Hardware Evolution in Data Centers

Size: px
Start display at page:

Download "Hardware Evolution in Data Centers"

Transcription

1

2 Hardware Evolution in Data Centers Trend towards customization Increase work done per dollar (CapEx + OpEx) Paolo Costa Rethinking the Network Stack for Rack-scale Computers 2

3 Hardware Evolution in Data Centers Scale out vs. scale up Many commodity servers rather than few expensive servers Paolo Costa Rethinking the Network Stack for Rack-scale Computers 3

4 Hardware Evolution in Data Centers Custom layout Remove unnecessary components (e.g., GPGPUs, USB ports) Paolo Costa Rethinking the Network Stack for Rack-scale Computers 4

5 Hardware Evolution in Data Centers Integrated fabrics Higher density and bandwidth with lower power consumption Paolo Costa Rethinking the Network Stack for Rack-scale Computers 5

6 Hardware Evolution in Data Centers System-on-Chip (SoC) CPU, IO controllers, NIC/fabric switch on the same die Paolo Costa Rethinking the Network Stack for Rack-scale Computers 6

7 Hardware Evolution in Data Centers Silicon Photonics High-bandwidth / low-latency interconnect (resource disaggregation) Paolo Costa Rethinking the Network Stack for Rack-scale Computers 7

8 Hardware Evolution in Data Centers rack unit (RU) 2 Ru 4-10 Ru Rack-scale intra-server BW << inter-server BW intra-server BW inter-server BW Paolo Costa Rethinking the Network Stack for Rack-scale Computers 8

9 Hardware Evolution in Data Centers Rack-scale Computers The rack is becoming the new unit of computing in data centers Great opportunity to revisit early design assumptions and rethink the software stack and hw/sw co-design rack unit (RU) 2 Ru 4-10 Ru Rack-scale intra-server BW << inter-server BW intra-server BW inter-server BW Paolo Costa Rethinking the Network Stack for Rack-scale Computers 9

10 A First Step: Rethinking the Network Stack Paolo Costa Rethinking the Network Stack for Rack-scale Computers 10

11 A First Step: Rethinking the Network Stack Is it just a faster network or is it fundamentally different? Paolo Costa Rethinking the Network Stack for Rack-scale Computers 11

12 A First Step: Rethinking the Network Stack Many designs are possible but some trends are emerging: Paolo Costa Rethinking the Network Stack for Rack-scale Computers 12

13 A First Step: Rethinking the Network Stack Many designs are possible but some trends are emerging: 1. Distributed Switching Fabric High path diversity Paolo Costa Rethinking the Network Stack for Rack-scale Computers 13

14 A First Step: Rethinking the Network Stack Many designs are possible but some trends are emerging: 1. Distributed Switching Fabric 2. Tight CPU / network integration High path diversity Direct control on network resources Paolo Costa Rethinking the Network Stack for Rack-scale Computers 14

15 A First Step: Rethinking the Network Stack Many designs are possible but some trends are emerging: 1. Distributed Switching Fabric 2. Tight CPU / network integration Research Question: High path diversity How can we take advantage Direct of these control features on network resources to design a new network stack optimized for rack-scale computers? Focus of this work How to route packets (routing)? At what rate should the packets be sent (rate control)? Paolo Costa Rethinking the Network Stack for Rack-scale Computers 15

16 RaSC-Net Design Goals 1. Leverage path diversity and ensure load balance 2. Support arbitrary and dynamic traffic matrixes 3. Achieve low queuing 4. Support custom rate allocation policies priority, deadline-based, tenant-based, resource-based, Paolo Costa Rethinking the Network Stack for Rack-scale Computers 16

17 RaSC-Net Design: Routing A Source Destination B Paolo Costa Rethinking the Network Stack for Rack-scale Computers 17

18 RaSC-Net Design: Routing A Source Destination B Intermediate destination Valiant Load Balancing (VLB) Randomly selects an intermediate destination per each packet Paolo Costa Rethinking the Network Stack for Rack-scale Computers 18

19 RaSC-Net Design: Routing A Source Destination B Intermediate destination Valiant Load Balancing (VLB) Randomly selects an intermediate destination per each packet Paolo Costa Rethinking the Network Stack for Rack-scale Computers 19

20 RaSC-Net Design: Routing A Source Destination B Intermediate destination Valiant Load Balancing (VLB) Randomly selects an intermediate destination per each packet Paolo Costa Rethinking the Network Stack for Rack-scale Computers 20

21 RaSC-Net Design: Routing A Source Destination B Intermediate destination Non-minimal routing Intermediate destinations do not need to lie on the shortest path Paolo Costa Rethinking the Network Stack for Rack-scale Computers 21

22 RaSC-Net Design: Routing A Source Destination B Intermediate destination Non-minimal routing Intermediate destinations do not need to lie on the shortest path Paolo Costa Rethinking the Network Stack for Rack-scale Computers 22

23 RaSC-Net Design: Routing A Source Destination B Intermediate destination Paolo Costa Why does it work? VLB aims to transform any traffic matrix into a uniform one Link load balancing (Goal #1) and independent of traffic matrix (Goal #2) Rethinking the Network Stack for Rack-scale Computers 23

24 RaSC-Net Design: Routing A Source Destination B Intermediate destination VLB Drawback #1: Path Stretch Average path length and link utilization increases Solution: Paolo Costa Locality-aware variants Rethinking the Network of Stack VLB for Rack-scale can Computers be used (weighted choice) 24

25 RaSC-Net Design: Routing A Source Destination B Intermediate destination VLB Drawback #2: Out of order packet arrival Packets need be reordered at the destination (jitter) Paolo Costa Solution: low diameter Rethinking the Network and Stack for minimize Rack-scale Computers queuing delay 25

26 RaSC-Net Design: Routing A C Flow A -> B Source Destination B Intermediate destination Flow-aware Paolo Costa Key observation: VLB enables global visibility Nodes inspect packet headers of forwarded packets They can locally Rethinking the reconstruct Network Stack for Rack-scale the Computers traffic matrix 26

27 RaSC-Net Design: Routing A C Flow A -> B Source Destination B Intermediate destination Flow-aware Paolo Costa Key observation: VLB enables global visibility Nodes inspect packet headers of forwarded packets They can locally Rethinking the reconstruct Network Stack for Rack-scale the Computers traffic matrix 27

28 RaSC-Net Design: Routing A C Flow A -> B Source Destination B Intermediate destination Flow-aware Paolo Costa Key observation: VLB enables global visibility Nodes inspect packet headers of forwarded packets They can locally Rethinking the reconstruct Network Stack for Rack-scale the Computers traffic matrix 28

29 RaSC-Net Design: Rate Control Flow A -> B Flow C -> D A C Source Flow A -> B Flow C -> D Destination B D Rate Allocation Given the knowledge of the topology and the traffic matrix, Paolo Costaeach node can locally Rethinking the derive Network Stack for the Rack-scale correct Computers rate for its flows 29

30 RaSC-Net Design: Rate Control Flow A -> B Flow C -> D A C Source Flow A -> B Flow C -> D Destination B D Rate Allocation Given the knowledge of the topology and the traffic matrix, Paolo Costaeach node can locally Rethinking the derive Network Stack for the Rack-scale correct Computers rate for its flows 30

31 RaSC-Net Design: Rate Control Flow A -> B Flow C -> D A C Source Flow A -> B Flow C -> D Destination B D Rate Allocation Given the knowledge of the topology and the traffic matrix, Paolo Costaeach node can locally Rethinking the derive Network Stack for the Rack-scale correct Computers rate for its flows 31

32 RaSC-Net Design: Rate Control Flow A -> B Flow C -> D A C Source Flow A -> B Flow C -> D Destination B D Rate Allocation Given the knowledge of the topology and the traffic matrix, Paolo Costaeach node can locally Rethinking the derive Network Stack for the Rack-scale correct Computers rate for its flows 32

33 RaSC-Net Design: Rate Control Flow A -> B Flow C -> D A C Source Flow A -> B Flow C -> D Destination B D Rate Adaptation When a packet from a new flow is received, Paolo Costa nodes can Rethinking update the Network Stack their for Rack-scale rates Computers accordingly 33

34 RaSC-Net Design: Rate Control Flow A -> B Flow C -> D A C Source Flow A -> B Flow C -> D Destination B D Key result A traditionally distributed problem (rate control) Paolo Costa becomes Rethinking the Network a local Stack for Rack-scale operation Computers 34

35 RaSC-Net Design: Rate Control Flow A -> B Flow C -> D A C Source Flow A -> B Flow C -> D Destination B D Low queuing (Goal #3) No need to probe the network a la TCP Paolo Costa Rates are chosen Rethinking the Network so Stack as for Rack-scale to minimize Computers queuing 35

36 RaSC-Net Design: Rate Control Flow A -> B Flow C -> D A C Source Flow A -> B Flow C -> D Destination B D Beyond max-min fairness (Goal #4) Since rate allocation is now a local computation, Paolo Costa it is easy to encode Rethinking the Network different Stack for Rack-scale allocation Computers policies 36

37 Something (NOT) to worry about Paolo Costa Rethinking the Network Stack for Rack-scale Computers 37

38 Something (NOT) to worry about 1. Short flows Our protocol needs a few packets to converge We can reserve some spare capacity to absorb short (and newly created) flows Small packets and deterministic routing can also reduce convergence time 2. Computation overhead In general, max/min computation is expensive...but with VLB a flow uses almost all links o Hence, the most bottleneck link is actually the bottleneck for almost all active flows o Approximate results can also be used (utilization vs. computation trade-off) Paolo Costa Rethinking the Network Stack for Rack-scale Computers 38

39 Something (NOT) to worry about 1. Short flows Our protocol needs a few packets to converge We can reserve some spare capacity to absorb short (and newly created) flows Small packets and deterministic routing can also reduce convergence time 2. Computation overhead In general, max/min computation is expensive...but with VLB a flow uses almost all links o Hence, the most bottleneck link is actually the bottleneck for almost all active flows o Approximate results can also be used (utilization vs. computation trade-off) Paolo Costa Rethinking the Network Stack for Rack-scale Computers 39

40 RaSC-Net: Preliminary Results Simulation setup 512-node 3D torus (8 x 8 x 8) 6 10Gbps links / server Permutation matrix with varying number of sources (load) 10-MB flows all starting at the same time Baselines TCP: ECMP routing protocol (single path per flow) + TCP Idealized (unlimited per-flow queues) o Ideal-ShortestPaths: Packet spraying (minimal routing) o Ideal-VLB: Valliant Load Balancing Paolo Costa Rethinking the Network Stack for Rack-scale Computers 40

41 99th Flow Completion Time Flow Completion Time (99 th perc.) Worse TCP Ideal-ShortestPaths Ideal-VLB Better Network load Number of sources increases Paolo Costa Rethinking the Network Stack for Rack-scale Computers 41

42 99th Flow Completion Time Flow Completion Time (99 th perc.) Worse TCP Ideal-ShortestPaths Ideal-VLB RaSC-Net 0.01 Better Network load Number of sources increases Paolo Costa Rethinking the Network Stack for Rack-scale Computers 42

43 99th Flow Completion Time Worse Flow Completion Time (99 th perc.) TCP Ideal-ShortestPaths Ideal-VLB RaSC-Net TCP performance is limited by single path Better 0 Using non-shortest paths increases bandwidth available Network load Number of sources increases RaSC-Net approximates VLB Paolo Costa Rethinking the Network Stack for Rack-scale Computers 43

44 CDF (Flows) Flow Distribution (load = 0.5) TCP Ideal-ShortestPaths Ideal-VLB RaSC-Net Better Flow Completion Time Worse Paolo Costa Rethinking the Network Stack for Rack-scale Computers 44

45 CDF (Flows) Flow Distribution (load = 0.5) achieves lower 1 ShortestPaths median but with a tail Long tail due to single path VLB ensures good Better balance across flows Flow Completion Time TCP Ideal-ShortestPaths Ideal-VLB RaSC-Net The price for fast computation Worse Paolo Costa Rethinking the Network Stack for Rack-scale Computers 45

46 Beyond Rate Control 1. Converged fabric The same fabric is used to carry IP, memory, and storage traffic o Can we design a unified protocol stack (rather than PCI, QPI, SATA, DDR3, )? o How to handle heterogeneous classes of traffic (each with different requirements)? 2. Inter-rack connectivity How to interconnect multiple racks? o Oversubscription? Protocol bridging? 3. Resource management Fast rack fabric blurs the boundaries between local and remote resources o How to assign resources to applications? o How to handle distributed faults? o What s the programming model? Paolo Costa Rethinking the Network Stack for Rack-scale Computers 46

47 Summary Paolo Rack-scale Costa MSR Rethinking Cambridge the Network Stack for Rack-scale Computers 47

From Routing to Traffic Engineering

From Routing to Traffic Engineering 1 From Routing to Traffic Engineering Robert Soulé Advanced Networking Fall 2016 2 In the beginning B Goal: pair-wise connectivity (get packets from A to B) Approach: configure static rules in routers

More information

Data Center Network Topologies II

Data Center Network Topologies II Data Center Network Topologies II Hakim Weatherspoon Associate Professor, Dept of Computer cience C 5413: High Performance ystems and Networking April 10, 2017 March 31, 2017 Agenda for semester Project

More information

Optimizing Network Performance in Distributed Machine Learning. Luo Mai Chuntao Hong Paolo Costa

Optimizing Network Performance in Distributed Machine Learning. Luo Mai Chuntao Hong Paolo Costa Optimizing Network Performance in Distributed Machine Learning Luo Mai Chuntao Hong Paolo Costa Machine Learning Successful in many fields Online advertisement Spam filtering Fraud detection Image recognition

More information

Mellanox Virtual Modular Switch

Mellanox Virtual Modular Switch WHITE PAPER July 2015 Mellanox Virtual Modular Switch Introduction...1 Considerations for Data Center Aggregation Switching...1 Virtual Modular Switch Architecture - Dual-Tier 40/56/100GbE Aggregation...2

More information

Achieving Efficient Bandwidth Utilization in Wide-Area Networks While Minimizing State Changes

Achieving Efficient Bandwidth Utilization in Wide-Area Networks While Minimizing State Changes 1 Achieving Efficient Bandwidth Utilization in Wide-Area Networks While Minimizing State Changes 2 WAN Traffic Engineering Maintaining private WAN infrastructure is expensive Must balance latency-sensitive

More information

Network-on-Chip Architecture

Network-on-Chip Architecture Multiple Processor Systems(CMPE-655) Network-on-Chip Architecture Performance aspect and Firefly network architecture By Siva Shankar Chandrasekaran and SreeGowri Shankar Agenda (Enhancing performance)

More information

The Network Layer and Routers

The Network Layer and Routers The Network Layer and Routers Daniel Zappala CS 460 Computer Networking Brigham Young University 2/18 Network Layer deliver packets from sending host to receiving host must be on every host, router in

More information

TDT Appendix E Interconnection Networks

TDT Appendix E Interconnection Networks TDT 4260 Appendix E Interconnection Networks Review Advantages of a snooping coherency protocol? Disadvantages of a snooping coherency protocol? Advantages of a directory coherency protocol? Disadvantages

More information

Optical Packet Switching

Optical Packet Switching Optical Packet Switching DEISNet Gruppo Reti di Telecomunicazioni http://deisnet.deis.unibo.it WDM Optical Network Legacy Networks Edge Systems WDM Links λ 1 λ 2 λ 3 λ 4 Core Nodes 2 1 Wavelength Routing

More information

NaaS Network-as-a-Service in the Cloud

NaaS Network-as-a-Service in the Cloud NaaS Network-as-a-Service in the Cloud joint work with Matteo Migliavacca, Peter Pietzuch, and Alexander L. Wolf costa@imperial.ac.uk Motivation Mismatch between app. abstractions & network How the programmers

More information

DeTail Reducing the Tail of Flow Completion Times in Datacenter Networks. David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, Randy Katz

DeTail Reducing the Tail of Flow Completion Times in Datacenter Networks. David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, Randy Katz DeTail Reducing the Tail of Flow Completion Times in Datacenter Networks David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, Randy Katz 1 A Typical Facebook Page Modern pages have many components

More information

Chapter 7 Slicing and Dicing

Chapter 7 Slicing and Dicing 1/ 22 Chapter 7 Slicing and Dicing Lasse Harju Tampere University of Technology lasse.harju@tut.fi 2/ 22 Concentrators and Distributors Concentrators Used for combining traffic from several network nodes

More information

Pricing Intra-Datacenter Networks with

Pricing Intra-Datacenter Networks with Pricing Intra-Datacenter Networks with Over-Committed Bandwidth Guarantee Jian Guo 1, Fangming Liu 1, Tao Wang 1, and John C.S. Lui 2 1 Cloud Datacenter & Green Computing/Communications Research Group

More information

NetSpeed ORION: A New Approach to Design On-chip Interconnects. August 26 th, 2013

NetSpeed ORION: A New Approach to Design On-chip Interconnects. August 26 th, 2013 NetSpeed ORION: A New Approach to Design On-chip Interconnects August 26 th, 2013 INTERCONNECTS BECOMING INCREASINGLY IMPORTANT Growing number of IP cores Average SoCs today have 100+ IPs Mixing and matching

More information

Forwarding Architecture

Forwarding Architecture Forwarding Architecture Brighten Godfrey CS 538 February 14 2018 slides 2010-2018 by Brighten Godfrey unless otherwise noted Building a fast router Partridge: 50 Gb/sec router A fast IP router well, fast

More information

Interconnection Networks: Topology. Prof. Natalie Enright Jerger

Interconnection Networks: Topology. Prof. Natalie Enright Jerger Interconnection Networks: Topology Prof. Natalie Enright Jerger Topology Overview Definition: determines arrangement of channels and nodes in network Analogous to road map Often first step in network design

More information

Routing Algorithms. Review

Routing Algorithms. Review Routing Algorithms Today s topics: Deterministic, Oblivious Adaptive, & Adaptive models Problems: efficiency livelock deadlock 1 CS6810 Review Network properties are a combination topology topology dependent

More information

Module 17: "Interconnection Networks" Lecture 37: "Introduction to Routers" Interconnection Networks. Fundamentals. Latency and bandwidth

Module 17: Interconnection Networks Lecture 37: Introduction to Routers Interconnection Networks. Fundamentals. Latency and bandwidth Interconnection Networks Fundamentals Latency and bandwidth Router architecture Coherence protocol and routing [From Chapter 10 of Culler, Singh, Gupta] file:///e /parallel_com_arch/lecture37/37_1.htm[6/13/2012

More information

Interconnection Networks

Interconnection Networks Lecture 17: Interconnection Networks Parallel Computer Architecture and Programming A comment on web site comments It is okay to make a comment on a slide/topic that has already been commented on. In fact

More information

Routing Domains in Data Centre Networks. Morteza Kheirkhah. Informatics Department University of Sussex. Multi-Service Networks July 2011

Routing Domains in Data Centre Networks. Morteza Kheirkhah. Informatics Department University of Sussex. Multi-Service Networks July 2011 Routing Domains in Data Centre Networks Morteza Kheirkhah Informatics Department University of Sussex Multi-Service Networks July 2011 What is a Data Centre? Large-scale Data Centres (DC) consist of tens

More information

Camdoop Exploiting In-network Aggregation for Big Data Applications Paolo Costa

Camdoop Exploiting In-network Aggregation for Big Data Applications Paolo Costa Camdoop Exploiting In-network Aggregation for Big Data Applications costa@imperial.ac.uk joint work with Austin Donnelly, Antony Rowstron, and Greg O Shea (MSR Cambridge) MapReduce Overview Input file

More information

Deadline Guaranteed Service for Multi- Tenant Cloud Storage Guoxin Liu and Haiying Shen

Deadline Guaranteed Service for Multi- Tenant Cloud Storage Guoxin Liu and Haiying Shen Deadline Guaranteed Service for Multi- Tenant Cloud Storage Guoxin Liu and Haiying Shen Presenter: Haiying Shen Associate professor *Department of Electrical and Computer Engineering, Clemson University,

More information

Utilizing Datacenter Networks: Centralized or Distributed Solutions?

Utilizing Datacenter Networks: Centralized or Distributed Solutions? Utilizing Datacenter Networks: Centralized or Distributed Solutions? Costin Raiciu Department of Computer Science University Politehnica of Bucharest We ve gotten used to great applications Enabling Such

More information

DevoFlow: Scaling Flow Management for High-Performance Networks

DevoFlow: Scaling Flow Management for High-Performance Networks DevoFlow: Scaling Flow Management for High-Performance Networks Andy Curtis Jeff Mogul Jean Tourrilhes Praveen Yalagandula Puneet Sharma Sujata Banerjee Software-defined networking Software-defined networking

More information

4. Networks. in parallel computers. Advances in Computer Architecture

4. Networks. in parallel computers. Advances in Computer Architecture 4. Networks in parallel computers Advances in Computer Architecture System architectures for parallel computers Control organization Single Instruction stream Multiple Data stream (SIMD) All processors

More information

PUSHING THE LIMITS, A PERSPECTIVE ON ROUTER ARCHITECTURE CHALLENGES

PUSHING THE LIMITS, A PERSPECTIVE ON ROUTER ARCHITECTURE CHALLENGES PUSHING THE LIMITS, A PERSPECTIVE ON ROUTER ARCHITECTURE CHALLENGES Greg Hankins APRICOT 2012 2012 Brocade Communications Systems, Inc. 2012/02/28 Lookup Capacity and Forwarding

More information

Episode 5. Scheduling and Traffic Management

Episode 5. Scheduling and Traffic Management Episode 5. Scheduling and Traffic Management Part 3 Baochun Li Department of Electrical and Computer Engineering University of Toronto Outline What is scheduling? Why do we need it? Requirements of a scheduling

More information

Priority Traffic CSCD 433/533. Advanced Networks Spring Lecture 21 Congestion Control and Queuing Strategies

Priority Traffic CSCD 433/533. Advanced Networks Spring Lecture 21 Congestion Control and Queuing Strategies CSCD 433/533 Priority Traffic Advanced Networks Spring 2016 Lecture 21 Congestion Control and Queuing Strategies 1 Topics Congestion Control and Resource Allocation Flows Types of Mechanisms Evaluation

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction In a packet-switched network, packets are buffered when they cannot be processed or transmitted at the rate they arrive. There are three main reasons that a router, with generic

More information

Topologies. Maurizio Palesi. Maurizio Palesi 1

Topologies. Maurizio Palesi. Maurizio Palesi 1 Topologies Maurizio Palesi Maurizio Palesi 1 Network Topology Static arrangement of channels and nodes in an interconnection network The roads over which packets travel Topology chosen based on cost and

More information

Interconnection Networks: Routing. Prof. Natalie Enright Jerger

Interconnection Networks: Routing. Prof. Natalie Enright Jerger Interconnection Networks: Routing Prof. Natalie Enright Jerger Routing Overview Discussion of topologies assumed ideal routing In practice Routing algorithms are not ideal Goal: distribute traffic evenly

More information

DevoFlow: Scaling Flow Management for High Performance Networks

DevoFlow: Scaling Flow Management for High Performance Networks DevoFlow: Scaling Flow Management for High Performance Networks SDN Seminar David Sidler 08.04.2016 1 Smart, handles everything Controller Control plane Data plane Dump, forward based on rules Existing

More information

Optical Interconnection Networks in Data Centers: Recent Trends and Future Challenges

Optical Interconnection Networks in Data Centers: Recent Trends and Future Challenges Optical Interconnection Networks in Data Centers: Recent Trends and Future Challenges Speaker: Lin Wang Research Advisor: Biswanath Mukherjee Kachris C, Kanonakis K, Tomkos I. Optical interconnection networks

More information

Scaling to Petaflop. Ola Torudbakken Distinguished Engineer. Sun Microsystems, Inc

Scaling to Petaflop. Ola Torudbakken Distinguished Engineer. Sun Microsystems, Inc Scaling to Petaflop Ola Torudbakken Distinguished Engineer Sun Microsystems, Inc HPC Market growth is strong CAGR increased from 9.2% (2006) to 15.5% (2007) Market in 2007 doubled from 2003 (Source: IDC

More information

Basic Switch Organization

Basic Switch Organization NOC Routing 1 Basic Switch Organization 2 Basic Switch Organization Link Controller Used for coordinating the flow of messages across the physical link of two adjacent switches 3 Basic Switch Organization

More information

XORs in the Air: Practical Wireless Network Coding

XORs in the Air: Practical Wireless Network Coding XORs in the Air: Practical Wireless Network Coding S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, J. Crowcroft MIT & University of Cambridge Can we use 3 transmissions to send traffic? 1 2 4 3 Can we

More information

Introduction to Segment Routing

Introduction to Segment Routing Segment Routing (SR) is a flexible, scalable way of doing source routing. Overview of Segment Routing, page 1 How Segment Routing Works, page 2 Examples for Segment Routing, page 3 Benefits of Segment

More information

Introduction. Network Architecture Requirements of Data Centers in the Cloud Computing Era

Introduction. Network Architecture Requirements of Data Centers in the Cloud Computing Era Massimiliano Sbaraglia Network Engineer Introduction In the cloud computing era, distributed architecture is used to handle operations of mass data, such as the storage, mining, querying, and searching

More information

A Scalable, Commodity Data Center Network Architecture

A Scalable, Commodity Data Center Network Architecture A Scalable, Commodity Data Center Network Architecture B Y M O H A M M A D A L - F A R E S A L E X A N D E R L O U K I S S A S A M I N V A H D A T P R E S E N T E D B Y N A N X I C H E N M A Y. 5, 2 0

More information

CS6453. Data-Intensive Systems: Rachit Agarwal. Technology trends, Emerging challenges & opportuni=es

CS6453. Data-Intensive Systems: Rachit Agarwal. Technology trends, Emerging challenges & opportuni=es CS6453 Data-Intensive Systems: Technology trends, Emerging challenges & opportuni=es Rachit Agarwal Slides based on: many many discussions with Ion Stoica, his class, and many industry folks Servers Typical

More information

CS 498 Hot Topics in High Performance Computing. Networks and Fault Tolerance. 9. Routing and Flow Control

CS 498 Hot Topics in High Performance Computing. Networks and Fault Tolerance. 9. Routing and Flow Control CS 498 Hot Topics in High Performance Computing Networks and Fault Tolerance 9. Routing and Flow Control Intro What did we learn in the last lecture Topology metrics Including minimum diameter of directed

More information

Basics (cont.) Characteristics of data communication technologies OSI-Model

Basics (cont.) Characteristics of data communication technologies OSI-Model 48 Basics (cont.) Characteristics of data communication technologies OSI-Model Topologies Packet switching / Circuit switching Medium Access Control (MAC) mechanisms Coding Quality of Service (QoS) 49

More information

DCRoute: Speeding up Inter-Datacenter Traffic Allocation while Guaranteeing Deadlines

DCRoute: Speeding up Inter-Datacenter Traffic Allocation while Guaranteeing Deadlines DCRoute: Speeding up Inter-Datacenter Traffic Allocation while Guaranteeing Deadlines Mohammad Noormohammadpour, Cauligi S. Raghavendra Ming Hsieh Department of Electrical Engineering University of Southern

More information

Network-on-chip (NOC) Topologies

Network-on-chip (NOC) Topologies Network-on-chip (NOC) Topologies 1 Network Topology Static arrangement of channels and nodes in an interconnection network The roads over which packets travel Topology chosen based on cost and performance

More information

SPARTA: Scalable Per-Address RouTing Architecture

SPARTA: Scalable Per-Address RouTing Architecture SPARTA: Scalable Per-Address RouTing Architecture John Carter Data Center Networking IBM Research - Austin IBM Research Science & Technology IBM Research activities related to SDN / OpenFlow IBM Research

More information

A Low Latency Solution Stack for High Frequency Trading. High-Frequency Trading. Solution. White Paper

A Low Latency Solution Stack for High Frequency Trading. High-Frequency Trading. Solution. White Paper A Low Latency Solution Stack for High Frequency Trading White Paper High-Frequency Trading High-frequency trading has gained a strong foothold in financial markets, driven by several factors including

More information

Slim Fly: A Cost Effective Low-Diameter Network Topology

Slim Fly: A Cost Effective Low-Diameter Network Topology TORSTEN HOEFLER, MACIEJ BESTA Slim Fly: A Cost Effective Low-Diameter Network Topology Images belong to their creator! NETWORKS, LIMITS, AND DESIGN SPACE Networks cost 25-30% of a large supercomputer Hard

More information

Cisco Extensible Network Controller

Cisco Extensible Network Controller Data Sheet Cisco Extensible Network Controller Product Overview Today s resource intensive applications are making the network traffic grow exponentially putting high demands on the existing network. Companies

More information

Performance Analysis of Storage-Based Routing for Circuit-Switched Networks [1]

Performance Analysis of Storage-Based Routing for Circuit-Switched Networks [1] Performance Analysis of Storage-Based Routing for Circuit-Switched Networks [1] Presenter: Yongcheng (Jeremy) Li PhD student, School of Electronic and Information Engineering, Soochow University, China

More information

Data Center Networks and Switching and Queueing and Covert Timing Channels

Data Center Networks and Switching and Queueing and Covert Timing Channels Data Center Networks and Switching and Queueing and Covert Timing Channels Hakim Weatherspoon Associate Professor, Dept of Computer Science CS 5413: High Performance Computing and Networking March 10,

More information

Reducing Network Tiers Flattening the Network. Kevin Ryan Director Data Center Solutions

Reducing Network Tiers Flattening the Network. Kevin Ryan Director Data Center Solutions Reducing Tiers Flattening the Kevin Ryan Director Data Center Solutions www.extremenetworks.com Data Center Trends The New Computer Data center capacity, not server capacity, is the new metric Consolidation

More information

IV. PACKET SWITCH ARCHITECTURES

IV. PACKET SWITCH ARCHITECTURES IV. PACKET SWITCH ARCHITECTURES (a) General Concept - as packet arrives at switch, destination (and possibly source) field in packet header is used as index into routing tables specifying next switch in

More information

Lecture 21: Congestion Control" CSE 123: Computer Networks Alex C. Snoeren

Lecture 21: Congestion Control CSE 123: Computer Networks Alex C. Snoeren Lecture 21: Congestion Control" CSE 123: Computer Networks Alex C. Snoeren Lecture 21 Overview" How fast should a sending host transmit data? Not to fast, not to slow, just right Should not be faster than

More information

Chapter 4. Routers with Tiny Buffers: Experiments. 4.1 Testbed experiments Setup

Chapter 4. Routers with Tiny Buffers: Experiments. 4.1 Testbed experiments Setup Chapter 4 Routers with Tiny Buffers: Experiments This chapter describes two sets of experiments with tiny buffers in networks: one in a testbed and the other in a real network over the Internet2 1 backbone.

More information

Getting Real Performance from a Virtualized CCAP

Getting Real Performance from a Virtualized CCAP Getting Real Performance from a Virtualized CCAP A Technical Paper prepared for SCTE/ISBE by Mark Szczesniak Software Architect Casa Systems, Inc. 100 Old River Road Andover, MA, 01810 978-688-6706 mark.szczesniak@casa-systems.com

More information

Deploying Data Center Switching Solutions

Deploying Data Center Switching Solutions Deploying Data Center Switching Solutions Choose the Best Fit for Your Use Case 1 Table of Contents Executive Summary... 3 Introduction... 3 Multivector Scaling... 3 Low On-Chip Memory ASIC Platforms...4

More information

DARD: A Practical Distributed Adaptive Routing Architecture for Datacenter Networks

DARD: A Practical Distributed Adaptive Routing Architecture for Datacenter Networks DARD: A Practical Distributed Adaptive Routing Architecture for Datacenter Networks Xin Wu and Xiaowei Yang Duke-CS-TR-20-0 {xinwu, xwy}@cs.duke.edu Abstract Datacenter networks typically have multiple

More information

Enabling High Performance Data Centre Solutions and Cloud Services Through Novel Optical DC Architectures. Dimitra Simeonidou

Enabling High Performance Data Centre Solutions and Cloud Services Through Novel Optical DC Architectures. Dimitra Simeonidou Enabling High Performance Data Centre Solutions and Cloud Services Through Novel Optical DC Architectures Dimitra Simeonidou Challenges and Drivers for DC Evolution Data centres are growing in size and

More information

Routing Algorithm. How do I know where a packet should go? Topology does NOT determine routing (e.g., many paths through torus)

Routing Algorithm. How do I know where a packet should go? Topology does NOT determine routing (e.g., many paths through torus) Routing Algorithm How do I know where a packet should go? Topology does NOT determine routing (e.g., many paths through torus) Many routing algorithms exist 1) Arithmetic 2) Source-based 3) Table lookup

More information

Memory: Past, Present and Future Trends Paolo Faraboschi

Memory: Past, Present and Future Trends Paolo Faraboschi Memory: Past, Present and Future Trends Paolo Faraboschi Fellow, Hewlett Packard Labs Systems Research Lab Quiz ( Excerpt from Intel Developer Forum Keynote 2000 ) ANDREW GROVE: is there a role for more

More information

Topology basics. Constraints and measures. Butterfly networks.

Topology basics. Constraints and measures. Butterfly networks. EE48: Advanced Computer Organization Lecture # Interconnection Networks Architecture and Design Stanford University Topology basics. Constraints and measures. Butterfly networks. Lecture #: Monday, 7 April

More information

MUD: Send me your top 1 3 questions on this lecture

MUD: Send me your top 1 3 questions on this lecture Administrivia Review 1 due tomorrow Email your reviews to me Office hours on Thursdays 10 12 MUD: Send me your top 1 3 questions on this lecture Guest lectures next week by Prof. Richard Martin Class slides

More information

AGILE OPTICAL NETWORK (AON) CORE NETWORK USE CASES

AGILE OPTICAL NETWORK (AON) CORE NETWORK USE CASES AGILE OPTICAL NETWORK (AON) CORE NETWORK USE CASES PAOLO FOGLIATA - EMEA IP Transport, Director Optical Networking Dec 3, 2014 1830 PSS MARKET MOMENTUM 100G DEPLOYMENTS ACCELERATE 300+/WEEK 400 Manufactured

More information

Performance of Multihop Communications Using Logical Topologies on Optical Torus Networks

Performance of Multihop Communications Using Logical Topologies on Optical Torus Networks Performance of Multihop Communications Using Logical Topologies on Optical Torus Networks X. Yuan, R. Melhem and R. Gupta Department of Computer Science University of Pittsburgh Pittsburgh, PA 156 fxyuan,

More information

Achieving Lightweight Multicast in Asynchronous Networks-on-Chip Using Local Speculation

Achieving Lightweight Multicast in Asynchronous Networks-on-Chip Using Local Speculation Achieving Lightweight Multicast in Asynchronous Networks-on-Chip Using Local Speculation Kshitij Bhardwaj Dept. of Computer Science Columbia University Steven M. Nowick 2016 ACM/IEEE Design Automation

More information

Fast-Response Multipath Routing Policy for High-Speed Interconnection Networks

Fast-Response Multipath Routing Policy for High-Speed Interconnection Networks HPI-DC 09 Fast-Response Multipath Routing Policy for High-Speed Interconnection Networks Diego Lugones, Daniel Franco, and Emilio Luque Leonardo Fialho Cluster 09 August 31 New Orleans, USA Outline Scope

More information

CellSDN: Software-Defined Cellular Core networks

CellSDN: Software-Defined Cellular Core networks CellSDN: Software-Defined Cellular Core networks Xin Jin Princeton University Joint work with Li Erran Li, Laurent Vanbever, and Jennifer Rexford Cellular Core Network Architecture Base Station User Equipment

More information

Managed IP Services from Dial Access to Gigabit Routers

Managed IP Services from Dial Access to Gigabit Routers Managed IP Services from Dial Access to Gigabit Routers Technical barriers and Future trends for IP Differentiated Services Grenville Armitage, PhD Member of Technical Staff High Speed Networks Research,

More information

Lecture 28: Networks & Interconnect Architectural Issues Professor Randy H. Katz Computer Science 252 Spring 1996

Lecture 28: Networks & Interconnect Architectural Issues Professor Randy H. Katz Computer Science 252 Spring 1996 Lecture 28: Networks & Interconnect Architectural Issues Professor Randy H. Katz Computer Science 252 Spring 1996 RHK.S96 1 Review: ABCs of Networks Starting Point: Send bits between 2 computers Queue

More information

Lecture 2: Topology - I

Lecture 2: Topology - I ECE 8823 A / CS 8803 - ICN Interconnection Networks Spring 2017 http://tusharkrishna.ece.gatech.edu/teaching/icn_s17/ Lecture 2: Topology - I Tushar Krishna Assistant Professor School of Electrical and

More information

Unit 2 Packet Switching Networks - II

Unit 2 Packet Switching Networks - II Unit 2 Packet Switching Networks - II Dijkstra Algorithm: Finding shortest path Algorithm for finding shortest paths N: set of nodes for which shortest path already found Initialization: (Start with source

More information

DISTRIBUTED EMBEDDED ARCHITECTURES

DISTRIBUTED EMBEDDED ARCHITECTURES DISTRIBUTED EMBEDDED ARCHITECTURES A distributed embedded system can be organized in many different ways, but its basic units are the Processing Elements (PE) and the network as illustrated in Figure.

More information

Crossbar - example. Crossbar. Crossbar. Combination: Time-space switching. Simple space-division switch Crosspoints can be turned on or off

Crossbar - example. Crossbar. Crossbar. Combination: Time-space switching. Simple space-division switch Crosspoints can be turned on or off Crossbar Crossbar - example Simple space-division switch Crosspoints can be turned on or off i n p u t s sessions: (,) (,) (,) (,) outputs Crossbar Advantages: simple to implement simple control flexible

More information

Revisiting Network Support for RDMA

Revisiting Network Support for RDMA Revisiting Network Support for RDMA Radhika Mittal 1, Alex Shpiner 3, Aurojit Panda 1, Eitan Zahavi 3, Arvind Krishnamurthy 2, Sylvia Ratnasamy 1, Scott Shenker 1 (1: UC Berkeley, 2: Univ. of Washington,

More information

Investigating the Use of Synchronized Clocks in TCP Congestion Control

Investigating the Use of Synchronized Clocks in TCP Congestion Control Investigating the Use of Synchronized Clocks in TCP Congestion Control Michele Weigle (UNC-CH) November 16-17, 2001 Univ. of Maryland Symposium The Problem TCP Reno congestion control reacts only to packet

More information

Lecture 13: Traffic Engineering

Lecture 13: Traffic Engineering Lecture 13: Traffic Engineering CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Mike Freedman, Nick Feamster Lecture 13 Overview Evolution of routing in the ARPAnet Today s TE: Adjusting

More information

Scalable Distributed Training with Parameter Hub: a whirlwind tour

Scalable Distributed Training with Parameter Hub: a whirlwind tour Scalable Distributed Training with Parameter Hub: a whirlwind tour TVM Stack Optimization High-Level Differentiable IR Tensor Expression IR AutoTVM LLVM, CUDA, Metal VTA AutoVTA Edge FPGA Cloud FPGA ASIC

More information

PowerEdge NUMA Configurations with AMD EPYC Processors

PowerEdge NUMA Configurations with AMD EPYC Processors PowerEdge Product Group Direct from Development PowerEdge NUMA Configurations with AMD EPYC Processors Tech Note by: Jose Grande SUMMARY With the introduction of AMD s EPYC (Naples) x86 Server CPUs featuring

More information

Overview. TCP & router queuing Computer Networking. TCP details. Workloads. TCP Performance. TCP Performance. Lecture 10 TCP & Routers

Overview. TCP & router queuing Computer Networking. TCP details. Workloads. TCP Performance. TCP Performance. Lecture 10 TCP & Routers Overview 15-441 Computer Networking TCP & router queuing Lecture 10 TCP & Routers TCP details Workloads Lecture 10: 09-30-2002 2 TCP Performance TCP Performance Can TCP saturate a link? Congestion control

More information

CSE 123: Computer Networks Alex C. Snoeren. HW 2 due Thursday 10/21!

CSE 123: Computer Networks Alex C. Snoeren. HW 2 due Thursday 10/21! CSE 123: Computer Networks Alex C. Snoeren HW 2 due Thursday 10/21! Finishing up media access Contention-free methods (rings) Moving beyond one wire Link technologies have limits on physical distance Also

More information

The GLIMPS Terabit Packet Switching Engine

The GLIMPS Terabit Packet Switching Engine February 2002 The GLIMPS Terabit Packet Switching Engine I. Elhanany, O. Beeri Terabit Packet Switching Challenges The ever-growing demand for additional bandwidth reflects on the increasing capacity requirements

More information

An FPGA-Based Optical IOH Architecture for Embedded System

An FPGA-Based Optical IOH Architecture for Embedded System An FPGA-Based Optical IOH Architecture for Embedded System Saravana.S Assistant Professor, Bharath University, Chennai 600073, India Abstract Data traffic has tremendously increased and is still increasing

More information

Modeling UGAL routing on the Dragonfly topology

Modeling UGAL routing on the Dragonfly topology Modeling UGAL routing on the Dragonfly topology Md Atiqul Mollah, Peyman Faizian, Md Shafayat Rahman, Xin Yuan Florida State University Scott Pakin, Michael Lang Los Alamos National Laboratory Motivation

More information

Contention-based Congestion Management in Large-Scale Networks

Contention-based Congestion Management in Large-Scale Networks Contention-based Congestion Management in Large-Scale Networks Gwangsun Kim, Changhyun Kim, Jiyun Jeong, Mike Parker, John Kim KAIST Intel Corp. {gskim, nangigs, cjy9037, jjk12}@kaist.ac.kr mike.a.parker@intel.com

More information

Switching and Forwarding Reading: Chapter 3 1/30/14 1

Switching and Forwarding Reading: Chapter 3 1/30/14 1 Switching and Forwarding Reading: Chapter 3 1/30/14 1 Switching and Forwarding Next Problem: Enable communication between hosts that are not directly connected Fundamental Problem of the Internet or any

More information

Next Generation Networks MultiService Network Design. Dr. Ben Tang

Next Generation Networks MultiService Network Design. Dr. Ben Tang Next Generation Networks MultiService Network Design Dr. Ben Tang April 23, 2008 Operators face difficult network planning and design questions Can your current planning methods handle the complexity of

More information

Sort vs. Hash Join Revisited for Near-Memory Execution. Nooshin Mirzadeh, Onur Kocberber, Babak Falsafi, Boris Grot

Sort vs. Hash Join Revisited for Near-Memory Execution. Nooshin Mirzadeh, Onur Kocberber, Babak Falsafi, Boris Grot Sort vs. Hash Join Revisited for Near-Memory Execution Nooshin Mirzadeh, Onur Kocberber, Babak Falsafi, Boris Grot 1 Near-Memory Processing (NMP) Emerging technology Stacked memory: A logic die w/ a stack

More information

Combining Arm & RISC-V in Heterogeneous Designs

Combining Arm & RISC-V in Heterogeneous Designs Combining Arm & RISC-V in Heterogeneous Designs Gajinder Panesar, CTO, UltraSoC gajinder.panesar@ultrasoc.com RISC-V Summit 3 5 December 2018 Santa Clara, USA Problem statement Deterministic multi-core

More information

OCP Engineering Workshop - Telco

OCP Engineering Workshop - Telco OCP Engineering Workshop - Telco Low Latency Mobile Edge Computing Trevor Hiatt Product Management, IDT IDT Company Overview Founded 1980 Workforce Approximately 1,800 employees Headquarters San Jose,

More information

Network Design Considerations for Grid Computing

Network Design Considerations for Grid Computing Network Design Considerations for Grid Computing Engineering Systems How Bandwidth, Latency, and Packet Size Impact Grid Job Performance by Erik Burrows, Engineering Systems Analyst, Principal, Broadcom

More information

Advanced Computer Networks. End Host Optimization

Advanced Computer Networks. End Host Optimization Oriana Riva, Department of Computer Science ETH Zürich 263 3501 00 End Host Optimization Patrick Stuedi Spring Semester 2017 1 Today End-host optimizations: NUMA-aware networking Kernel-bypass Remote Direct

More information

How Emerging Optical Technologies will affect the Future Internet

How Emerging Optical Technologies will affect the Future Internet How Emerging Optical Technologies will affect the Future Internet NSF Meeting, 5 Dec, 2005 Nick McKeown Stanford University nickm@stanford.edu http://www.stanford.edu/~nickm Emerged (and deployed) Optical

More information

A common issue that affects the QoS of packetized audio is jitter. Voice data requires a constant packet interarrival rate at receivers to convert

A common issue that affects the QoS of packetized audio is jitter. Voice data requires a constant packet interarrival rate at receivers to convert A common issue that affects the QoS of packetized audio is jitter. Voice data requires a constant packet interarrival rate at receivers to convert data into a proper analog signal for playback. The variations

More information

Adaptive Video Multicasting

Adaptive Video Multicasting Adaptive Video Multicasting Presenters: Roman Glistvain, Bahman Eksiri, and Lan Nguyen 1 Outline Approaches to Adaptive Video Multicasting Single rate multicast Simulcast Active Agents Layered multicasting

More information

ECE 4750 Computer Architecture, Fall 2017 T06 Fundamental Network Concepts

ECE 4750 Computer Architecture, Fall 2017 T06 Fundamental Network Concepts ECE 4750 Computer Architecture, Fall 2017 T06 Fundamental Network Concepts School of Electrical and Computer Engineering Cornell University revision: 2017-10-17-12-26 1 Network/Roadway Analogy 3 1.1. Running

More information

Datacenter Wide- area Enterprise

Datacenter Wide- area Enterprise Datacenter Wide- area Enterprise Client LOAD- BALANCER Can t choose path : ( Servers Outline and goals A new architecture for distributed load-balancing joint (server, path) selection Demonstrate a nation-wide

More information

DATA CENTER FABRIC COOKBOOK

DATA CENTER FABRIC COOKBOOK Do It Yourself! DATA CENTER FABRIC COOKBOOK How to prepare something new from well known ingredients Emil Gągała WHAT DOES AN IDEAL FABRIC LOOK LIKE? 2 Copyright 2011 Juniper Networks, Inc. www.juniper.net

More information

CSC 4900 Computer Networks: Network Layer

CSC 4900 Computer Networks: Network Layer CSC 4900 Computer Networks: Network Layer Professor Henry Carter Fall 2017 Villanova University Department of Computing Sciences Review What is AIMD? When do we use it? What is the steady state profile

More information

Data Centers. Tom Anderson

Data Centers. Tom Anderson Data Centers Tom Anderson Transport Clarification RPC messages can be arbitrary size Ex: ok to send a tree or a hash table Can require more than one packet sent/received We assume messages can be dropped,

More information

Single Root I/O Virtualization (SR-IOV) and iscsi Uncompromised Performance for Virtual Server Environments Leonid Grossman Exar Corporation

Single Root I/O Virtualization (SR-IOV) and iscsi Uncompromised Performance for Virtual Server Environments Leonid Grossman Exar Corporation Single Root I/O Virtualization (SR-IOV) and iscsi Uncompromised Performance for Virtual Server Environments Leonid Grossman Exar Corporation Introduction to Exar iscsi project and related datacenter trends

More information