Multidimensional Scheduling (Polytope Scheduling Problem) Competitive Algorithms from Competitive Equilibria

Size: px
Start display at page:

Download "Multidimensional Scheduling (Polytope Scheduling Problem) Competitive Algorithms from Competitive Equilibria"

Transcription

1 Multidimensional Scheduling (Polytope Scheduling Problem) Competitive Algorithms from Competitive Equilibria Sungjin Im University of California, Merced (UC Merced) Janardhan Kulkarni (MSR) Kamesh Munagala (Duke)

2 Competitive Algorithms from Competitive Equilibria

3 Competitive Online Scheduling Algorithms for Datacenter from Competitive Equilibria

4 Speed Competitive Online Scheduling Algorithms for Datacenter Competitive Equilibria

5 Speed Competitive Online Scheduling Algorithms for Datacenter Fairness Competitive Equilibria in Economics

6 Speed Competitive Online Scheduling Algorithms for Datacenter Fairness Competitive Equilibria in Economics

7 Outline Multidimensional Scheduling (Polytope Scheduling Problem) System Desiderata Fairness Job latency: total completion time and total flow/response time Our Results Conclusions

8 Multidimensional Scheduling System has many resources CPU, memory, disk, network, Each available in limited supply Each user runs a job with a certain resource requirement At each time instant: Allocate resources among the users Rate of processing = Function of resources allocated Utility of job = Rate of processing

9 An Example Ghodsi, Zaharia, Hindman, Kondwinski, Shenker, Stoica. NSDI 2012 Two (divisible) resources 9 CPUs; 18GB RAM Denote this as Supply vector, S = (9,18) User 1 runs a job that needs r 1 = (1,4) and size 6 Needs resources x 1 r 1 to get processing rate x 1 User 2 runs a job that needs r 2 = (3,1) and size 6 If User 1 gets rate x 1 and User 2 gets rate x 2 then: x x x 1 + x 2 18

10 For simplicity Normalize supply to equalize all dimensions Supply = (9,18) Normalized Supply S = (18,18) User 1 runs a job that needs r 1 = (2, 4) and size 6 User 2 runs a job that needs r 2 = (6, 1) and size 6 If User 1 gets rate x 1 and User 2 gets rate x 2 then: 2 x x x 1 + x 2 18 If x 1 =3 and x 2 = 2, then the two jobs complete in 6/3 and 6/2 time steps, respectively.

11 Multidimensional Scheduling n jobs D dimensions/resources (1, 1, 1,, 1) Each job j has demand vector (r j1, r j2, r j3,, r jd ) size/processing requirement p j Arrives at time a j online Feasible Schedule at time t Σ j r jd x j (t) 1 for all d = 1, 2,, D, Then, each job j gets processed at a rate of x j (t) at time t

12 Extension to Polytope Constraints n jobs in system Each job j needs to be assigned a processing rate x j (t) Set {x j (t)} needs to lie within some feasibility polytope P Typically, P is a packing (downward-closed) polytope Encodes many well-studied scheduling problems: Rate is arbitrary concave function of resource allocation [Edmonds, Pruhs 02; Zahedi, Lee 13] Unrelated machine scheduling [Chadha, Garg, Kumar, Muralidhara 09] Broadcast scheduling, switch scheduling,

13 Desiderata 1: Fair Allocations The system is shared by many clients. Fairness really matters. In the single resource/dimensional case, Max-Min Fairness is widely accepted. Max-Min Fairness: water-filling 1 1 1/6 2/3

14 Desiderata 1: Fair Allocations The system is shared by many clients. Fairness really matters. In the single resource/dimensional case, Max-Min Fairness is widely accepted Max-Min Fairness: water-filling 1 1 1/6 2/3

15 Desiderata 1: Fair Allocations The system is shared by many clients. Fairness really matters. In the single resource/dimensional case, Max-Min Fairness is widely accepted Max-Min Fairness: water-filling 1 1 1/6 2/3

16 Desiderata 1: Fair Allocations [Ghodsi et al. NSDI 2012] The notion of fairness is not clear in the multidimensional setting Pareto-optimality (PO) Cannot improve everyone s rate simultaneously Envy-freeness (EF) Users should not envy the share of other users Truthfulness (IC) Users should not misreport resource requirement Sharing Incentive (SI) Users should not be happier with 1/n share of all resources

17 Two Examples of Fair Allocations Dominant Resource Fairness [Ghodsi et al. NSDI 2012] Proportional Fairness [Nash 1950; Kelly et al. 1998] There are many other allocations that generalize max-min fairness

18 Dominant Resource Fairness (DRF) CPU Memory Recall r 1 = (2, 4) and r 2 = (6, 1) S = (18,18) for CPU and RAM Dominant resource: RAM for User 1 and CPU for User 2 Equalize dominant shares: 4 x 1 = 6 x 2 Yields x 1 = 3 and x 2 = 2

19 Proportional Fairness (PF or CEEI) Maximize X log x j under the resource constraints Each job has $1 money If resource i is priced at p i then job j will maximize x j by solving: Price paid = x j p r j = $1 Find prices for resources to clear the market Recall r 1 = (2, 4) and r 2 = (6, 1) S = (18,18) for CPU and RAM Set x 1 = 4.09 and x 2 = 1.64 j

20 Fairness: DRF vs PF DRF is EF, SI, IC, but not PO A simple generalization achieves PO [Parkes, Proccacia, Shah, 12] PF is PO, EF, SI but lacks IC A simple modification achieves IC [Cole, Gnatzelis, Goel, 13] and approximately satisfies PO

21 Desiderata 2: Job Latency Completion time C j of job j satisfies: Z Cj t=a j x jt p j Total rate allocated Completion time objective: Minimize X j w j C j Flow time (or Delay): Minimize X j w j (C j a j )

22 Competitive Ratio c competitive max I Cost(A online, I) Cost(OPT offline, I) c For all inputs I

23 Job Latency: DRF vs PF [I-Kulkarni-Munagala, STOC 14, FOCS 15, JACM 18] DRF is Ω(D.5 ) competitive for total completion time Even when all jobs arrive at time 0 DRF does not distinguish between heavy and light jobs! D p D jobs For all j a j =0 p j =1 w j =1 1 job 1 job 1 job Resources in unit supply

24 DRF Allocation x =1/ p D x =1/ p D x =1/ p D D p D jobs 1 job 1 job Completion Time of DRF = O(D p D) OPT schedules singleton jobs in parallel in one step, Then the heavy jobs sequentially OPT = O(D)

25 What does PF do? x = 1 p D(1 + p D) 1 D D p D jobs x = p D 1+ p D 1 1 job 1 job Completion Time of PF O(D) = OPT

26 Our Main Results [I-Kulkarni-Munagala, STOC 14, FOCS 15, JACM 18] PF is O(1) competitive for completion time! Fair! Non-clairvoyant! Holds for any scheduling problem that can be modeled as: Allocate rates {x jt } s.t.{x jt } 2 Packing polytope P - Packing polytope: Convex; if x is in P, and any y x is also in P.

27 Our Main Results [I-Kulkarni-Munagala, STOC 14, FOCS 15, JACM 18] PF is O(1) competitive for total flow time for any monotone PSP problem (with O(1)-speed augmentation) Monotone PSP: All present jobs gets less processing rate under PF when more jobs are added E.g. single source multi-commodity network routing, utilities modelling substitutable resources

28 Conclusion & Open Question Fairness could lead to low overall job latency Our lower bound does not rule out O(1)-speed O(1)-competitive algorithms for general PSP when clairvoyance is allowed. Can one can get O(1)-competitive algorithm for total flow time with (1+eps)-speed for monotone PSP? What is the tight competitive ratio of DRF for total completion time? Is it O(D.5 ) or O(D)?

Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, Ion Stoica. University of California, Berkeley nsdi 11

Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, Ion Stoica. University of California, Berkeley nsdi 11 Dominant Resource Fairness: Fair Allocation of Multiple Resource Types Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, Ion Stoica University of California, Berkeley nsdi 11

More information

A Competitive Flow Time Algorithm for Heterogeneous Clusters under Polytope Constraints

A Competitive Flow Time Algorithm for Heterogeneous Clusters under Polytope Constraints A Competitive Flow Time Algorithm for Heterogeneous Clusters under Polytope Constraints Sungjin Im 1, Janardhan Kulkarni 2, Benjamin Moseley 3, and Kamesh Munagala 4 1 EECS, University of California at

More information

Algorithms, Games, and Networks March 28, Lecture 18

Algorithms, Games, and Networks March 28, Lecture 18 Algorithms, Games, and Networks March 28, 2013 Lecturer: Ariel Procaccia Lecture 18 Scribe: Hanzhang Hu 1 Strategyproof Cake Cutting All cake cutting algorithms we have discussed in previous lectures are

More information

Fair Multi-Resource Allocation with External Resource for Mobile Edge Computing

Fair Multi-Resource Allocation with External Resource for Mobile Edge Computing Fair Multi-Resource Allocation with External Resource for Mobile Edge Computing Erfan Meskar and Ben Liang Department of Electrical and Computer Engineering, University of Toronto emeskar, liang@ece.utoronto.ca

More information

Today s Papers. Composability is Essential. The Future is Parallel Software. EECS 262a Advanced Topics in Computer Systems Lecture 13

Today s Papers. Composability is Essential. The Future is Parallel Software. EECS 262a Advanced Topics in Computer Systems Lecture 13 EECS 262a Advanced Topics in Computer Systems Lecture 13 Resource allocation: Lithe/DRF October 16 th, 2012 Today s Papers Composing Parallel Software Efficiently with Lithe Heidi Pan, Benjamin Hindman,

More information

Balancing Fairness and Efficiency in Tiered Storage Systems with Bottleneck-Aware Allocation

Balancing Fairness and Efficiency in Tiered Storage Systems with Bottleneck-Aware Allocation Balancing Fairness and Efficiency in Tiered Storage Systems with Bottleneck-Aware Allocation Hui Wang, Peter Varman Rice University FAST 14, Feb 2014 Tiered Storage Tiered storage: HDs and SSDs q Advantages:

More information

Design Of Scheduling Algorithms using Game Theore8c Ideas

Design Of Scheduling Algorithms using Game Theore8c Ideas Design Of Scheduling Algorithms using Game Theore8c Ideas Janardhan Kulkarni, Cloud Compu8ng 2 13% 4% Monthly Costs Servers Networking Equipment 18% 57% Power Distribu8on & Cooling Power 8% Other Infrastructure

More information

Mesos: Mul)programing for Datacenters

Mesos: Mul)programing for Datacenters Mesos: Mul)programing for Datacenters Ion Stoica Joint work with: Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D. Joseph, Randy Katz, ScoC Shenker, UC BERKELEY Mo)va)on Rapid innovaeon

More information

Beyond Beyond Dominant Resource Fairness : Indivisible Resource Allocation In Clusters

Beyond Beyond Dominant Resource Fairness : Indivisible Resource Allocation In Clusters Beyond Beyond Dominant Resource Fairness : Indivisible Resource Allocation In Clusters Abstract Christos-Alexandros Psomas alexpsomi@gmail.com Jarett Schwartz jarett@cs.berkeley.edu Resource allocation

More information

Key aspects of cloud computing. Towards fuller utilization. Two main sources of resource demand. Cluster Scheduling

Key aspects of cloud computing. Towards fuller utilization. Two main sources of resource demand. Cluster Scheduling Key aspects of cloud computing Cluster Scheduling 1. Illusion of infinite computing resources available on demand, eliminating need for up-front provisioning. The elimination of an up-front commitment

More information

Beyond Beyond Dominant Resource Fairness : Indivisible Resource Allocation In Clusters

Beyond Beyond Dominant Resource Fairness : Indivisible Resource Allocation In Clusters Beyond Beyond Dominant Resource Fairness : Indivisible Resource Allocation In Clusters Abstract Christos-Alexandros Psomas alexpsomi@gmail.com Jarett Schwartz jarett@cs.berkeley.edu Resource Allocation

More information

Mesos: A Pla+orm for Fine- Grained Resource Sharing in the Data Center

Mesos: A Pla+orm for Fine- Grained Resource Sharing in the Data Center Mesos: A Pla+orm for Fine- Grained Resource Sharing in the Data Center Ion Stoica, UC Berkeley Joint work with: A. Ghodsi, B. Hindman, A. Joseph, R. Katz, A. Konwinski, S. Shenker, and M. Zaharia Challenge

More information

FairRide: Near-Optimal Fair Cache Sharing

FairRide: Near-Optimal Fair Cache Sharing UC BERKELEY FairRide: Near-Optimal Fair Cache Sharing Qifan Pu, Haoyuan Li, Matei Zaharia, Ali Ghodsi, Ion Stoica 1 Caches are crucial 2 Caches are crucial 2 Caches are crucial 2 Caches are crucial 2 Cache

More information

COMP Online Algorithms. List Update with Advice & Bin Packing. Shahin Kamali. Lecture 14 - Oct. 23, 2018 University of Manitoba

COMP Online Algorithms. List Update with Advice & Bin Packing. Shahin Kamali. Lecture 14 - Oct. 23, 2018 University of Manitoba COMP 7720 - Online Algorithms List Update with Advice & Bin Packing Shahin Kamali Lecture 14 - Oct. 23, 2018 University of Manitoba COMP 7720 - Online Algorithms List Update with Advice & Bin Packing 1

More information

OASIS: Self-tuning Storage for Applications

OASIS: Self-tuning Storage for Applications OASIS: Self-tuning Storage for Applications Kostas Magoutis, Prasenjit Sarkar, Gauri Shah 14 th NASA Goddard- 23 rd IEEE Mass Storage Systems Technologies, College Park, MD, May 17, 2006 Outline Motivation

More information

Key aspects of cloud computing. Towards fuller utilization. Two main sources of resource demand. Cluster Scheduling

Key aspects of cloud computing. Towards fuller utilization. Two main sources of resource demand. Cluster Scheduling Key aspects of cloud computing Cluster Scheduling 1. Illusion of infinite computing resources available on demand, eliminating need for up-front provisioning. The elimination of an up-front commitment

More information

The hierarchical model for load balancing on two machines

The hierarchical model for load balancing on two machines The hierarchical model for load balancing on two machines Orion Chassid Leah Epstein Abstract Following previous work, we consider the hierarchical load balancing model on two machines of possibly different

More information

Datacenter Simulation Methodologies Case Studies

Datacenter Simulation Methodologies Case Studies This work is supported by NSF grants CCF-1149252, CCF-1337215, and STARnet, a Semiconductor Research Corporation Program, sponsored by MARCO and DARPA. Datacenter Simulation Methodologies Case Studies

More information

Amdahl s Law in the Datacenter Era! A Market for Fair Processor Allocation!

Amdahl s Law in the Datacenter Era! A Market for Fair Processor Allocation! Amdahl s Law in the Datacenter Era! A Market for Fair Processor Allocation! Seyed Majid Zahedi* (Duke University), Qiuyun Llull* (VMware/ Duke University), Benjamin C. Lee (Duke University)! *Equal Contributions!

More information

Topics in Artificial Intelligence: Multiagent Systems Selfish Routing in Computer Networks

Topics in Artificial Intelligence: Multiagent Systems Selfish Routing in Computer Networks Topics in Artificial Intelligence: Multiagent Systems Selfish Routing in Computer Networks Sebastian Streg December 10, 2005 1 Introduction Efficiency in networks with lots of traffic is a serious problem

More information

Global Scheduling in Multiprocessor Real-Time Systems

Global Scheduling in Multiprocessor Real-Time Systems Global Scheduling in Multiprocessor Real-Time Systems Alessandra Melani 1 Global vs Partitioned scheduling Single shared queue instead of multiple dedicated queues Global scheduling Partitioned scheduling

More information

The Implication of Overlay Routing on ISPs Connecting Strategies

The Implication of Overlay Routing on ISPs Connecting Strategies The Implication of Overlay Routing on ISPs Connecting Strategies Graduate School of Information Science and Technology, Osaka University Xun Shao, Go Hasegawa, Yoshiaki Taniguchi, and Hirotaka Nakano IP

More information

Improved Algorithm for Weighted Flow Time

Improved Algorithm for Weighted Flow Time Joint work with Yossi Azar Denition Previous Work and Our Results Overview Single machine receives jobs over time. Each job has an arrival time, a weight and processing time (volume). Allow preemption.

More information

REF: Resource Elasticity Fairness with Sharing Incentives for Multiprocessors

REF: Resource Elasticity Fairness with Sharing Incentives for Multiprocessors REF: Resource Elasticity Fairness with Sharing Incentives for Multiprocessors Seyed Majid Zahedi Duke University seyedmajid.zahedi@duke.edu Benjamin C. Lee Duke University benjamin.c.lee@duke.edu Abstract

More information

Online Stochastic Matching CMSC 858F: Algorithmic Game Theory Fall 2010

Online Stochastic Matching CMSC 858F: Algorithmic Game Theory Fall 2010 Online Stochastic Matching CMSC 858F: Algorithmic Game Theory Fall 2010 Barna Saha, Vahid Liaghat Abstract This summary is mostly based on the work of Saberi et al. [1] on online stochastic matching problem

More information

Hierarchical Scheduling for Diverse Datacenter Workloads

Hierarchical Scheduling for Diverse Datacenter Workloads Hierarchical Scheduling for Diverse Datacenter Workloads Arka A. Bhattacharya 1, David Culler 1, Eric Friedman 2, Ali Ghodsi 1, Scott Shenker 1, and Ion Stoica 1 1 University of California, Berkeley 2

More information

Introduction to algorithmic mechanism design

Introduction to algorithmic mechanism design Introduction to algorithmic mechanism design Elias Koutsoupias Department of Computer Science University of Oxford EWSCS 2014 March 5-7, 2014 Part I Game Theory and Computer Science Why Game Theory and

More information

Congestion Control in the Network

Congestion Control in the Network Congestion Control in the Network Brighten Godfrey CS 538 February 5 2018 slides 2010-2018 by Brighten Godfrey unless otherwise noted How TCP congestion control is broken A partial list... Efficiency Tends

More information

COMP Online Algorithms. k-server Problem & Advice. Shahin Kamali. Lecture 13 - Oct. 24, 2017 University of Manitoba

COMP Online Algorithms. k-server Problem & Advice. Shahin Kamali. Lecture 13 - Oct. 24, 2017 University of Manitoba COMP 7720 - Online Algorithms k-server Problem & Advice Shahin Kamali Lecture 13 - Oct. 24, 2017 University of Manitoba COMP 7720 - Online Algorithms k-server Problem & Advice 1 / 20 Review & Plan COMP

More information

Network Improvement for Equilibrium Routing

Network Improvement for Equilibrium Routing Network Improvement for Equilibrium Routing UMANG BHASKAR University of Waterloo and KATRINA LIGETT California Institute of Technology Routing games are frequently used to model the behavior of traffic

More information

Computational Public Economics PhD Course, Uppsala University

Computational Public Economics PhD Course, Uppsala University Computational Public Economics PhD Course, Uppsala University Spencer Bastani Department of Economcs Uppsala University May, 2014 Why computational public economics? It was recognized already by Mirrlees

More information

COMP Online Algorithms. Online Graph Problems. Shahin Kamali. Lecture 23 - Nov. 28th, 2017 University of Manitoba

COMP Online Algorithms. Online Graph Problems. Shahin Kamali. Lecture 23 - Nov. 28th, 2017 University of Manitoba COMP 7720 - Online Algorithms Online Graph Problems Shahin Kamali Lecture 23 - Nov. 28th, 2017 University of Manitoba COMP 7720 - Online Algorithms Online Graph Problems 1 / 13 Review & Plan COMP 7720

More information

Theorem 2.9: nearest addition algorithm

Theorem 2.9: nearest addition algorithm There are severe limits on our ability to compute near-optimal tours It is NP-complete to decide whether a given undirected =(,)has a Hamiltonian cycle An approximation algorithm for the TSP can be used

More information

Approximation Techniques for Utilitarian Mechanism Design

Approximation Techniques for Utilitarian Mechanism Design Approximation Techniques for Utilitarian Mechanism Design Department of Computer Science RWTH Aachen Germany joint work with Patrick Briest and Piotr Krysta 05/16/2006 1 Introduction to Utilitarian Mechanism

More information

Chapter 15 Introduction to Linear Programming

Chapter 15 Introduction to Linear Programming Chapter 15 Introduction to Linear Programming An Introduction to Optimization Spring, 2015 Wei-Ta Chu 1 Brief History of Linear Programming The goal of linear programming is to determine the values of

More information

Algorithmen II. Peter Sanders, Christian Schulz, Simon Gog. Übungen: Michael Axtmann. Institut für Theoretische Informatik, Algorithmik II.

Algorithmen II. Peter Sanders, Christian Schulz, Simon Gog. Übungen: Michael Axtmann. Institut für Theoretische Informatik, Algorithmik II. Schulz, Gog, Sanders: Algorithmen II - 31. Januar 2017 Algorithmen II Peter Sanders, Christian Schulz, Simon Gog Übungen: Michael Axtmann Institut für Theoretische Informatik, Algorithmik II Web: http://algo2.iti.kit.edu/algorithmenii_ws16.php

More information

Fairness & Efficiency in Network Performance Isolation

Fairness & Efficiency in Network Performance Isolation Fairness & Efficiency in Network Performance Isolation Vimalkumar Jeyakumar, Mohammad Alizadeh 2, Srinivas Narayana 3 Ragavendran Gopalakrishnan 4, Abdul Kabbani 5 {jvimal,alizade}@stanford.edu, narayana@cs.princeton.edu

More information

Choosy: Max-Min Fair Sharing for Datacenter Jobs with Constraints

Choosy: Max-Min Fair Sharing for Datacenter Jobs with Constraints Choosy: Max-Min Fair Sharing for Datacenter Jobs with Constraints Ali Ghodsi Matei Zaharia Scott Shenker Ion Stoica UC Berkeley {alig,matei,shenker,istoica}@cs.berkeley.edu Abstract Max-Min Fairness is

More information

College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007

College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007 College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007 CS G399: Algorithmic Power Tools I Scribe: Eric Robinson Lecture Outline: Linear Programming: Vertex Definitions

More information

Submodularity Reading Group. Matroid Polytopes, Polymatroid. M. Pawan Kumar

Submodularity Reading Group. Matroid Polytopes, Polymatroid. M. Pawan Kumar Submodularity Reading Group Matroid Polytopes, Polymatroid M. Pawan Kumar http://www.robots.ox.ac.uk/~oval/ Outline Linear Programming Matroid Polytopes Polymatroid Polyhedron Ax b A : m x n matrix b:

More information

11. APPROXIMATION ALGORITHMS

11. APPROXIMATION ALGORITHMS 11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: vertex cover LP rounding: vertex cover generalized load balancing knapsack problem Lecture slides by Kevin Wayne Copyright 2005

More information

Constrained and Unconstrained Optimization

Constrained and Unconstrained Optimization Constrained and Unconstrained Optimization Carlos Hurtado Department of Economics University of Illinois at Urbana-Champaign hrtdmrt2@illinois.edu Oct 10th, 2017 C. Hurtado (UIUC - Economics) Numerical

More information

COMP Online Algorithms. Online Bin Packing. Shahin Kamali. Lecture 20 - Nov. 16th, 2017 University of Manitoba

COMP Online Algorithms. Online Bin Packing. Shahin Kamali. Lecture 20 - Nov. 16th, 2017 University of Manitoba COMP 7720 - Online Algorithms Online Bin Packing Shahin Kamali Lecture 20 - Nov. 16th, 2017 University of Manitoba COMP 7720 - Online Algorithms Online Bin Packing 1 / 24 Review & Plan COMP 7720 - Online

More information

Anarchy, Stability, and Utopia: Creating Better Matchings

Anarchy, Stability, and Utopia: Creating Better Matchings Noname manuscript No. (will be inserted by the editor) Anarchy, Stability, and Utopia: Creating Better Matchings Elliot Anshelevich Sanmay Das Yonatan Naamad September 20 Abstract Historically, the analysis

More information

Group Strategyproof Mechanisms via Primal-Dual Algorithms. Key Points to Discuss

Group Strategyproof Mechanisms via Primal-Dual Algorithms. Key Points to Discuss Group Strategyproof Mechanisms via Primal-Dual Algorithms Martin Pál and Éva Tardos (2003) Key Points to Discuss The Cost-Sharing Problem Metric Facility Location Single Source Rent-or-Buy Definition of

More information

A Platform for Fine-Grained Resource Sharing in the Data Center

A Platform for Fine-Grained Resource Sharing in the Data Center Mesos A Platform for Fine-Grained Resource Sharing in the Data Center Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony Joseph, Randy Katz, Scott Shenker, Ion Stoica University of California,

More information

CONSUMPTION BASICS. MICROECONOMICS Principles and Analysis Frank Cowell. July 2017 Frank Cowell: Consumption Basics 1

CONSUMPTION BASICS. MICROECONOMICS Principles and Analysis Frank Cowell. July 2017 Frank Cowell: Consumption Basics 1 CONSUMPTION BASICS MICROECONOMICS Principles and Analysis Frank Cowell July 2017 Frank Cowell: Consumption Basics 1 Overview Consumption: Basics The setting The environment for the basic consumer optimisation

More information

The Encoding Complexity of Network Coding

The Encoding Complexity of Network Coding The Encoding Complexity of Network Coding Michael Langberg Alexander Sprintson Jehoshua Bruck California Institute of Technology Email: mikel,spalex,bruck @caltech.edu Abstract In the multicast network

More information

DC-DRF : Adaptive Multi- Resource Sharing at Public Cloud Scale. ACM Symposium on Cloud Computing 2018 Ian A Kash, Greg O Shea, Stavros Volos

DC-DRF : Adaptive Multi- Resource Sharing at Public Cloud Scale. ACM Symposium on Cloud Computing 2018 Ian A Kash, Greg O Shea, Stavros Volos DC-DRF : Adaptive Multi- Resource Sharing at Public Cloud Scale ACM Symposium on Cloud Computing 2018 Ian A Kash, Greg O Shea, Stavros Volos 1 Public Cloud DC hosting enterprise customers O(100K) servers,

More information

Hardware Evolution in Data Centers

Hardware Evolution in Data Centers Hardware Evolution in Data Centers 2004 2008 2011 2000 2013 2014 Trend towards customization Increase work done per dollar (CapEx + OpEx) Paolo Costa Rethinking the Network Stack for Rack-scale Computers

More information

Work Stealing for Interac1ve Services to Meet Target Latency

Work Stealing for Interac1ve Services to Meet Target Latency Work Stealing for Interac1ve Services to Meet Target Latency Jing Li, Kunal Agrawal, Sameh Elnikety, Yuxiong He, I-Ting Angelina Lee, Chenyang Lu, Kathryn S. McKinley Washington University in St. Louis

More information

4.1 Interval Scheduling

4.1 Interval Scheduling 41 Interval Scheduling Interval Scheduling Interval scheduling Job j starts at s j and finishes at f j Two jobs compatible if they don't overlap Goal: find maximum subset of mutually compatible jobs a

More information

arxiv: v2 [cs.dc] 3 Sep 2015

arxiv: v2 [cs.dc] 3 Sep 2015 ROBUS: Fair Cache Allocation for Multi-tenant Data-parallel Workloads Mayuresh Kunjir, Brandon Fain, Kamesh Munagala, Shivnath Babu Duke University {mayuresh, btfain, kamesh, shivnath}@cs.duke.edu arxiv:504.06736v2

More information

Exploiting Heterogeneity in the Public Cloud for Cost-Effective Data Analytics

Exploiting Heterogeneity in the Public Cloud for Cost-Effective Data Analytics Exploiting Heterogeneity in the Public Cloud for Cost-Effective Data Analytics Gunho Lee, Byung-Gon Chun, Randy H. Katz University of California, Berkeley, Intel Labs Berkeley Abstract Data analytics are

More information

OPTIMIZATION, OPTIMAL DESIGN AND DE NOVO PROGRAMMING: DISCUSSION NOTES

OPTIMIZATION, OPTIMAL DESIGN AND DE NOVO PROGRAMMING: DISCUSSION NOTES OPTIMIZATION, OPTIMAL DESIGN AND DE NOVO PROGRAMMING: DISCUSSION NOTES MILAN ZELENY Introduction Fordham University, New York, USA mzeleny@fordham.edu Many older texts, with titles like Globally Optimal

More information

Research Article A Game Theory Approach to Fair and Efficient Resource Allocation in Cloud Computing

Research Article A Game Theory Approach to Fair and Efficient Resource Allocation in Cloud Computing Mathematical Problems in Engineering, Article ID 95878, 4 pages http://dx.doi.org/.55/4/95878 Research Article A Game Theory Approach to Fair and Efficient Resource Allocation in Cloud Computing Xin Xu

More information

On-line End-to-End Congestion Control

On-line End-to-End Congestion Control On-line End-to-End Congestion Control Naveen Garg IIT Delhi Neal Young UC Riverside the Internet hard to predict dynamic large End-to-end (design principle of Internet) server end user Routers provide

More information

7 Distributed Data Management II Caching

7 Distributed Data Management II Caching 7 Distributed Data Management II Caching In this section we will study the approach of using caching for the management of data in distributed systems. Caching always tries to keep data at the place where

More information

A Simplex-like Algorithm for Fisher Markets

A Simplex-like Algorithm for Fisher Markets A Simplex-like Algorithm for Fisher Markets Bharat Adsul 1, Ch. Sobhan Babu 2, Jugal Garg 1, Ruta Mehta 1, and Milind Sohoni 1 1 Indian Institute of Technology, Bombay adsul,jugal,ruta,sohoni@cse.iitb.ac.in

More information

OASIS: Self-tuning Storage for Applications

OASIS: Self-tuning Storage for Applications OASIS: Self-tuning Storage for Applications Kostas Magoutis IBM T. J. Watson magoutis@us.ibm.com Prasenjit Sarkar IBM Almaden psarkar@almaden.ibm.com Gauri Shah IBM Almaden gauris@us.ibm.com Abstract This

More information

CS 580: Algorithm Design and Analysis. Jeremiah Blocki Purdue University Spring 2018

CS 580: Algorithm Design and Analysis. Jeremiah Blocki Purdue University Spring 2018 CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 2018 Chapter 11 Approximation Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved.

More information

Balancing Fairness and Efficiency in Tiered Storage Systems with Bottleneck-Aware Allocation

Balancing Fairness and Efficiency in Tiered Storage Systems with Bottleneck-Aware Allocation Balancing Fairness and Efficiency in Tiered Storage Systems with Bottleneck-Aware Allocation Hui Wang and Peter Varman, Rice University https://www.usenix.org/conference/fast14/technical-sessions/presentation/wang

More information

A Formal Analysis and Taxonomy of Task Allocation in Multi-Robot Systems. Brian Gerkey and Maja Matarić Presentation by: Elaine Short

A Formal Analysis and Taxonomy of Task Allocation in Multi-Robot Systems. Brian Gerkey and Maja Matarić Presentation by: Elaine Short A Formal Analysis and Taxonomy of Task Allocation in Multi-Robot Systems Brian Gerkey and Maja Matarić Presentation by: Elaine Short 1 Multi-Robot Task Allocation Consider the problem of multi-robot task

More information

Lecture 25 Nonlinear Programming. November 9, 2009

Lecture 25 Nonlinear Programming. November 9, 2009 Nonlinear Programming November 9, 2009 Outline Nonlinear Programming Another example of NLP problem What makes these problems complex Scalar Function Unconstrained Problem Local and global optima: definition,

More information

Prices and Auctions in Markets with Complex Constraints

Prices and Auctions in Markets with Complex Constraints Conference on Frontiers of Economics and Computer Science Becker-Friedman Institute Prices and Auctions in Markets with Complex Constraints Paul Milgrom Stanford University & Auctionomics August 2016 1

More information

A Constant Factor Approximation Algorithm for the Multicommodity Rent-or-Buy Problem

A Constant Factor Approximation Algorithm for the Multicommodity Rent-or-Buy Problem A Constant Factor Approximation Algorithm for the Multicommodity Rent-or-Buy Problem Amit Kumar Bell Labs joint work with Anupam Gupta Tim Roughgarden CMU Cornell The Rent-or-Buy Problem t 1 t 2 s 1 s

More information

Efficient VM Placement with Multiple Deterministic and Stochastic Resources in Data Centers

Efficient VM Placement with Multiple Deterministic and Stochastic Resources in Data Centers Efficient VM Placement with Multiple Deterministic and Stochastic Resources in Data Centers Hao Jin, Deng Pan, Jing Xu, and Niki Pissinou Florida International University Miami, FL Abstract Virtual machines

More information

Packing Tasks with Dependencies. Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, Janardhan Kulkarni

Packing Tasks with Dependencies. Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, Janardhan Kulkarni Packing Tasks with Dependencies Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, Janardhan Kulkarni The Cluster Scheduling Problem Jobs Goal: match tasks to resources Tasks 2 The Cluster Scheduling

More information

DCRoute: Speeding up Inter-Datacenter Traffic Allocation while Guaranteeing Deadlines

DCRoute: Speeding up Inter-Datacenter Traffic Allocation while Guaranteeing Deadlines DCRoute: Speeding up Inter-Datacenter Traffic Allocation while Guaranteeing Deadlines Mohammad Noormohammadpour, Cauligi S. Raghavendra Ming Hsieh Department of Electrical Engineering University of Southern

More information

A Survey of Recent Results on Real-Time Wireless Networking

A Survey of Recent Results on Real-Time Wireless Networking A Survey of Recent Results on Real-Time Wireless Networking I-Hong Hou CSL and Department of Computer Science University of Illinois Urbana, IL 61801, USA ihou2@illinois.edu P. R. Kumar CSL and Department

More information

Nash Equilibrium Load Balancing

Nash Equilibrium Load Balancing Nash Equilibrium Load Balancing Computer Science Department Collaborators: A. Kothari, C. Toth, Y. Zhou Load Balancing A set of m servers or machines. A set of n clients or jobs. Each job can be run only

More information

Performance Pack. Benchmarking with PlanetPress Connect and PReS Connect

Performance Pack. Benchmarking with PlanetPress Connect and PReS Connect Performance Pack Benchmarking with PlanetPress Connect and PReS Connect Contents 2 Introduction 4 Benchmarking results 5 First scenario: Print production on demand 5 Throughput vs. Output Speed 6 Second

More information

Activity-Based Congestion Management for Fair Bandwidth Sharing in Trusted Packet Networks

Activity-Based Congestion Management for Fair Bandwidth Sharing in Trusted Packet Networks Communication Networks Activity-Based Congestion Management for Fair Bandwidth Sharing in Trusted Packet Networks Michael Menth and Nikolas Zeitler http://kn.inf.uni-tuebingen.de Outline The problem Definition

More information

Scheduling Jobs with Dwindling Resource Requirements in Clouds

Scheduling Jobs with Dwindling Resource Requirements in Clouds Scheduling Jobs with Dwindling Resource Requirements in Clouds Sivan Albagli-Kim Hadas Shachnai Tami Tamir Computer Science Department, Technion, Haifa 3000, Israel E-mail: {hadas,sivanal}@cs.technion.ac.il

More information

SAMPLE CHAPTER IN ACTION. Roger Ignazio. FOREWORD BY Florian Leibert MANNING

SAMPLE CHAPTER IN ACTION. Roger Ignazio. FOREWORD BY Florian Leibert MANNING SAMPLE CHAPTER IN ACTION Roger Ignazio FOREWORD BY Florian Leibert MANNING Mesos in Action by Roger Ignazio Chapter 1 Copyright 2016 Manning Publications brief contents PART 1 HELLO, MESOS...1 1 Introducing

More information

Games in Networks: the price of anarchy, stability and learning. Éva Tardos Cornell University

Games in Networks: the price of anarchy, stability and learning. Éva Tardos Cornell University Games in Networks: the price of anarchy, stability and learning Éva Tardos Cornell University Why care about Games? Users with a multitude of diverse economic interests sharing a Network (Internet) browsers

More information

Online Algorithms. - Lecture 4 -

Online Algorithms. - Lecture 4 - Online Algorithms - Lecture 4 - Outline Quick recap.. The Cashing Problem Randomization in Online Algorithms Other views to Online Algorithms The Ski-rental problem The Parking Permit Problem 2 The Caching

More information

Algorithmic Game Theory and Applications. Lecture 16: Selfish Network Routing, Congestion Games, and the Price of Anarchy.

Algorithmic Game Theory and Applications. Lecture 16: Selfish Network Routing, Congestion Games, and the Price of Anarchy. Algorithmic Game Theory and Applications Lecture 16: Selfish Network Routing, Congestion Games, and the Price of Anarchy Kousha Etessami games and the internet Basic idea: The internet is a huge experiment

More information

Improved Bounds for Online Routing and Packing Via a Primal-Dual Approach

Improved Bounds for Online Routing and Packing Via a Primal-Dual Approach Improved Bounds for Online Routing and Packing Via a Primal-Dual Approach Niv Buchbinder Computer Science Department Technion, Haifa, Israel E-mail: nivb@cs.technion.ac.il Joseph (Seffi) Naor Microsoft

More information

Leximin Allocations in the Real World

Leximin Allocations in the Real World Leximin Allocations in the Real World DAVID KUROKAWA, Carnegie Mellon University, USA ARIEL D. PROCACCIA, Carnegie Mellon University, USA NISARG SHAH, Carnegie Mellon University, USA As part of a collaboration

More information

A Primal-Dual Approach for Online Problems. Nikhil Bansal

A Primal-Dual Approach for Online Problems. Nikhil Bansal A Primal-Dual Approach for Online Problems Nikhil Bansal Online Algorithms Input revealed in parts. Algorithm has no knowledge of future. Scheduling, Load Balancing, Routing, Caching, Finance, Machine

More information

The Index Coding Problem: A Game-Theoretical Perspective

The Index Coding Problem: A Game-Theoretical Perspective The Index Coding Problem: A Game-Theoretical Perspective Yu-Pin Hsu, I-Hong Hou, and Alex Sprintson Department of Electrical and Computer Engineering Texas A&M University {yupinhsu, ihou, spalex}@tamu.edu

More information

Topic: Local Search: Max-Cut, Facility Location Date: 2/13/2007

Topic: Local Search: Max-Cut, Facility Location Date: 2/13/2007 CS880: Approximations Algorithms Scribe: Chi Man Liu Lecturer: Shuchi Chawla Topic: Local Search: Max-Cut, Facility Location Date: 2/3/2007 In previous lectures we saw how dynamic programming could be

More information

Graph Coloring via Constraint Programming-based Column Generation

Graph Coloring via Constraint Programming-based Column Generation Graph Coloring via Constraint Programming-based Column Generation Stefano Gualandi Federico Malucelli Dipartimento di Elettronica e Informatica, Politecnico di Milano Viale Ponzio 24/A, 20133, Milan, Italy

More information

COE 561 Digital System Design & Synthesis Introduction

COE 561 Digital System Design & Synthesis Introduction 1 COE 561 Digital System Design & Synthesis Introduction Dr. Aiman H. El-Maleh Computer Engineering Department King Fahd University of Petroleum & Minerals Outline Course Topics Microelectronics Design

More information

A Game Theoretic Approach to Provide Incentive and Service Differentiation in P2P Networks

A Game Theoretic Approach to Provide Incentive and Service Differentiation in P2P Networks A Game Theoretic Approach to Provide Incentive and Service Differentiation in PP Networks Richard T. B. Ma, Sam C. M. Lee, John C. S. Lui Dept of Computer Science & Engineering, The Chinese University

More information

Strong Equilibrium in Cost Sharing Connection Games

Strong Equilibrium in Cost Sharing Connection Games Strong Equilibrium in Cost Sharing Connection Games Amir Epstein School of Computer Science Tel-Aviv University Tel-Aviv, 69978, Israel amirep@tau.ac.il Michal Feldman School of Computer Science The Hebrew

More information

Designing Networks Incrementally

Designing Networks Incrementally Designing Networks Incrementally Adam Meyerson Kamesh Munagala Ý Serge Plotkin Þ Abstract We consider the problem of incrementally designing a network to route demand to a single sink on an underlying

More information

Online Ad Allocation: Theory and Practice

Online Ad Allocation: Theory and Practice Online Ad Allocation: Theory and Practice Vahab Mirrokni December 19, 2014 Based on recent papers in collaboration with my colleagues at Google, Columbia Univ., Cornell, MIT, and Stanford. [S. Balseiro,

More information

Online Strategies for Intra and Inter Provider Service Migration in Virtual Networks

Online Strategies for Intra and Inter Provider Service Migration in Virtual Networks Online Strategies for Intra and Inter Provider Service Migration in Virtual Networks or/and: How to migrate / allocate resources when you don t know the future? Co-authors: Dushyant Arora Marcin Bienkowski

More information

Online algorithms for clustering problems

Online algorithms for clustering problems University of Szeged Department of Computer Algorithms and Artificial Intelligence Online algorithms for clustering problems Ph.D. Thesis Gabriella Divéki Supervisor: Dr. Csanád Imreh University of Szeged

More information

2386 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

2386 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006 2386 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006 The Encoding Complexity of Network Coding Michael Langberg, Member, IEEE, Alexander Sprintson, Member, IEEE, and Jehoshua Bruck,

More information

Algorithmic Game Theory - Introduction, Complexity, Nash

Algorithmic Game Theory - Introduction, Complexity, Nash Algorithmic Game Theory - Introduction, Complexity, Nash Branislav Bošanský Czech Technical University in Prague branislav.bosansky@agents.fel.cvut.cz February 25, 2018 About This Course main topics of

More information

11. APPROXIMATION ALGORITHMS

11. APPROXIMATION ALGORITHMS Coping with NP-completeness 11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: weighted vertex cover LP rounding: weighted vertex cover generalized load balancing knapsack problem

More information

Oblivious Routing on Geometric Networks

Oblivious Routing on Geometric Networks Oblivious Routing on Geometric Networks Costas Busch, Malik Magdon-Ismail and Jing Xi {buschc,magdon,xij2}@cs.rpi.edu July 20, 2005. Outline Oblivious Routing: Background and Our Contribution The Algorithm:

More information

Optimization Methods: Advanced Topics in Optimization - Multi-objective Optimization 1. Module 8 Lecture Notes 2. Multi-objective Optimization

Optimization Methods: Advanced Topics in Optimization - Multi-objective Optimization 1. Module 8 Lecture Notes 2. Multi-objective Optimization Optimization Methods: Advanced Topics in Optimization - Multi-objective Optimization 1 Module 8 Lecture Notes 2 Multi-objective Optimization Introduction In a real world problem it is very unlikely that

More information

Overview Computer Networking What is QoS? Queuing discipline and scheduling. Traffic Enforcement. Integrated services

Overview Computer Networking What is QoS? Queuing discipline and scheduling. Traffic Enforcement. Integrated services Overview 15-441 15-441 Computer Networking 15-641 Lecture 19 Queue Management and Quality of Service Peter Steenkiste Fall 2016 www.cs.cmu.edu/~prs/15-441-f16 What is QoS? Queuing discipline and scheduling

More information

Coordination Mechanisms

Coordination Mechanisms Coordination Mechanisms George Christodoulou Elias Koutsoupias Akash Nanavati Abstract We introduce the notion of coordination mechanisms to improve the performance in systems with independent selfish

More information

Low Latency via Redundancy

Low Latency via Redundancy Low Latency via Redundancy Ashish Vulimiri, Philip Brighten Godfrey, Radhika Mittal, Justine Sherry, Sylvia Ratnasamy, Scott Shenker Presenter: Meng Wang 2 Low Latency Is Important Injecting just 400 milliseconds

More information

Lecture 9: (Semi-)bandits and experts with linear costs (part I)

Lecture 9: (Semi-)bandits and experts with linear costs (part I) CMSC 858G: Bandits, Experts and Games 11/03/16 Lecture 9: (Semi-)bandits and experts with linear costs (part I) Instructor: Alex Slivkins Scribed by: Amr Sharaf In this lecture, we will study bandit problems

More information