Optimization Methods: Advanced Topics in Optimization - Multi-objective Optimization 1. Module 8 Lecture Notes 2. Multi-objective Optimization

Size: px
Start display at page:

Download "Optimization Methods: Advanced Topics in Optimization - Multi-objective Optimization 1. Module 8 Lecture Notes 2. Multi-objective Optimization"

Transcription

1 Optimization Methods: Advanced Topics in Optimization - Multi-objective Optimization 1 Module 8 Lecture Notes 2 Multi-objective Optimization Introduction In a real world problem it is very unlikely that we will meet the situation of single objective and multiple constraints more often than not. Thus the rigidity provided by the General Problem (GP) is, many a times, far away from the practical design problems. In many of the water resources optimization problems maximizing aggregated net benefits is a common objective. At the same time maximizing water quality, regional development, resource utilization, and various social issues are other objectives which are to be maximized. There may be conflicting objectives along with the main objective like irrigation, hydropower, recreation etc. Generally multiple objectives or parameters have to be met before any acceptable solution can be obtained. Here it should be noticed that the word acceptable implicates that there is normally no single solution to the problems of the above type. Actually methods of multi-criteria or multi-objective analysis are not designed to identify the best solution, but only to provide information on the tradeoffs between given sets of quantitative performance criteria. In the present discussion on multi-objective optimization, we will first introduce the mathematical definition and then talk about two broad classes of solution methods typically known as (i) Utility Function Method (Weighting function method) (ii) Bounded Objective Function Method (Reduced Feasible Region Method or Constraint Method ). Multi-objective Problem A multi-objective optimization problem with inequality (or equality) constraints may be formulated as

2 Optimization Methods: Advanced Topics in Optimization - Multi-objective Optimization 2 x1 x2. Find X = (1).. x n which minimizes f 1 (X), f 2 (X),, f k (X) (2) subject to g j ( X ) 0, j= 1, 2,, m (3) Here k denotes the number of objective functions to be minimized and m is the number of constraints. It is worthwhile to mention that objective functions and constraints need not be linear but when they are, it is called Multi-objective Linear Programming (MOLP). For the problems of the type mentioned above the very notion of optimization changes and we try to find good trade-offs rather than a single solution as in GP. The most commonly adopted notion of the optimum proposed by Pareto is depicted below. A vector of the decision variable X is called Pareto Optimal (efficient) if there does not exist another Y such that fi( Y ) fi( X ) for i = 1, 2,, k with f j ( Y ) < fi ( X ) for at least one j. In other words a solution vector X is called optimal if there is no other vector Y that reduces some objective functions without causing simultaneous increase in at least one other objective function.

3 Optimization Methods: Advanced Topics in Optimization - Multi-objective Optimization 3 k j i Fig. 1 As shown in above figure there are three objectives i, j, k. Direction of their increment is also indicated. The surface (which is formed based on constraints) is efficient because no objective can be reduced without a simultaneous increase in at least one of the other objectives. Utility Function Method (Weighting function method) In this method a utility function is defined for each of the objectives according to the relative importance of f i.. A simple utility function may be defined as α i f i (X) for i th objective where α i is a scalar and represents the weight assigned to the corresponding objective. Then the total utility U may be defined as weighted sum of objective functions as below k U = α f ( X ), αi > 0, i = 1, 2,, k. (4) i= 1 i i The solution vector X may be found by maximizing the total utility as defined above with the constraint (3). Without any loss to generality, it is customary to assume that k α i i= 1 = 1 although it is not essential. Also αi values indicate the relative utility of each of the objectives.

4 Optimization Methods: Advanced Topics in Optimization - Multi-objective Optimization 4 The following figure represents the decision space for a given set of constraints and utility functions. Here X = x1 x2 and two objectives are f1(x) and f 2 (X) with upper bound constraints* of type (3) as in figure 2. g 1 (X) g 3 (X) x 2 B C g 4 (X) A D g 2 (X) g 5 (X) E O g 6 (X) x 1 Decision Space Fig. 2 *constraints g 1 (X) to g 6 (X) represent x 1, x 2 0 For Linear Programming (LP), the Pareto front is obtained by plotting the values of objective functions at common points (points of intersection) of constraints and joining them through straight lines in objective space. It should be noted that all the points on the constraint surface need not be efficient in Pareto sense as point A in the following figure.

5 Optimization Methods: Advanced Topics in Optimization - Multi-objective Optimization 5 f 2 B C A D E f 1 Objective Space Fig. 3 By looking at Figure 3 one may qualitatively infer that it follows Pareto Optimal definition. Now optimizing utility function means moving along the efficient front and looking for the maximum value of utility function U defined by equation (4). One major limitation is that this method cannot generate the complete set of efficient solutions unless the efficiency frontier is strictly convex. If a part of it is concave, only the end points of this can be obtained by the weighing technique. Bounded objective function method In this method we try to trap the optimal solution of the objective functions in a bounded or reduced feasible region. In formulating the problem one objective function is maximized while all other objectives are converted into constraints with lower bounds along with other constraints of the problem. Mathematically the problem may be formulated as Maximize f i (X) Subject to g j ( X ) 0, j= 1, 2,, m (5)

6 Optimization Methods: Advanced Topics in Optimization - Multi-objective Optimization 6 f k (X) e k k i here e k represents lower bound of the k th objective. In this approach the feasible region S represented by g j ( X ) 0, j= 1, 2,, m is further reduced to S by (k-1) constraints f k (X) e k k i. e.g. let there are three objectives which are to be maximized in the region of constraints S. The problem may be formulated as: maximize{objective-1} maximize{objective-2} maximize{objective-3} subject to X = x1 S x2 In the above problem S identifies the region given by g j ( X ) 0, j= 1, 2,, m. In the bounded objective function method, the same problem may be formulated as maximize{objective-1} subject to {objective-2} {objective-3} X S e 1 e 2 As may be seen, one of the objectives ({objective-1}) is now the only objective and all other objectives are included as constraints. There are lower bounds specified for other objectives which are the minimum values at least to be attained. Subject to these additional constraints, the objective is maximized. Figure 4 illustrates the scheme.

7 Optimization Methods: Advanced Topics in Optimization - Multi-objective Optimization 7 x 2 A B S C P D e 2 w 3 w 2 w 1 S E e 1 F x 1 Fig. 4 In the above figure w 1, w 2, and w 3 are gradients of the three objectives respectively. If {objective-1} was to be maximized in the region S, without taking into consideration the other objectives, then solution point is E. But due to lower bounds of the other objectives the feasible region reduces to S and solution point is P now. It may be seen that changing e 1 does not affect {objective-1} as much as changing e 2. This fact gives rise to sensitivity analysis. Exercise Problem A reservoir is planned both for gravity and lift irrigation through withdrawals from its storage. The total storage available for both the uses is limited to 5 units each year. It is decided to limit the gravity irrigation withdrawals in a year to 4 units. If X 1 is the allocation of water for gravity irrigation and X 2 is the allocation for lift irrigation, the two objectives planned to be maximized are expressed as Maximize Z 1 (X) = 3x 1-2x 2 and Z 2 (X) = - x 1 + 4x 2

8 Optimization Methods: Advanced Topics in Optimization - Multi-objective Optimization 8 For above problem, do the following (i) Generate a Pareto Front of non-inferior (efficient) solutions by plotting Decision space and Objective space. (ii) Formulate multi objective optimization model using weighting approach with w 1 and w 2 as weights for gravity and lift irrigation respectively. (iii) Solve it, for (i) w 1 =1 and w 2 =2 (ii) w 1 =2 and w 2 =1 (iv) Formulate the problem using constraint method [Solution: (i) X 1 =0, X 2 =5; (ii) X 1 =4, X 2 =0 to 1 ]

Linear Programming. L.W. Dasanayake Department of Economics University of Kelaniya

Linear Programming. L.W. Dasanayake Department of Economics University of Kelaniya Linear Programming L.W. Dasanayake Department of Economics University of Kelaniya Linear programming (LP) LP is one of Management Science techniques that can be used to solve resource allocation problem

More information

OPTIMIZATION METHODS

OPTIMIZATION METHODS D. Nagesh Kumar Associate Professor Department of Civil Engineering, Indian Institute of Science, Bangalore - 50 0 Email : nagesh@civil.iisc.ernet.in URL: http://www.civil.iisc.ernet.in/~nagesh Brief Contents

More information

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation Optimization Methods: Introduction and Basic concepts 1 Module 1 Lecture Notes 2 Optimization Problem and Model Formulation Introduction In the previous lecture we studied the evolution of optimization

More information

OPERATIONS RESEARCH. Linear Programming Problem

OPERATIONS RESEARCH. Linear Programming Problem OPERATIONS RESEARCH Chapter 1 Linear Programming Problem Prof. Bibhas C. Giri Department of Mathematics Jadavpur University Kolkata, India Email: bcgiri.jumath@gmail.com 1.0 Introduction Linear programming

More information

Lecture 5: Duality Theory

Lecture 5: Duality Theory Lecture 5: Duality Theory Rajat Mittal IIT Kanpur The objective of this lecture note will be to learn duality theory of linear programming. We are planning to answer following questions. What are hyperplane

More information

Graphing Linear Inequalities in Two Variables.

Graphing Linear Inequalities in Two Variables. Many applications of mathematics involve systems of inequalities rather than systems of equations. We will discuss solving (graphing) a single linear inequality in two variables and a system of linear

More information

LINEAR PROGRAMMING (LP), GRAPHICAL PRESENTATION GASPAR ASAMPANA

LINEAR PROGRAMMING (LP), GRAPHICAL PRESENTATION GASPAR ASAMPANA LINEAR PROGRAMMING (LP), GRAPHICAL PRESENTATION GASPAR ASAMPANA INTRODUCTION Linear Programming a is combination of a linear objective function and set of linear constraints. The linear constraints express

More information

Convexity. 1 X i is convex. = b is a hyperplane in R n, and is denoted H(p, b) i.e.,

Convexity. 1 X i is convex. = b is a hyperplane in R n, and is denoted H(p, b) i.e., Convexity We ll assume throughout, without always saying so, that we re in the finite-dimensional Euclidean vector space R n, although sometimes, for statements that hold in any vector space, we ll say

More information

Real life Problem. Review

Real life Problem. Review Linear Programming The Modelling Cycle in Decision Maths Accept solution Real life Problem Yes No Review Make simplifying assumptions Compare the solution with reality is it realistic? Interpret the solution

More information

Lecture 5: Properties of convex sets

Lecture 5: Properties of convex sets Lecture 5: Properties of convex sets Rajat Mittal IIT Kanpur This week we will see properties of convex sets. These properties make convex sets special and are the reason why convex optimization problems

More information

AM 221: Advanced Optimization Spring 2016

AM 221: Advanced Optimization Spring 2016 AM 221: Advanced Optimization Spring 2016 Prof Yaron Singer Lecture 3 February 1st 1 Overview In our previous lecture we presented fundamental results from convex analysis and in particular the separating

More information

Lesson 08 Linear Programming

Lesson 08 Linear Programming Lesson 08 Linear Programming A mathematical approach to determine optimal (maximum or minimum) solutions to problems which involve restrictions on the variables involved. 08 - Linear Programming Applications

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

CHAPTER 2 MULTI-OBJECTIVE REACTIVE POWER OPTIMIZATION

CHAPTER 2 MULTI-OBJECTIVE REACTIVE POWER OPTIMIZATION 19 CHAPTER 2 MULTI-OBJECTIE REACTIE POWER OPTIMIZATION 2.1 INTRODUCTION In this chapter, a fundamental knowledge of the Multi-Objective Optimization (MOO) problem and the methods to solve are presented.

More information

Lecture 2 - Introduction to Polytopes

Lecture 2 - Introduction to Polytopes Lecture 2 - Introduction to Polytopes Optimization and Approximation - ENS M1 Nicolas Bousquet 1 Reminder of Linear Algebra definitions Let x 1,..., x m be points in R n and λ 1,..., λ m be real numbers.

More information

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Mathematical programming (optimization) problem: min f (x) s.t. x X R n set of feasible solutions with linear objective function

More information

Lecture 3: Convex sets

Lecture 3: Convex sets Lecture 3: Convex sets Rajat Mittal IIT Kanpur We denote the set of real numbers as R. Most of the time we will be working with space R n and its elements will be called vectors. Remember that a subspace

More information

Lecture 25 Nonlinear Programming. November 9, 2009

Lecture 25 Nonlinear Programming. November 9, 2009 Nonlinear Programming November 9, 2009 Outline Nonlinear Programming Another example of NLP problem What makes these problems complex Scalar Function Unconstrained Problem Local and global optima: definition,

More information

Introduction to Modern Control Systems

Introduction to Modern Control Systems Introduction to Modern Control Systems Convex Optimization, Duality and Linear Matrix Inequalities Kostas Margellos University of Oxford AIMS CDT 2016-17 Introduction to Modern Control Systems November

More information

Convexity and Optimization

Convexity and Optimization Convexity and Optimization Richard Lusby DTU Management Engineering Class Exercises From Last Time 2 DTU Management Engineering 42111: Static and Dynamic Optimization (3) 18/09/2017 Today s Material Extrema

More information

Sensor Tasking and Control

Sensor Tasking and Control Sensor Tasking and Control Outline Task-Driven Sensing Roles of Sensor Nodes and Utilities Information-Based Sensor Tasking Joint Routing and Information Aggregation Summary Introduction To efficiently

More information

Multicriterial Optimization Using Genetic Algorithm

Multicriterial Optimization Using Genetic Algorithm Multicriterial Optimization Using Genetic Algorithm 180 175 170 165 Fitness 160 155 150 145 140 Best Fitness Mean Fitness 135 130 0 Page 1 100 200 300 Generations 400 500 600 Contents Optimization, Local

More information

15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018

15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018 15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018 In this lecture, we describe a very general problem called linear programming

More information

a) Alternative Optima, b) Infeasible(or non existing) solution, c) unbounded solution.

a) Alternative Optima, b) Infeasible(or non existing) solution, c) unbounded solution. Unit 1 Lesson 5. : Special cases of LPP Learning Outcomes Special cases of linear programming problems Alternative Optima Infeasible Solution Unboundedness In the previous lecture we have discussed some

More information

Generating Uniformly Distributed Pareto Optimal Points for Constrained and Unconstrained Multicriteria Optimization

Generating Uniformly Distributed Pareto Optimal Points for Constrained and Unconstrained Multicriteria Optimization Generating Uniformly Distributed Pareto Optimal Points for Constrained and Unconstrained Multicriteria Optimization Crina Grosan Department of Computer Science Babes-Bolyai University Cluj-Napoca, Romania

More information

Linear Programming and its Applications

Linear Programming and its Applications Linear Programming and its Applications Outline for Today What is linear programming (LP)? Examples Formal definition Geometric intuition Why is LP useful? A first look at LP algorithms Duality Linear

More information

Martin Luther Universität Halle Wittenberg Institut für Mathematik

Martin Luther Universität Halle Wittenberg Institut für Mathematik Martin Luther Universität Halle Wittenberg Institut für Mathematik Algorithms for Multicriteria Location Problems S. Alzorba and Chr. Günther Report No. 02 (2012) Editors: Professors of the Institute for

More information

An Improved Progressively Interactive Evolutionary Multi-objective Optimization Algorithm with a Fixed Budget of Decision Maker Calls

An Improved Progressively Interactive Evolutionary Multi-objective Optimization Algorithm with a Fixed Budget of Decision Maker Calls An Improved Progressively Interactive Evolutionary Multi-objective Optimization Algorithm with a Fixed Budget of Decision Maker Calls Ankur Sinha, Pekka Korhonen, Jyrki Wallenius Firstname.Secondname@aalto.fi,

More information

LECTURE NOTES Non-Linear Programming

LECTURE NOTES Non-Linear Programming CEE 6110 David Rosenberg p. 1 Learning Objectives LECTURE NOTES Non-Linear Programming 1. Write out the non-linear model formulation 2. Describe the difficulties of solving a non-linear programming model

More information

Convexity and Optimization

Convexity and Optimization Convexity and Optimization Richard Lusby Department of Management Engineering Technical University of Denmark Today s Material Extrema Convex Function Convex Sets Other Convexity Concepts Unconstrained

More information

Applied Lagrange Duality for Constrained Optimization

Applied Lagrange Duality for Constrained Optimization Applied Lagrange Duality for Constrained Optimization Robert M. Freund February 10, 2004 c 2004 Massachusetts Institute of Technology. 1 1 Overview The Practical Importance of Duality Review of Convexity

More information

A Comparative Study on Optimization Techniques for Solving Multi-objective Geometric Programming Problems

A Comparative Study on Optimization Techniques for Solving Multi-objective Geometric Programming Problems Applied Mathematical Sciences, Vol. 9, 205, no. 22, 077-085 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.2988/ams.205.42029 A Comparative Study on Optimization Techniques for Solving Multi-objective

More information

Applications of Linear Programming

Applications of Linear Programming Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 1 Why LP? Linear programming (LP, also called linear

More information

A compromise method for solving fuzzy multi objective fixed charge transportation problem

A compromise method for solving fuzzy multi objective fixed charge transportation problem Lecture Notes in Management Science (2016) Vol. 8, 8 15 ISSN 2008-0050 (Print), ISSN 1927-0097 (Online) A compromise method for solving fuzzy multi objective fixed charge transportation problem Ratnesh

More information

Linear Programming. Linear Programming. Linear Programming. Example: Profit Maximization (1/4) Iris Hui-Ru Jiang Fall Linear programming

Linear Programming. Linear Programming. Linear Programming. Example: Profit Maximization (1/4) Iris Hui-Ru Jiang Fall Linear programming Linear Programming 3 describes a broad class of optimization tasks in which both the optimization criterion and the constraints are linear functions. Linear Programming consists of three parts: A set of

More information

CHAPTER 5 FUZZY LOGIC CONTROL

CHAPTER 5 FUZZY LOGIC CONTROL 64 CHAPTER 5 FUZZY LOGIC CONTROL 5.1 Introduction Fuzzy logic is a soft computing tool for embedding structured human knowledge into workable algorithms. The idea of fuzzy logic was introduced by Dr. Lofti

More information

Introduction to Linear Programming. Algorithmic and Geometric Foundations of Optimization

Introduction to Linear Programming. Algorithmic and Geometric Foundations of Optimization Introduction to Linear Programming Algorithmic and Geometric Foundations of Optimization Optimization and Linear Programming Mathematical programming is a class of methods for solving problems which ask

More information

Combinatorial optimization and its applications in image Processing. Filip Malmberg

Combinatorial optimization and its applications in image Processing. Filip Malmberg Combinatorial optimization and its applications in image Processing Filip Malmberg Part 1: Optimization in image processing Optimization in image processing Many image processing problems can be formulated

More information

OPTIMUM DESIGN. Dr. / Ahmed Nagib Elmekawy. Lecture 3

OPTIMUM DESIGN. Dr. / Ahmed Nagib Elmekawy. Lecture 3 OPTIMUM DESIGN Dr. / Ahmed Nagib Elmekawy Lecture 3 1 Graphical Solution 1. Sketch coordinate system 2. Plot constraints 3. Determine feasible region 4. Plot f(x) contours 5. Find opt solution x* & opt

More information

Algebra Reviews & LP Graphic Solutions

Algebra Reviews & LP Graphic Solutions Algebra Reviews & LP Graphic Solutions Given Constraints to Draw Straight Lines and Identify Feasible Region Draw Straight Lines for Each Constraint: From Equ(1), Set X = 0, Y = 3, a(0, 3); Set Y = 0,

More information

Lecture 1: Introduction

Lecture 1: Introduction Lecture 1 1 Linear and Combinatorial Optimization Anders Heyden Centre for Mathematical Sciences Lecture 1: Introduction The course and its goals Basic concepts Optimization Combinatorial optimization

More information

Linear Programming with Bounds

Linear Programming with Bounds Chapter 481 Linear Programming with Bounds Introduction Linear programming maximizes (or minimizes) a linear objective function subject to one or more constraints. The technique finds broad use in operations

More information

4 Integer Linear Programming (ILP)

4 Integer Linear Programming (ILP) TDA6/DIT37 DISCRETE OPTIMIZATION 17 PERIOD 3 WEEK III 4 Integer Linear Programg (ILP) 14 An integer linear program, ILP for short, has the same form as a linear program (LP). The only difference is that

More information

Optimization Methods. Final Examination. 1. There are 5 problems each w i t h 20 p o i n ts for a maximum of 100 points.

Optimization Methods. Final Examination. 1. There are 5 problems each w i t h 20 p o i n ts for a maximum of 100 points. 5.93 Optimization Methods Final Examination Instructions:. There are 5 problems each w i t h 2 p o i n ts for a maximum of points. 2. You are allowed to use class notes, your homeworks, solutions to homework

More information

Intro to Linear Programming. The problem that we desire to address in this course is loosely stated below.

Intro to Linear Programming. The problem that we desire to address in this course is loosely stated below. . Introduction Intro to Linear Programming The problem that we desire to address in this course is loosely stated below. Given a number of generators make price-quantity offers to sell (each provides their

More information

UNIT 2 LINEAR PROGRAMMING PROBLEMS

UNIT 2 LINEAR PROGRAMMING PROBLEMS UNIT 2 LINEAR PROGRAMMING PROBLEMS Structure 2.1 Introduction Objectives 2.2 Linear Programming Problem (LPP) 2.3 Mathematical Formulation of LPP 2.4 Graphical Solution of Linear Programming Problems 2.5

More information

Fundamentals of Operations Research. Prof. G. Srinivasan. Department of Management Studies. Indian Institute of Technology, Madras. Lecture No.

Fundamentals of Operations Research. Prof. G. Srinivasan. Department of Management Studies. Indian Institute of Technology, Madras. Lecture No. Fundamentals of Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture No. # 13 Transportation Problem, Methods for Initial Basic Feasible

More information

Unconstrained Optimization Principles of Unconstrained Optimization Search Methods

Unconstrained Optimization Principles of Unconstrained Optimization Search Methods 1 Nonlinear Programming Types of Nonlinear Programs (NLP) Convexity and Convex Programs NLP Solutions Unconstrained Optimization Principles of Unconstrained Optimization Search Methods Constrained Optimization

More information

Fundamentals of Integer Programming

Fundamentals of Integer Programming Fundamentals of Integer Programming Di Yuan Department of Information Technology, Uppsala University January 2018 Outline Definition of integer programming Formulating some classical problems with integer

More information

Optimization. Industrial AI Lab.

Optimization. Industrial AI Lab. Optimization Industrial AI Lab. Optimization An important tool in 1) Engineering problem solving and 2) Decision science People optimize Nature optimizes 2 Optimization People optimize (source: http://nautil.us/blog/to-save-drowning-people-ask-yourself-what-would-light-do)

More information

Some Advanced Topics in Linear Programming

Some Advanced Topics in Linear Programming Some Advanced Topics in Linear Programming Matthew J. Saltzman July 2, 995 Connections with Algebra and Geometry In this section, we will explore how some of the ideas in linear programming, duality theory,

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 1: Introduction to Optimization. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 1: Introduction to Optimization. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 013 Lecture 1: Introduction to Optimization Instructor: Shaddin Dughmi Outline 1 Course Overview Administrivia 3 Linear Programming Outline 1 Course Overview

More information

College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007

College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007 College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007 CS G399: Algorithmic Power Tools I Scribe: Eric Robinson Lecture Outline: Linear Programming: Vertex Definitions

More information

Bilinear Programming

Bilinear Programming Bilinear Programming Artyom G. Nahapetyan Center for Applied Optimization Industrial and Systems Engineering Department University of Florida Gainesville, Florida 32611-6595 Email address: artyom@ufl.edu

More information

Lecture 9: Linear Programming

Lecture 9: Linear Programming Lecture 9: Linear Programming A common optimization problem involves finding the maximum of a linear function of N variables N Z = a i x i i= 1 (the objective function ) where the x i are all non-negative

More information

Lecture 12: Feasible direction methods

Lecture 12: Feasible direction methods Lecture 12 Lecture 12: Feasible direction methods Kin Cheong Sou December 2, 2013 TMA947 Lecture 12 Lecture 12: Feasible direction methods 1 / 1 Feasible-direction methods, I Intro Consider the problem

More information

Chapter 15 Introduction to Linear Programming

Chapter 15 Introduction to Linear Programming Chapter 15 Introduction to Linear Programming An Introduction to Optimization Spring, 2015 Wei-Ta Chu 1 Brief History of Linear Programming The goal of linear programming is to determine the values of

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

Introduction to ANSYS DesignXplorer

Introduction to ANSYS DesignXplorer Lecture 5 Goal Driven Optimization 14. 5 Release Introduction to ANSYS DesignXplorer 1 2013 ANSYS, Inc. September 27, 2013 Goal Driven Optimization (GDO) Goal Driven Optimization (GDO) is a multi objective

More information

Linear Optimization. Andongwisye John. November 17, Linkoping University. Andongwisye John (Linkoping University) November 17, / 25

Linear Optimization. Andongwisye John. November 17, Linkoping University. Andongwisye John (Linkoping University) November 17, / 25 Linear Optimization Andongwisye John Linkoping University November 17, 2016 Andongwisye John (Linkoping University) November 17, 2016 1 / 25 Overview 1 Egdes, One-Dimensional Faces, Adjacency of Extreme

More information

Classification of Optimization Problems and the Place of Calculus of Variations in it

Classification of Optimization Problems and the Place of Calculus of Variations in it Lecture 1 Classification of Optimization Problems and the Place of Calculus of Variations in it ME256 Indian Institute of Science G. K. Ananthasuresh Professor, Mechanical Engineering, Indian Institute

More information

UNIT 6 MODELLING DECISION PROBLEMS (LP)

UNIT 6 MODELLING DECISION PROBLEMS (LP) UNIT 6 MODELLING DECISION This unit: PROBLEMS (LP) Introduces the linear programming (LP) technique to solve decision problems 1 INTRODUCTION TO LINEAR PROGRAMMING A Linear Programming model seeks to maximize

More information

Optimization Methods: Optimization using Calculus Kuhn-Tucker Conditions 1. Module - 2 Lecture Notes 5. Kuhn-Tucker Conditions

Optimization Methods: Optimization using Calculus Kuhn-Tucker Conditions 1. Module - 2 Lecture Notes 5. Kuhn-Tucker Conditions Optimization Methods: Optimization using Calculus Kuhn-Tucker Conditions Module - Lecture Notes 5 Kuhn-Tucker Conditions Introduction In the previous lecture the optimization of functions of multiple variables

More information

Linear Programming. Meaning of Linear Programming. Basic Terminology

Linear Programming. Meaning of Linear Programming. Basic Terminology Linear Programming Linear Programming (LP) is a versatile technique for assigning a fixed amount of resources among competing factors, in such a way that some objective is optimized and other defined conditions

More information

COMPENDIOUS LEXICOGRAPHIC METHOD FOR MULTI-OBJECTIVE OPTIMIZATION. Ivan P. Stanimirović. 1. Introduction

COMPENDIOUS LEXICOGRAPHIC METHOD FOR MULTI-OBJECTIVE OPTIMIZATION. Ivan P. Stanimirović. 1. Introduction FACTA UNIVERSITATIS (NIŠ) Ser. Math. Inform. Vol. 27, No 1 (2012), 55 66 COMPENDIOUS LEXICOGRAPHIC METHOD FOR MULTI-OBJECTIVE OPTIMIZATION Ivan P. Stanimirović Abstract. A modification of the standard

More information

Rubber bands. Chapter Rubber band representation

Rubber bands. Chapter Rubber band representation Chapter 1 Rubber bands In the previous chapter, we already used the idea of looking at the graph geometrically, by placing its nodes on the line and replacing the edges by rubber bands. Since, however,

More information

II. Linear Programming

II. Linear Programming II. Linear Programming A Quick Example Suppose we own and manage a small manufacturing facility that produced television sets. - What would be our organization s immediate goal? - On what would our relative

More information

Demo 1: KKT conditions with inequality constraints

Demo 1: KKT conditions with inequality constraints MS-C5 Introduction to Optimization Solutions 9 Ehtamo Demo : KKT conditions with inequality constraints Using the Karush-Kuhn-Tucker conditions, see if the points x (x, x ) (, 4) or x (x, x ) (6, ) are

More information

Lecture 8: The EM algorithm

Lecture 8: The EM algorithm 10-708: Probabilistic Graphical Models 10-708, Spring 2017 Lecture 8: The EM algorithm Lecturer: Manuela M. Veloso, Eric P. Xing Scribes: Huiting Liu, Yifan Yang 1 Introduction Previous lecture discusses

More information

Chapter 4. Linear Programming

Chapter 4. Linear Programming Chapter 4 Linear Programming For All Practical Purposes: Effective Teaching Occasionally during the semester remind students about your office hours. Some students can perceive that they are bothering

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-4: Constrained optimization Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428 June

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

Dynamic Programming. Other Topics

Dynamic Programming. Other Topics Dynamic Programming Other Topics 1 Objectives To explain the difference between discrete and continuous dynamic programming To discuss about multiple state variables To discuss the curse of dimensionality

More information

A Hierarchical Fair Service Curve Algorithm for Link-Sharing, Real-Time, and Priority Services

A Hierarchical Fair Service Curve Algorithm for Link-Sharing, Real-Time, and Priority Services IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 2, APRIL 2000 185 A Hierarchical Fair Service Curve Algorithm for Link-Sharing, Real-Time, and Priority Services Ion Stoica, Hui Zhang, Member, IEEE, and

More information

Machine Learning for Signal Processing Lecture 4: Optimization

Machine Learning for Signal Processing Lecture 4: Optimization Machine Learning for Signal Processing Lecture 4: Optimization 13 Sep 2015 Instructor: Bhiksha Raj (slides largely by Najim Dehak, JHU) 11-755/18-797 1 Index 1. The problem of optimization 2. Direct optimization

More information

Mathematical Programming and Research Methods (Part II)

Mathematical Programming and Research Methods (Part II) Mathematical Programming and Research Methods (Part II) 4. Convexity and Optimization Massimiliano Pontil (based on previous lecture by Andreas Argyriou) 1 Today s Plan Convex sets and functions Types

More information

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension Antoine Vigneron King Abdullah University of Science and Technology November 7, 2012 Antoine Vigneron (KAUST) CS 372 Lecture

More information

Homework 1 (a and b) Convex Sets and Convex Functions

Homework 1 (a and b) Convex Sets and Convex Functions Homework 1 (a and b) Convex Sets and Convex Functions CMU 10-725/36-725: Convex Optimization (Fall 2017) OUT: Sep 1 DUE: Prob 1-3 Sep 11, 5:00 PM; Prob 4 Sep 15, 5:00 PM START HERE: Instructions Collaboration

More information

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if POLYHEDRAL GEOMETRY Mathematical Programming Niels Lauritzen 7.9.2007 Convex functions and sets Recall that a subset C R n is convex if {λx + (1 λ)y 0 λ 1} C for every x, y C and 0 λ 1. A function f :

More information

A gradient-based multiobjective optimization technique using an adaptive weighting method

A gradient-based multiobjective optimization technique using an adaptive weighting method 10 th World Congress on Structural and Multidisciplinary Optimization May 19-24, 2013, Orlando, Florida, USA A gradient-based multiobjective optimization technique using an adaptive weighting method Kazuhiro

More information

Lecture notes on the simplex method September We will present an algorithm to solve linear programs of the form. maximize.

Lecture notes on the simplex method September We will present an algorithm to solve linear programs of the form. maximize. Cornell University, Fall 2017 CS 6820: Algorithms Lecture notes on the simplex method September 2017 1 The Simplex Method We will present an algorithm to solve linear programs of the form maximize subject

More information

A Short SVM (Support Vector Machine) Tutorial

A Short SVM (Support Vector Machine) Tutorial A Short SVM (Support Vector Machine) Tutorial j.p.lewis CGIT Lab / IMSC U. Southern California version 0.zz dec 004 This tutorial assumes you are familiar with linear algebra and equality-constrained optimization/lagrange

More information

Simulation. Lecture O1 Optimization: Linear Programming. Saeed Bastani April 2016

Simulation. Lecture O1 Optimization: Linear Programming. Saeed Bastani April 2016 Simulation Lecture O Optimization: Linear Programming Saeed Bastani April 06 Outline of the course Linear Programming ( lecture) Integer Programming ( lecture) Heuristics and Metaheursitics (3 lectures)

More information

Kernels and Constrained Optimization

Kernels and Constrained Optimization Machine Learning 1 WS2014 Module IN2064 Sheet 8 Page 1 Machine Learning Worksheet 8 Kernels and Constrained Optimization 1 Kernelized k-nearest neighbours To classify the point x the k-nearest neighbours

More information

Multi-objective Optimization

Multi-objective Optimization Some introductory figures from : Deb Kalyanmoy, Multi-Objective Optimization using Evolutionary Algorithms, Wiley 2001 Multi-objective Optimization Implementation of Constrained GA Based on NSGA-II Optimization

More information

Linear Mathematical Programming (LP)

Linear Mathematical Programming (LP) Linear Mathematical Programming (LP) A MP is LP if : The objective function is linear where The set is defined by linear equality or inequality constraints c f T ) = ( ],..., [ n T c c c = = n b A where

More information

Revision Topic 11: Straight Line Graphs

Revision Topic 11: Straight Line Graphs Revision Topic : Straight Line Graphs The simplest way to draw a straight line graph is to produce a table of values. Example: Draw the lines y = x and y = 6 x. Table of values for y = x x y - - - - =

More information

THE REFERENCE POINT METHOD APPLIED TO DECISION SELECTION IN THE PROCESS OF BILATERAL NEGOTIATIONS

THE REFERENCE POINT METHOD APPLIED TO DECISION SELECTION IN THE PROCESS OF BILATERAL NEGOTIATIONS QUANTITATIVE METHODS IN ECONOMICS Vol. XV, No. 2, 24, pp. 44 56 THE REFERENCE POINT METHOD APPLIED TO DECISION SELECTION IN THE PROCESS OF BILATERAL NEGOTIATIONS Andrzej Łodziński Department of Econometrics

More information

WJEC MATHEMATICS INTERMEDIATE GRAPHS STRAIGHT LINE GRAPHS (PLOTTING)

WJEC MATHEMATICS INTERMEDIATE GRAPHS STRAIGHT LINE GRAPHS (PLOTTING) WJEC MATHEMATICS INTERMEDIATE GRAPHS STRAIGHT LINE GRAPHS (PLOTTING) 1 Contents Some Simple Straight Lines y = mx + c Parallel Lines Perpendicular Lines Plotting Equations Shaded Regions Credits WJEC Question

More information

MGMT 372. (Updated: February 8, 2000, Homework 5. ² Problem 1, p. 260 (graph and solve). ² Problem 2, p. 260 (graph and solve).

MGMT 372. (Updated: February 8, 2000, Homework 5. ² Problem 1, p. 260 (graph and solve). ² Problem 2, p. 260 (graph and solve). MGMT 372 (Updated: February 8, 2000, Homework 5 11:39 am) Problem 1, p 260 (graph and solve) Problem 2, p 260 (graph and solve) Problem 3, p 260 (graph and solve) Problem 4, p 260 (graph and solve) Problem

More information

5. Lecture notes on matroid intersection

5. Lecture notes on matroid intersection Massachusetts Institute of Technology Handout 14 18.433: Combinatorial Optimization April 1st, 2009 Michel X. Goemans 5. Lecture notes on matroid intersection One nice feature about matroids is that a

More information

BCN Decision and Risk Analysis. Syed M. Ahmed, Ph.D.

BCN Decision and Risk Analysis. Syed M. Ahmed, Ph.D. Linear Programming Module Outline Introduction The Linear Programming Model Examples of Linear Programming Problems Developing Linear Programming Models Graphical Solution to LP Problems The Simplex Method

More information

Introduction to RTC-Tools. Jorn Baayen

Introduction to RTC-Tools. Jorn Baayen Introduction to RTC-Tools Jorn Baayen Vienna, September 7, 2017 Outline What is RTC-Tools? Applications Technology RTC-Tools: Scope RTC-Tools is an open source toolbox for control and optimization of environmental

More information

THE LINEAR MULTIPLE CHOICE KNAPSACK PROBLEM WITH TWO CRITERIA: PROFIT AND EQUITY

THE LINEAR MULTIPLE CHOICE KNAPSACK PROBLEM WITH TWO CRITERIA: PROFIT AND EQUITY MCDM 2006, Chania, Greece, June 19-23, 2006 THE LINEAR MULTIPLE CHOICE KNAPSACK PROBLEM WITH TWO CRITERIA: PROFIT AND EQUITY George Kozanidis Systems Optimization Laboratory Dept. of Mechanical & Industrial

More information

11 Linear Programming

11 Linear Programming 11 Linear Programming 11.1 Definition and Importance The final topic in this course is Linear Programming. We say that a problem is an instance of linear programming when it can be effectively expressed

More information

6. Lecture notes on matroid intersection

6. Lecture notes on matroid intersection Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans May 2, 2017 6. Lecture notes on matroid intersection One nice feature about matroids is that a simple greedy algorithm

More information

Lecture 19 Subgradient Methods. November 5, 2008

Lecture 19 Subgradient Methods. November 5, 2008 Subgradient Methods November 5, 2008 Outline Lecture 19 Subgradients and Level Sets Subgradient Method Convergence and Convergence Rate Convex Optimization 1 Subgradients and Level Sets A vector s is a

More information

Linear Programming CISC4080, Computer Algorithms CIS, Fordham Univ. Linear Programming

Linear Programming CISC4080, Computer Algorithms CIS, Fordham Univ. Linear Programming Linear Programming CISC4080, Computer Algorithms CIS, Fordham Univ. Instructor: X. Zhang! Linear Programming In a linear programming problem, there is a set of variables, and we want to assign real values

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 2 Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 2 2.1. Convex Optimization General optimization problem: min f 0 (x) s.t., f i

More information

Review for Mastery Using Graphs and Tables to Solve Linear Systems

Review for Mastery Using Graphs and Tables to Solve Linear Systems 3-1 Using Graphs and Tables to Solve Linear Systems A linear system of equations is a set of two or more linear equations. To solve a linear system, find all the ordered pairs (x, y) that make both equations

More information