex and water. Mr. C. Grima 11 1. Rays and Beams A ray of light is a narrow beam of parallel light, which can be represented by a line with an arrow on it, in diagrams. A group of rays makes up a beam of light. In laboratory

More information

Theodolite Instructions

Theodolite Instructions Theodolite Instructions Elizabeth Petrik ACME Experiment February 19, 2011 A theodolite is a telescope mounted to very sensitive horizontal and vertical protractors. It is capable of measuring angles and,

More information

Adaptive Zoom Distance Measuring System of Camera Based on the Ranging of Binocular Vision

Adaptive Zoom Distance Measuring System of Camera Based on the Ranging of Binocular Vision Adaptive Zoom Distance Measuring System of Camera Based on the Ranging of Binocular Vision Zhiyan Zhang 1, Wei Qian 1, Lei Pan 1 & Yanjun Li 1 1 University of Shanghai for Science and Technology, China

More information

IEEE Consumer Electronics Society Calibrating a VR Camera. Adam Rowell CTO, Lucid VR

IEEE Consumer Electronics Society Calibrating a VR Camera. Adam Rowell CTO, Lucid VR IEEE Consumer Electronics Society Calibrating a VR Camera Adam Rowell CTO, Lucid VR adam@lucidcam.com Virtual Reality Cameras Lucid VR Camera How Does it Work? Lucid Software Technology Recording: Synchronization

More information

Specialized Depth Extraction for Live Soccer Video

Specialized Depth Extraction for Live Soccer Video Specialized Depth Extraction for Live Soccer Video Axon Digital Design Eindhoven, University of Technology November 18, 2010 Introduction Related Work Proposed Approach Results Conclusion Questions Outline

More information

A Qualitative Analysis of 3D Display Technology

A Qualitative Analysis of 3D Display Technology A Qualitative Analysis of 3D Display Technology Nicholas Blackhawk, Shane Nelson, and Mary Scaramuzza Computer Science St. Olaf College 1500 St. Olaf Ave Northfield, MN 55057 scaramum@stolaf.edu Abstract

More information

COMPUTER VISION FOR VISUAL EFFECTS

COMPUTER VISION FOR VISUAL EFFECTS COMPUTER VISION FOR VISUAL EFFECTS Modern blockbuster movies seamlessly introduce impossible characters and action into real-world settings using digital visual effects. These effects are made possible

More information

ECE-161C Cameras. Nuno Vasconcelos ECE Department, UCSD

ECE-161C Cameras. Nuno Vasconcelos ECE Department, UCSD ECE-161C Cameras Nuno Vasconcelos ECE Department, UCSD Image formation all image understanding starts with understanding of image formation: projection of a scene from 3D world into image on 2D plane 2

More information

Project Title: Welding Machine Monitoring System Phase II. Name of PI: Prof. Kenneth K.M. LAM (EIE) Progress / Achievement: (with photos, if any)

Project Title: Welding Machine Monitoring System Phase II. Name of PI: Prof. Kenneth K.M. LAM (EIE) Progress / Achievement: (with photos, if any) Address: Hong Kong Polytechnic University, Phase 8, Hung Hom, Kowloon, Hong Kong. Telephone: (852) 3400 8441 Email: cnerc.steel@polyu.edu.hk Website: https://www.polyu.edu.hk/cnerc-steel/ Project Title:

More information

Towards Measuring of Depth Perception from Monocular Shadow Technique with Application in a Classical Painting

Towards Measuring of Depth Perception from Monocular Shadow Technique with Application in a Classical Painting Towards Measuring of Depth Perception from Monocular Shadow Technique with Application in a Classical Painting Wei Wen *, Siamak Khatibi Department of Communication Blekinge Tekniska Högskola, Karlskrona,

More information

Contents. 1 Introduction Background Organization Features... 7

Contents. 1 Introduction Background Organization Features... 7 Contents 1 Introduction... 1 1.1 Background.... 1 1.2 Organization... 2 1.3 Features... 7 Part I Fundamental Algorithms for Computer Vision 2 Ellipse Fitting... 11 2.1 Representation of Ellipses.... 11

More information

Stereo Observation Models

Stereo Observation Models Stereo Observation Models Gabe Sibley June 16, 2003 Abstract This technical report describes general stereo vision triangulation and linearized error modeling. 0.1 Standard Model Equations If the relative

More information