Applying multiple imputation on waterbird census data Comparing two imputation methods

Size: px
Start display at page:

Download "Applying multiple imputation on waterbird census data Comparing two imputation methods"

Transcription

1 Applying multiple imputation on waterbird census data Comparing two imputation methods ISEC, Montpellier, 1 july 2014 Thierry Onkelinx, Koen Devos & Paul Quataert Thierry.Onkelinx@inbo.be

2 Contents 1 Introduction 2 Testing the Underhill index 3 An alternative way of imputing 4 Testing multiple imputation using INLA 5 Conclusions 2 / 22

3 1 Introduction 2 Testing the Underhill index 3 An alternative way of imputing 4 Testing multiple imputation using INLA 5 Conclusions 3 / 22

4 Waterbird census in Flanders (Belgium) Aim: monitor wintering birds Total number Average over months per winter Data collected by volunteers 1200 sites 23 winters 6 months per winter Missing data on average 26% (9% - 42%) Impution required / 22

5 Underhill-index Described by Underhill and Prys-Jones (1994) Algorithm 1 Replace all missings with starting value 2 Fit model to imputed dataset 3 Predict missing data 4 Replace imputed value with rounded prediction when prediction is larger 5 Re-iterate from 2. until imputations are stable Negative binomial GLM with global effects for winter, month and site 5 / 22

6 Underhill-index Described by Underhill and Prys-Jones (1994) Algorithm 1 Replace all missings with starting value 2 Fit model to imputed dataset 3 Predict missing data 4 Replace imputed value with rounded prediction when prediction is larger 5 Re-iterate from 2. until imputations are stable Negative binomial GLM with global effects for winter, month and site Potential problems Imputed values can never decrease: risk for bias Imputing with model predictions: risk for reduced standard errors 5 / 22

7 1 Introduction 2 Testing the Underhill index 3 An alternative way of imputing 4 Testing multiple imputation using INLA 5 Conclusions 6 / 22

8 Test setup Generate dataset (40 sites, 24 winters, 6 months) Remove 25% data completely at random Impute missing data Calculate total per winter and month over all sites Model totals Poisson regression with overdisperion Estimate per winter 7 / 22

9 Test setup Generate dataset (40 sites, 24 winters, 6 months) Remove 25% data completely at random Impute missing data Calculate total per winter and month over all sites Model totals Poisson regression with overdisperion Estimate per winter Relative bias: exp(β Underhill ) exp(β complete ) Relative SE: σ β Underhill σ βcomplete 7 / 22

10 Test setup Generate dataset (40 sites, 24 winters, 6 months) Remove 25% data completely at random Impute missing data Calculate total per winter and month over all sites Model totals Poisson regression with overdisperion Estimate per winter Relative bias: exp(β Underhill ) exp(β complete ) Relative SE: σ β Underhill σ βcomplete 1 Original Underhill-index, starting value = zero 2 Original Underhill-index, starting value = geometric mean 3 Altered Underhill-index, starting value = zero 4 Altered Underhill-index, starting value = geometric mean Altered index: replace imputation with rounded predictions 7 / 22

11 Data generating model Counts follow negative binomial distribution Fixed size Variable mean (defined on log-scale) Intercept Linear trend and random walk along winter Random intercept and random walk along winter per site Sine wave within a winter with variable phase among winters Gaussian noise at observation level Different dataset per simulation All datasets based on the same hyperparameters 8 / 22

12 Example of simulated dataset 150 True mean per site Time (winters) True mean per site Site 12 Site 13 Site 18 Site Site 30 Site 31 Site 34 Site Month 9 / Year

13 Evaluation of Underhill index Relative bias Algorithm Original Altered Starting value Mean Zero 80% 100% 120% 140% 160% Relative bias, 100% = complete dataset Relative SE Algorithm Original Altered Starting value Mean Zero 70% 80% 90% 100% Relative SE, 100% = complete dataset 10 / 22

14 1 Introduction 2 Testing the Underhill index 3 An alternative way of imputing 4 Testing multiple imputation using INLA 5 Conclusions 11 / 22

15 Requirements Choose model that doesn t require starting values We choose a negative binomial GLMM Winter and month as fixed effect (factors) Site as random intercept Fitted in R (R Core Team 2014) with INLA (Rue et al. 2009) 12 / 22

16 Requirements Choose model that doesn t require starting values We choose a negative binomial GLMM Winter and month as fixed effect (factors) Site as random intercept Fitted in R (R Core Team 2014) with INLA (Rue et al. 2009) Take the uncertainty of predictions into account Sample from negative binomial distribution Size Mean Sample from distribution of hyperparameter Sample from gaussian distribution Mean and SE of prediction on the link scale 12 / 22

17 1 Introduction 2 Testing the Underhill index 3 An alternative way of imputing 4 Testing multiple imputation using INLA 5 Conclusions 13 / 22

18 Test setup Same test datasets as for testing Underhill-index Fit INLA model to observed dataset Generate M sets of imputed values For each set m Calculate total per winter and month over all sites Model totals Save the regression parameters β i m and their SE σ i m 14 / 22

19 Test setup Same test datasets as for testing Underhill-index Fit INLA model to observed dataset Generate M sets of imputed values For each set m Calculate total per winter and month over all sites Model totals Save the regression parameters β i m and their SE σ i m Aggregate over all M sets (Rubin 1987) σ i = 1 M M m=1 β i = 1 M M m=1 σ 2 i m + M + 1 M β i m M m=1 (β i m β i ) 2 M 1 14 / 22

20 Evaluation of multiple imputation Relative bias Proportion of missing data 75% 50% 25% 5% 1% 60% 80% 100% 120% 140% Relative bias, 100% = complete dataset Relative SE Proportion of missing data 75% 50% 25% 5% 1% 90% 110% 130% Relative SE, 100% = complete dataset 15 / 22

21 Effect of design Relative bias Number of sites Winters % 100% 125% 150% Relative bias, 100% = complete dataset Relative SE Number of sites Winters % 100% 120% 140% 160% Relative SE, 100% = complete dataset 16 / 22

22 Effect of model for imputation Relative bias Model for imputation True mean Random walk per site Constant site 70% 80% 90% 100% 110% 120% 130% Relative bias, 100% = complete dataset Relative SE Model for imputation True mean Random walk per site Constant site 90% 100% 110% 120% 130% Relative SE, 100% = complete dataset 17 / 22

23 Real life examples Anser brachyrhynchus: 10% missing, 18 sites, 4 months Numenius arquata: 24% missing, 208 sites, 6 months Winter average 20,000 10, ,000 Anas platyrhynchos: 40% missing, 852 sites, 6 months 8,000 6,000 4,000 2, ,000 Haematopus ostralegus: 42% missing, 270 sites, 6 months 75,000 50,000 15,000 10,000 25, , Winter 18 / 22

24 1 Introduction 2 Testing the Underhill index 3 An alternative way of imputing 4 Testing multiple imputation using INLA 5 Conclusions 19 / 22

25 Underhill-index Must use zero as starting value Otherwise biased upward Underestimates standard errors Incorrect Type I errors! Too optimistic 20 / 22

26 Multiple imputation Unbiased estimates Increased standard errors Imputation = more uncertainty Implies lower power Sample size actual dataset < sample size complete dataset Increase of standard error depends on 1 Proportion of missing data 2 Size of dataset 3 Imputation model Marginal improvement with increased number of imputations 21 / 22

27 Questions? References R Core Team R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Rubin, D.B Multiple Imputation for Nonresponse in Surveys. New York, NY: John Wiley & Sons, Ltd. Rue, Håvard, Sara Martino, Finn Lindgren, Daniel Simpson, and Andrea Riebler INLA: Functions Which Allow to Perform Full Bayesian Analysis of Latent Gaussian Models Using Integrated Nested Laplace Approximation. Underhill, L. G., and R. P. Prys-Jones Index Numbers for Waterbird Populations. I. Review and Methodology. Journal of Applied Ecology 31 (3): doi: / / 22

Handling Data with Three Types of Missing Values:

Handling Data with Three Types of Missing Values: Handling Data with Three Types of Missing Values: A Simulation Study Jennifer Boyko Advisor: Ofer Harel Department of Statistics University of Connecticut Storrs, CT May 21, 2013 Jennifer Boyko Handling

More information

Lecture 26: Missing data

Lecture 26: Missing data Lecture 26: Missing data Reading: ESL 9.6 STATS 202: Data mining and analysis December 1, 2017 1 / 10 Missing data is everywhere Survey data: nonresponse. 2 / 10 Missing data is everywhere Survey data:

More information

Handling missing data for indicators, Susanne Rässler 1

Handling missing data for indicators, Susanne Rässler 1 Handling Missing Data for Indicators Susanne Rässler Institute for Employment Research & Federal Employment Agency Nürnberg, Germany First Workshop on Indicators in the Knowledge Economy, Tübingen, 3-4

More information

Machine Learning in the Wild. Dealing with Messy Data. Rajmonda S. Caceres. SDS 293 Smith College October 30, 2017

Machine Learning in the Wild. Dealing with Messy Data. Rajmonda S. Caceres. SDS 293 Smith College October 30, 2017 Machine Learning in the Wild Dealing with Messy Data Rajmonda S. Caceres SDS 293 Smith College October 30, 2017 Analytical Chain: From Data to Actions Data Collection Data Cleaning/ Preparation Analysis

More information

Missing Data and Imputation

Missing Data and Imputation Missing Data and Imputation NINA ORWITZ OCTOBER 30 TH, 2017 Outline Types of missing data Simple methods for dealing with missing data Single and multiple imputation R example Missing data is a complex

More information

DATA ANALYSIS USING HIERARCHICAL GENERALIZED LINEAR MODELS WITH R

DATA ANALYSIS USING HIERARCHICAL GENERALIZED LINEAR MODELS WITH R DATA ANALYSIS USING HIERARCHICAL GENERALIZED LINEAR MODELS WITH R Lee, Rönnegård & Noh LRN@du.se Lee, Rönnegård & Noh HGLM book 1 / 24 Overview 1 Background to the book 2 Crack growth example 3 Contents

More information

Statistical Analysis Using Combined Data Sources: Discussion JPSM Distinguished Lecture University of Maryland

Statistical Analysis Using Combined Data Sources: Discussion JPSM Distinguished Lecture University of Maryland Statistical Analysis Using Combined Data Sources: Discussion 2011 JPSM Distinguished Lecture University of Maryland 1 1 University of Michigan School of Public Health April 2011 Complete (Ideal) vs. Observed

More information

Opening Windows into the Black Box

Opening Windows into the Black Box Opening Windows into the Black Box Yu-Sung Su, Andrew Gelman, Jennifer Hill and Masanao Yajima Columbia University, Columbia University, New York University and University of California at Los Angels July

More information

The Consequences of Poor Data Quality on Model Accuracy

The Consequences of Poor Data Quality on Model Accuracy The Consequences of Poor Data Quality on Model Accuracy Dr. Gerhard Svolba SAS Austria Cologne, June 14th, 2012 From this talk you can expect The analytical viewpoint on data quality Answers to the questions

More information

INLA: an introduction

INLA: an introduction INLA: an introduction Håvard Rue 1 Norwegian University of Science and Technology Trondheim, Norway May 2009 1 Joint work with S.Martino (Trondheim) and N.Chopin (Paris) Latent Gaussian models Background

More information

Frequently Asked Questions Updated 2006 (TRIM version 3.51) PREPARING DATA & RUNNING TRIM

Frequently Asked Questions Updated 2006 (TRIM version 3.51) PREPARING DATA & RUNNING TRIM Frequently Asked Questions Updated 2006 (TRIM version 3.51) PREPARING DATA & RUNNING TRIM * Which directories are used for input files and output files? See menu-item "Options" and page 22 in the manual.

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 12 Combining

More information

INLA: Integrated Nested Laplace Approximations

INLA: Integrated Nested Laplace Approximations INLA: Integrated Nested Laplace Approximations John Paige Statistics Department University of Washington October 10, 2017 1 The problem Markov Chain Monte Carlo (MCMC) takes too long in many settings.

More information

DATA ANALYSIS USING HIERARCHICAL GENERALIZED LINEAR MODELS WITH R

DATA ANALYSIS USING HIERARCHICAL GENERALIZED LINEAR MODELS WITH R DATA ANALYSIS USING HIERARCHICAL GENERALIZED LINEAR MODELS WITH R Lee, Rönnegård & Noh LRN@du.se Lee, Rönnegård & Noh HGLM book 1 / 25 Overview 1 Background to the book 2 A motivating example from my own

More information

rpms: An R Package for Modeling Survey Data with Regression Trees

rpms: An R Package for Modeling Survey Data with Regression Trees rpms: An R Package for Modeling Survey Data with Regression Trees Daniell Toth U.S. Bureau of Labor Statistics Abstract In this article, we introduce the R package, rpms (Recursive Partitioning for Modeling

More information

Missing Data Analysis for the Employee Dataset

Missing Data Analysis for the Employee Dataset Missing Data Analysis for the Employee Dataset 67% of the observations have missing values! Modeling Setup Random Variables: Y i =(Y i1,...,y ip ) 0 =(Y i,obs, Y i,miss ) 0 R i =(R i1,...,r ip ) 0 ( 1

More information

Performance of Sequential Imputation Method in Multilevel Applications

Performance of Sequential Imputation Method in Multilevel Applications Section on Survey Research Methods JSM 9 Performance of Sequential Imputation Method in Multilevel Applications Enxu Zhao, Recai M. Yucel New York State Department of Health, 8 N. Pearl St., Albany, NY

More information

Topics in Machine Learning-EE 5359 Model Assessment and Selection

Topics in Machine Learning-EE 5359 Model Assessment and Selection Topics in Machine Learning-EE 5359 Model Assessment and Selection Ioannis D. Schizas Electrical Engineering Department University of Texas at Arlington 1 Training and Generalization Training stage: Utilizing

More information

NORM software review: handling missing values with multiple imputation methods 1

NORM software review: handling missing values with multiple imputation methods 1 METHODOLOGY UPDATE I Gusti Ngurah Darmawan NORM software review: handling missing values with multiple imputation methods 1 Evaluation studies often lack sophistication in their statistical analyses, particularly

More information

Comparative Evaluation of Synthetic Dataset Generation Methods

Comparative Evaluation of Synthetic Dataset Generation Methods Comparative Evaluation of Synthetic Dataset Generation Methods Ashish Dandekar, Remmy A. M. Zen, Stéphane Bressan December 12, 2017 1 / 17 Open Data vs Data Privacy Open Data Helps crowdsourcing the research

More information

A Monotonic Sequence and Subsequence Approach in Missing Data Statistical Analysis

A Monotonic Sequence and Subsequence Approach in Missing Data Statistical Analysis Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 1 (2016), pp. 1131-1140 Research India Publications http://www.ripublication.com A Monotonic Sequence and Subsequence Approach

More information

An imputation approach for analyzing mixed-mode surveys

An imputation approach for analyzing mixed-mode surveys An imputation approach for analyzing mixed-mode surveys Jae-kwang Kim 1 Iowa State University June 4, 2013 1 Joint work with S. Park and S. Kim Ouline Introduction Proposed Methodology Application to Private

More information

Additive hedonic regression models for the Austrian housing market ERES Conference, Edinburgh, June

Additive hedonic regression models for the Austrian housing market ERES Conference, Edinburgh, June for the Austrian housing market, June 14 2012 Ao. Univ. Prof. Dr. Fachbereich Stadt- und Regionalforschung Technische Universität Wien Dr. Strategic Risk Management Bank Austria UniCredit, Wien Inhalt

More information

Simulation of Imputation Effects Under Different Assumptions. Danny Rithy

Simulation of Imputation Effects Under Different Assumptions. Danny Rithy Simulation of Imputation Effects Under Different Assumptions Danny Rithy ABSTRACT Missing data is something that we cannot always prevent. Data can be missing due to subjects' refusing to answer a sensitive

More information

Missing Data: What Are You Missing?

Missing Data: What Are You Missing? Missing Data: What Are You Missing? Craig D. Newgard, MD, MPH Jason S. Haukoos, MD, MS Roger J. Lewis, MD, PhD Society for Academic Emergency Medicine Annual Meeting San Francisco, CA May 006 INTRODUCTION

More information

Methods for Estimating Change from NSCAW I and NSCAW II

Methods for Estimating Change from NSCAW I and NSCAW II Methods for Estimating Change from NSCAW I and NSCAW II Paul Biemer Sara Wheeless Keith Smith RTI International is a trade name of Research Triangle Institute 1 Course Outline Review of NSCAW I and NSCAW

More information

Multiple-imputation analysis using Stata s mi command

Multiple-imputation analysis using Stata s mi command Multiple-imputation analysis using Stata s mi command Yulia Marchenko Senior Statistician StataCorp LP 2009 UK Stata Users Group Meeting Yulia Marchenko (StataCorp) Multiple-imputation analysis using mi

More information

Global modelling of air pollution using multiple data sources

Global modelling of air pollution using multiple data sources Global modelling of air pollution using multiple data sources Matthew Thomas M.L.Thomas@bath.ac.uk Supervised by Dr. Gavin Shaddick In collaboration with IHME and WHO June 14, 2016 1/ 1 MOTIVATION Air

More information

Epidemiological analysis PhD-course in epidemiology

Epidemiological analysis PhD-course in epidemiology Epidemiological analysis PhD-course in epidemiology Lau Caspar Thygesen Associate professor, PhD 9. oktober 2012 Multivariate tables Agenda today Age standardization Missing data 1 2 3 4 Age standardization

More information

Group Level Imputation of Statistic Maps, Version 1.0. User Manual by Kenny Vaden, Ph.D. musc. edu)

Group Level Imputation of Statistic Maps, Version 1.0. User Manual by Kenny Vaden, Ph.D. musc. edu) Updated: March 29, 2012 1 Group Level Imputation of Statistic Maps, Version 1.0 User Manual by Kenny Vaden, Ph.D. (vaden @ musc. edu) Notice for use in Academic Work: If our toolkit is used in an academic

More information

Frequencies, Unequal Variance Weights, and Sampling Weights: Similarities and Differences in SAS

Frequencies, Unequal Variance Weights, and Sampling Weights: Similarities and Differences in SAS ABSTRACT Paper 1938-2018 Frequencies, Unequal Variance Weights, and Sampling Weights: Similarities and Differences in SAS Robert M. Lucas, Robert M. Lucas Consulting, Fort Collins, CO, USA There is confusion

More information

Epidemiological analysis PhD-course in epidemiology. Lau Caspar Thygesen Associate professor, PhD 25 th February 2014

Epidemiological analysis PhD-course in epidemiology. Lau Caspar Thygesen Associate professor, PhD 25 th February 2014 Epidemiological analysis PhD-course in epidemiology Lau Caspar Thygesen Associate professor, PhD 25 th February 2014 Age standardization Incidence and prevalence are strongly agedependent Risks rising

More information

SOS3003 Applied data analysis for social science Lecture note Erling Berge Department of sociology and political science NTNU.

SOS3003 Applied data analysis for social science Lecture note Erling Berge Department of sociology and political science NTNU. SOS3003 Applied data analysis for social science Lecture note 04-2009 Erling Berge Department of sociology and political science NTNU Erling Berge 2009 1 Missing data Literature Allison, Paul D 2002 Missing

More information

A Bayesian analysis of survey design parameters for nonresponse, costs and survey outcome variable models

A Bayesian analysis of survey design parameters for nonresponse, costs and survey outcome variable models A Bayesian analysis of survey design parameters for nonresponse, costs and survey outcome variable models Eva de Jong, Nino Mushkudiani and Barry Schouten ASD workshop, November 6-8, 2017 Outline Bayesian

More information

Record Linkage for the American Opportunity Study: Formal Framework and Research Agenda

Record Linkage for the American Opportunity Study: Formal Framework and Research Agenda 1 / 14 Record Linkage for the American Opportunity Study: Formal Framework and Research Agenda Stephen E. Fienberg Department of Statistics, Heinz College, and Machine Learning Department, Carnegie Mellon

More information

EE 511 Linear Regression

EE 511 Linear Regression EE 511 Linear Regression Instructor: Hanna Hajishirzi hannaneh@washington.edu Slides adapted from Ali Farhadi, Mari Ostendorf, Pedro Domingos, Carlos Guestrin, and Luke Zettelmoyer, Announcements Hw1 due

More information

CSE446: Linear Regression. Spring 2017

CSE446: Linear Regression. Spring 2017 CSE446: Linear Regression Spring 2017 Ali Farhadi Slides adapted from Carlos Guestrin and Luke Zettlemoyer Prediction of continuous variables Billionaire says: Wait, that s not what I meant! You say: Chill

More information

MODEL SELECTION AND MODEL AVERAGING IN THE PRESENCE OF MISSING VALUES

MODEL SELECTION AND MODEL AVERAGING IN THE PRESENCE OF MISSING VALUES UNIVERSITY OF GLASGOW MODEL SELECTION AND MODEL AVERAGING IN THE PRESENCE OF MISSING VALUES by KHUNESWARI GOPAL PILLAY A thesis submitted in partial fulfillment for the degree of Doctor of Philosophy in

More information

Learning and Evaluating Classifiers under Sample Selection Bias

Learning and Evaluating Classifiers under Sample Selection Bias Learning and Evaluating Classifiers under Sample Selection Bias Bianca Zadrozny IBM T.J. Watson Research Center, Yorktown Heights, NY 598 zadrozny@us.ibm.com Abstract Classifier learning methods commonly

More information

Industrialising Small Area Estimation at the Australian Bureau of Statistics

Industrialising Small Area Estimation at the Australian Bureau of Statistics Industrialising Small Area Estimation at the Australian Bureau of Statistics Peter Radisich Australian Bureau of Statistics Workshop on Methods in Official Statistics - March 14 2014 Outline Background

More information

This module is part of the. Memobust Handbook. on Methodology of Modern Business Statistics

This module is part of the. Memobust Handbook. on Methodology of Modern Business Statistics This module is part of the Memobust Handboo on Methodology of Modern Business Statistics 26 March 2014 Method: Statistical Matching Methods Contents General section... 3 Summary... 3 2. General description

More information

GLM II. Basic Modeling Strategy CAS Ratemaking and Product Management Seminar by Paul Bailey. March 10, 2015

GLM II. Basic Modeling Strategy CAS Ratemaking and Product Management Seminar by Paul Bailey. March 10, 2015 GLM II Basic Modeling Strategy 2015 CAS Ratemaking and Product Management Seminar by Paul Bailey March 10, 2015 Building predictive models is a multi-step process Set project goals and review background

More information

Comparison of Methods for Analyzing and Interpreting Censored Exposure Data

Comparison of Methods for Analyzing and Interpreting Censored Exposure Data Comparison of Methods for Analyzing and Interpreting Censored Exposure Data Paul Hewett Ph.D. CIH Exposure Assessment Solutions, Inc. Gary H. Ganser Ph.D. West Virginia University Comparison of Methods

More information

And the benefits are immediate minimal changes to the interface allow you and your teams to access these

And the benefits are immediate minimal changes to the interface allow you and your teams to access these Find Out What s New >> With nearly 50 enhancements that increase functionality and ease-of-use, Minitab 15 has something for everyone. And the benefits are immediate minimal changes to the interface allow

More information

Global modelling of air pollution using multiple data sources

Global modelling of air pollution using multiple data sources Global modelling of air pollution using multiple data sources Matthew Thomas SAMBa, University of Bath Email: M.L.Thomas@bath.ac.uk November 11, 015 1/ 3 OUTLINE Motivation Data Sources Existing Approaches

More information

Missing Data Analysis with SPSS

Missing Data Analysis with SPSS Missing Data Analysis with SPSS Meng-Ting Lo (lo.194@osu.edu) Department of Educational Studies Quantitative Research, Evaluation and Measurement Program (QREM) Research Methodology Center (RMC) Outline

More information

GENREG DID THAT? Clay Barker Research Statistician Developer JMP Division, SAS Institute

GENREG DID THAT? Clay Barker Research Statistician Developer JMP Division, SAS Institute GENREG DID THAT? Clay Barker Research Statistician Developer JMP Division, SAS Institute GENREG WHAT IS IT? The Generalized Regression platform was introduced in JMP Pro 11 and got much better in version

More information

Multiple Imputation with Mplus

Multiple Imputation with Mplus Multiple Imputation with Mplus Tihomir Asparouhov and Bengt Muthén Version 2 September 29, 2010 1 1 Introduction Conducting multiple imputation (MI) can sometimes be quite intricate. In this note we provide

More information

Semen fertility prediction based on lifestyle factors

Semen fertility prediction based on lifestyle factors Koskas Florence CS 229 Guyon Axel 12/12/2014 Buratti Yoann Semen fertility prediction based on lifestyle factors 1 Introduction Although many people still think of infertility as a "woman s problem," in

More information

Missing Data Missing Data Methods in ML Multiple Imputation

Missing Data Missing Data Methods in ML Multiple Imputation Missing Data Missing Data Methods in ML Multiple Imputation PRE 905: Multivariate Analysis Lecture 11: April 22, 2014 PRE 905: Lecture 11 Missing Data Methods Today s Lecture The basics of missing data:

More information

Package citools. October 20, 2018

Package citools. October 20, 2018 Type Package Package citools October 20, 2018 Title Confidence or Prediction Intervals, Quantiles, and Probabilities for Statistical Models Version 0.5.0 Maintainer John Haman Functions

More information

arxiv: v1 [stat.me] 29 May 2015

arxiv: v1 [stat.me] 29 May 2015 MIMCA: Multiple imputation for categorical variables with multiple correspondence analysis Vincent Audigier 1, François Husson 2 and Julie Josse 2 arxiv:1505.08116v1 [stat.me] 29 May 2015 Applied Mathematics

More information

Generalized least squares (GLS) estimates of the level-2 coefficients,

Generalized least squares (GLS) estimates of the level-2 coefficients, Contents 1 Conceptual and Statistical Background for Two-Level Models...7 1.1 The general two-level model... 7 1.1.1 Level-1 model... 8 1.1.2 Level-2 model... 8 1.2 Parameter estimation... 9 1.3 Empirical

More information

Effects of PROC EXPAND Data Interpolation on Time Series Modeling When the Data are Volatile or Complex

Effects of PROC EXPAND Data Interpolation on Time Series Modeling When the Data are Volatile or Complex Effects of PROC EXPAND Data Interpolation on Time Series Modeling When the Data are Volatile or Complex Keiko I. Powers, Ph.D., J. D. Power and Associates, Westlake Village, CA ABSTRACT Discrete time series

More information

The Performance of Multiple Imputation for Likert-type Items with Missing Data

The Performance of Multiple Imputation for Likert-type Items with Missing Data Journal of Modern Applied Statistical Methods Volume 9 Issue 1 Article 8 5-1-2010 The Performance of Multiple Imputation for Likert-type Items with Missing Data Walter Leite University of Florida, Walter.Leite@coe.ufl.edu

More information

Hyperparameters and Validation Sets. Sargur N. Srihari

Hyperparameters and Validation Sets. Sargur N. Srihari Hyperparameters and Validation Sets Sargur N. srihari@cedar.buffalo.edu 1 Topics in Machine Learning Basics 1. Learning Algorithms 2. Capacity, Overfitting and Underfitting 3. Hyperparameters and Validation

More information

08 An Introduction to Dense Continuous Robotic Mapping

08 An Introduction to Dense Continuous Robotic Mapping NAVARCH/EECS 568, ROB 530 - Winter 2018 08 An Introduction to Dense Continuous Robotic Mapping Maani Ghaffari March 14, 2018 Previously: Occupancy Grid Maps Pose SLAM graph and its associated dense occupancy

More information

Variance Estimation in Presence of Imputation: an Application to an Istat Survey Data

Variance Estimation in Presence of Imputation: an Application to an Istat Survey Data Variance Estimation in Presence of Imputation: an Application to an Istat Survey Data Marco Di Zio, Stefano Falorsi, Ugo Guarnera, Orietta Luzi, Paolo Righi 1 Introduction Imputation is the commonly used

More information

Motivating Example. Missing Data Theory. An Introduction to Multiple Imputation and its Application. Background

Motivating Example. Missing Data Theory. An Introduction to Multiple Imputation and its Application. Background An Introduction to Multiple Imputation and its Application Craig K. Enders University of California - Los Angeles Department of Psychology cenders@psych.ucla.edu Background Work supported by Institute

More information

Bayesian nonparametric regression and density estimation using integrated nested Laplace approximations

Bayesian nonparametric regression and density estimation using integrated nested Laplace approximations Cleveland Clinic Lerner Research Institute From the SelectedWorks of Xiaofeng Wang 2013 Bayesian nonparametric regression and density estimation using integrated nested Laplace approximations Xiaofeng

More information

Inference for Generalized Linear Mixed Models

Inference for Generalized Linear Mixed Models Inference for Generalized Linear Mixed Models Christina Knudson, Ph.D. University of St. Thomas October 18, 2018 Reviewing the Linear Model The usual linear model assumptions: responses normally distributed

More information

Simulation Study: Introduction of Imputation. Methods for Missing Data in Longitudinal Analysis

Simulation Study: Introduction of Imputation. Methods for Missing Data in Longitudinal Analysis Applied Mathematical Sciences, Vol. 5, 2011, no. 57, 2807-2818 Simulation Study: Introduction of Imputation Methods for Missing Data in Longitudinal Analysis Michikazu Nakai Innovation Center for Medical

More information

Hierarchical Generalized Linear Models

Hierarchical Generalized Linear Models Generalized Multilevel Linear Models Introduction to Multilevel Models Workshop University of Georgia: Institute for Interdisciplinary Research in Education and Human Development 07 Generalized Multilevel

More information

Analysis of missing values in simultaneous. functional relationship model for circular variables

Analysis of missing values in simultaneous. functional relationship model for circular variables Analysis of missing values in simultaneous linear functional relationship model for circular variables S. F. Hassan, Y. Z. Zubairi and A. G. Hussin* Centre for Foundation Studies in Science, University

More information

Acknowledgments. Acronyms

Acknowledgments. Acronyms Acknowledgments Preface Acronyms xi xiii xv 1 Basic Tools 1 1.1 Goals of inference 1 1.1.1 Population or process? 1 1.1.2 Probability samples 2 1.1.3 Sampling weights 3 1.1.4 Design effects. 5 1.2 An introduction

More information

StatsMate. User Guide

StatsMate. User Guide StatsMate User Guide Overview StatsMate is an easy-to-use powerful statistical calculator. It has been featured by Apple on Apps For Learning Math in the App Stores around the world. StatsMate comes with

More information

Package midastouch. February 7, 2016

Package midastouch. February 7, 2016 Type Package Version 1.3 Package midastouch February 7, 2016 Title Multiple Imputation by Distance Aided Donor Selection Date 2016-02-06 Maintainer Philipp Gaffert Depends R (>=

More information

Missing Data Analysis for the Employee Dataset

Missing Data Analysis for the Employee Dataset Missing Data Analysis for the Employee Dataset 67% of the observations have missing values! Modeling Setup For our analysis goals we would like to do: Y X N (X, 2 I) and then interpret the coefficients

More information

Handbook of Statistical Modeling for the Social and Behavioral Sciences

Handbook of Statistical Modeling for the Social and Behavioral Sciences Handbook of Statistical Modeling for the Social and Behavioral Sciences Edited by Gerhard Arminger Bergische Universität Wuppertal Wuppertal, Germany Clifford С. Clogg Late of Pennsylvania State University

More information

in this course) ˆ Y =time to event, follow-up curtailed: covered under ˆ Missing at random (MAR) a

in this course) ˆ Y =time to event, follow-up curtailed: covered under ˆ Missing at random (MAR) a Chapter 3 Missing Data 3.1 Types of Missing Data ˆ Missing completely at random (MCAR) ˆ Missing at random (MAR) a ˆ Informative missing (non-ignorable non-response) See 1, 38, 59 for an introduction to

More information

Bootstrapping Method for 14 June 2016 R. Russell Rhinehart. Bootstrapping

Bootstrapping Method for  14 June 2016 R. Russell Rhinehart. Bootstrapping Bootstrapping Method for www.r3eda.com 14 June 2016 R. Russell Rhinehart Bootstrapping This is extracted from the book, Nonlinear Regression Modeling for Engineering Applications: Modeling, Model Validation,

More information

MISSING DATA AND MULTIPLE IMPUTATION

MISSING DATA AND MULTIPLE IMPUTATION Paper 21-2010 An Introduction to Multiple Imputation of Complex Sample Data using SAS v9.2 Patricia A. Berglund, Institute For Social Research-University of Michigan, Ann Arbor, Michigan ABSTRACT This

More information

Robust Imputation of Missing Values in Compositional Data Using the -Package robcompositions

Robust Imputation of Missing Values in Compositional Data Using the -Package robcompositions Robust Imputation of Missing Values in Compositional Data Using the -Package robcompositions Matthias Templ,, Peter Filzmoser, Karel Hron Department of Statistics and Probability Theory, Vienna University

More information

Online Supplement to Bayesian Simultaneous Edit and Imputation for Multivariate Categorical Data

Online Supplement to Bayesian Simultaneous Edit and Imputation for Multivariate Categorical Data Online Supplement to Bayesian Simultaneous Edit and Imputation for Multivariate Categorical Data Daniel Manrique-Vallier and Jerome P. Reiter August 3, 2016 This supplement includes the algorithm for processing

More information

1 RefresheR. Figure 1.1: Soy ice cream flavor preferences

1 RefresheR. Figure 1.1: Soy ice cream flavor preferences 1 RefresheR Figure 1.1: Soy ice cream flavor preferences 2 The Shape of Data Figure 2.1: Frequency distribution of number of carburetors in mtcars dataset Figure 2.2: Daily temperature measurements from

More information

Using Mplus Monte Carlo Simulations In Practice: A Note On Non-Normal Missing Data In Latent Variable Models

Using Mplus Monte Carlo Simulations In Practice: A Note On Non-Normal Missing Data In Latent Variable Models Using Mplus Monte Carlo Simulations In Practice: A Note On Non-Normal Missing Data In Latent Variable Models Bengt Muth en University of California, Los Angeles Tihomir Asparouhov Muth en & Muth en Mplus

More information

CSE 446 Bias-Variance & Naïve Bayes

CSE 446 Bias-Variance & Naïve Bayes CSE 446 Bias-Variance & Naïve Bayes Administrative Homework 1 due next week on Friday Good to finish early Homework 2 is out on Monday Check the course calendar Start early (midterm is right before Homework

More information

Missing Data Techniques

Missing Data Techniques Missing Data Techniques Paul Philippe Pare Department of Sociology, UWO Centre for Population, Aging, and Health, UWO London Criminometrics (www.crimino.biz) 1 Introduction Missing data is a common problem

More information

Statistical Analysis of List Experiments

Statistical Analysis of List Experiments Statistical Analysis of List Experiments Kosuke Imai Princeton University Joint work with Graeme Blair October 29, 2010 Blair and Imai (Princeton) List Experiments NJIT (Mathematics) 1 / 26 Motivation

More information

CS489/698: Intro to ML

CS489/698: Intro to ML CS489/698: Intro to ML Lecture 14: Training of Deep NNs Instructor: Sun Sun 1 Outline Activation functions Regularization Gradient-based optimization 2 Examples of activation functions 3 5/28/18 Sun Sun

More information

The Importance of Modeling the Sampling Design in Multiple. Imputation for Missing Data

The Importance of Modeling the Sampling Design in Multiple. Imputation for Missing Data The Importance of Modeling the Sampling Design in Multiple Imputation for Missing Data Jerome P. Reiter, Trivellore E. Raghunathan, and Satkartar K. Kinney Key Words: Complex Sampling Design, Multiple

More information

Calibration and emulation of TIE-GCM

Calibration and emulation of TIE-GCM Calibration and emulation of TIE-GCM Serge Guillas School of Mathematics Georgia Institute of Technology Jonathan Rougier University of Bristol Big Thanks to Crystal Linkletter (SFU-SAMSI summer school)

More information

Weighting and estimation for the EU-SILC rotational design

Weighting and estimation for the EU-SILC rotational design Weighting and estimation for the EUSILC rotational design JeanMarc Museux 1 (Provisional version) 1. THE EUSILC INSTRUMENT 1.1. Introduction In order to meet both the crosssectional and longitudinal requirements,

More information

Introduction to Mixed Models: Multivariate Regression

Introduction to Mixed Models: Multivariate Regression Introduction to Mixed Models: Multivariate Regression EPSY 905: Multivariate Analysis Spring 2016 Lecture #9 March 30, 2016 EPSY 905: Multivariate Regression via Path Analysis Today s Lecture Multivariate

More information

Online Supplementary Appendix for. Dziak, Nahum-Shani and Collins (2012), Multilevel Factorial Experiments for Developing Behavioral Interventions:

Online Supplementary Appendix for. Dziak, Nahum-Shani and Collins (2012), Multilevel Factorial Experiments for Developing Behavioral Interventions: Online Supplementary Appendix for Dziak, Nahum-Shani and Collins (2012), Multilevel Factorial Experiments for Developing Behavioral Interventions: Power, Sample Size, and Resource Considerations 1 Appendix

More information

A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection (Kohavi, 1995)

A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection (Kohavi, 1995) A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection (Kohavi, 1995) Department of Information, Operations and Management Sciences Stern School of Business, NYU padamopo@stern.nyu.edu

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 14: Introduction to hypothesis testing (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 10 Hypotheses 2 / 10 Quantifying uncertainty Recall the two key goals of inference:

More information

Collaborative Filtering Applied to Educational Data Mining

Collaborative Filtering Applied to Educational Data Mining Collaborative Filtering Applied to Educational Data Mining KDD Cup 200 July 25 th, 200 BigChaos @ KDD Team Dataset Solution Overview Michael Jahrer, Andreas Töscher from commendo research Dataset Team

More information

Machine Learning / Jan 27, 2010

Machine Learning / Jan 27, 2010 Revisiting Logistic Regression & Naïve Bayes Aarti Singh Machine Learning 10-701/15-781 Jan 27, 2010 Generative and Discriminative Classifiers Training classifiers involves learning a mapping f: X -> Y,

More information

HANDLING MISSING DATA

HANDLING MISSING DATA GSO international workshop Mathematic, biostatistics and epidemiology of cancer Modeling and simulation of clinical trials Gregory GUERNEC 1, Valerie GARES 1,2 1 UMR1027 INSERM UNIVERSITY OF TOULOUSE III

More information

Multiple imputation using chained equations: Issues and guidance for practice

Multiple imputation using chained equations: Issues and guidance for practice Multiple imputation using chained equations: Issues and guidance for practice Ian R. White, Patrick Royston and Angela M. Wood http://onlinelibrary.wiley.com/doi/10.1002/sim.4067/full By Gabrielle Simoneau

More information

Fathom Dynamic Data TM Version 2 Specifications

Fathom Dynamic Data TM Version 2 Specifications Data Sources Fathom Dynamic Data TM Version 2 Specifications Use data from one of the many sample documents that come with Fathom. Enter your own data by typing into a case table. Paste data from other

More information

Ronald H. Heck 1 EDEP 606 (F2015): Multivariate Methods rev. November 16, 2015 The University of Hawai i at Mānoa

Ronald H. Heck 1 EDEP 606 (F2015): Multivariate Methods rev. November 16, 2015 The University of Hawai i at Mānoa Ronald H. Heck 1 In this handout, we will address a number of issues regarding missing data. It is often the case that the weakest point of a study is the quality of the data that can be brought to bear

More information

LOESS curve fitted to a population sampled from a sine wave with uniform noise added. The LOESS curve approximates the original sine wave.

LOESS curve fitted to a population sampled from a sine wave with uniform noise added. The LOESS curve approximates the original sine wave. LOESS curve fitted to a population sampled from a sine wave with uniform noise added. The LOESS curve approximates the original sine wave. http://en.wikipedia.org/wiki/local_regression Local regression

More information

Bootstrap and multiple imputation under missing data in AR(1) models

Bootstrap and multiple imputation under missing data in AR(1) models EUROPEAN ACADEMIC RESEARCH Vol. VI, Issue 7/ October 2018 ISSN 2286-4822 www.euacademic.org Impact Factor: 3.4546 (UIF) DRJI Value: 5.9 (B+) Bootstrap and multiple imputation under missing ELJONA MILO

More information

Reference

Reference Leaning diary: research methodology 30.11.2017 Name: Juriaan Zandvliet Student number: 291380 (1) a short description of each topic of the course, (2) desciption of possible examples or exercises done

More information

Modeling and Monitoring Crop Disease in Developing Countries

Modeling and Monitoring Crop Disease in Developing Countries Modeling and Monitoring Crop Disease in Developing Countries John Quinn 1, Kevin Leyton-Brown 2, Ernest Mwebaze 1 1 Department of Computer Science 2 Department of Computer Science Makerere University,

More information

arxiv: v1 [stat.co] 13 Feb 2017

arxiv: v1 [stat.co] 13 Feb 2017 Spatial Models with the Integrated Nested Laplace Approximation within Markov Chain Monte Carlo Virgilio Gómez-Rubio a,, Francisco Palmí-Perales a arxiv:1702.03891v1 [stat.co] 13 Feb 2017 a Department

More information

Package EBglmnet. January 30, 2016

Package EBglmnet. January 30, 2016 Type Package Package EBglmnet January 30, 2016 Title Empirical Bayesian Lasso and Elastic Net Methods for Generalized Linear Models Version 4.1 Date 2016-01-15 Author Anhui Huang, Dianting Liu Maintainer

More information

First-level fmri modeling

First-level fmri modeling First-level fmri modeling Monday, Lecture 3 Jeanette Mumford University of Wisconsin - Madison What do we need to remember from the last lecture? What is the general structure of a t- statistic? How about

More information