Photometric*Stereo* October*8,*2013* Dr.*Grant*Schindler* *

Size: px
Start display at page:

Download "Photometric*Stereo* October*8,*2013* Dr.*Grant*Schindler* *"

Transcription

1 Photometric*Stereo* October*8,*2013* Dr.*Grant*Schindler* * schindler@gatech.edu*

2

3

4

5

6 Credit:*Alex*Powell*

7 Credit:*Alex*Powell*

8 Credit:*Alex*Powell*

9 Credit:*Alex*Powell*

10 Credit:*Alex*Powell*

11 Credit:*Alex*Powell*

12 Froggies* Demo*

13

14 Infinitely*Distant*Light*Source*

15 Acquiring)the)Reflectance)Field)of)a) Human)Face:)Paul)Debevec)et)al* hop://gl.ict.usc.edu/lightstages/*

16

17

18 More*Info* hop:// hop:// hop://gl.ict.usc.edu/research/digitalemily/* hop://gl.ict.usc.edu/research/rhl/*

19 RealTTime*Photometric*Stereo* Surface*Normals* 6*ms* Height*Field* (Integrate*Surface*Normals*via*GaussTSeidel)* 32*ms*

20 RealTTime*Photometric*Stereo*

21 Processing*Demo* Demo*

22 Reading**

23 3D*Scanner*in*Your*Pocket*

24 How*does*it*work?* Camera*(FrontTFacing)* Reflect*Light* Emit*Light*

25 How*does*it*work?* Camera*(FrontTFacing)* Reflect*Light* Emit*Light*

26 How*does*it*work?* Camera*(FrontTFacing)* Reflect*Light* Emit*Light*

27 How*does*it*work?* Camera*(FrontTFacing)* Reflect*Light* Emit*Light*

28 How*does*it*work?* 2D* 3D*

29

30

31

32

33

34

35

36

37 Lambertian Surface The intensity of a pixel I(u,v) is: I(u,v) ^ s ^ n a I(u,v) = [a(u,v) ˆ n (u,v)] [s 0 ˆ s ] = b(u,v) s a(u,v) is the albedo of the surface projecting to (u,v). n(u,v) is the direction of the surface normal. s 0 is the light source intensity. s is the direction to the light source. Slide courtesy of David Kriegman

38 Orthographic Projection Simplification for light sources that are sufficiently far away from an object. All incoming light rays are parallel. Thus, while b vectors vary over the surface, s vector is constant. s b s s b b Pixels : b 1 T s, b 2 T s, b 3 T s,... Bs

39 Images Live in a 3-D Subspace of All Possible Images Images Surface Normals Light Directions = 3 #pixels #pixels 4 4 3

40 Images Live in a 3-D Subspace of All Possible Images Images Surface Normals Light Directions = 3 #pixels #pixels 4 4 3

41 Background:*Linear*Algebra* hop:// transforms/* Related:*Image*Compression*

42 Synthetic Sphere Images Five different lighting conditions Slide courtesy of David Forsyth

43 Recovered Albedo Slide courtesy of David Forsyth

44 Recovered Surface Normals Slide courtesy of David Forsyth

45 Recovered Surface Shape Recovery up to a constant depth error (not absolute depth) Slide courtesy of David Forsyth

46 TFrankotTChellappa*(FFT)*

47 High Quality Results George Vogiatzis and Carlos Hernandez

48 Photometric Stereo

49 Photometric Stereo s 1 s 2 s 3 b 2 b 1 b 3 Given multiple images of the same surface under different known lighting conditions, can we recover the surface shape? Yes! (Woodham, 1978)

50 Photometric Stereo Assume: A set of point sources that are infinitely distant A set of pictures of an object, obtained in exactly the same camera/object configuration but using different sources I 1 = Bs 1 ; I 2 = Bs 2 ; I 3 = Bs 3... A Lambertian object (or the specular component has been identified and removed)

51 Stereo for a Pixel I s 1 s 2 s 3 b For a pixel (x,y) we have n measurements : I 1 (x, y) =s 1 T b(x, y); I 2 (x, y) =s 2 T b(x, y)... I(x, y) = Sb(x, y) Solve an over-constrained linear system for b (with n>3)

52 What About Shadows? Shadowed pixels (e.g. attached shadows for a given light source position) are outliers. Max trick can be adapted for this case too: " I 1 (x,y) 0 0 %" I 1 (x, y) % " I 1 (x, y) 0 0 %" T s 1 % $ ' $ ' $ ' $ ' $ 0 0 ' $ ' = $ 0 0 ' $ ' b(x, y) T # $ 0 0 I n (x,y)&' # $ I n (x, y) &' # $ 0 0 I n (x, y) &' # $ s n & ' Pre-multiplying by a thresholded weight matrix zeros the contributions from shadowed pixels

53 Recovering the Albedo Recall that b(x, y) = a(x, y)ˆ n (x,y) a(x, y) = b(x,y) This gives a check on the normal recovery at a pixel If the magnitude of a(x, y) is greater than 1, there s a problem Then ˆ n (x, y) = b(x, y) /a(x, y)

54 Recovering the Surface Shape Depth map model (also called Monge patch): Graphic courtesy of David Forsyth z = f (x, y) Surface is set of points {x, y, f (x, y)}

55 Recovering a surface from normals - 1 If we write the known vector g as " g 1 (x, y) % (x,y, f (x, y)) g(x,y) = $ g 2 (x, y) ' $ ' # g 3 (x, y) & Then we obtain values for the partial derivatives of the surface: Recall the surface is written as This means the normal has the form: N(x,y) = " $ # 1 % " f x % f 2 x + f 2 ' $ f y ' y +1& $ ' # 1 & ( ) ( ) f x (x,y) = g 1 (x, y) g 3 (x, y) f y (x, y) = g 2 (x,y) g 3 (x,y) Slide courtesy of David Forsyth

56 Recovering a surface from normals - 2 Recall that mixed second partials are equal --- this gives us a check. We must have: ( g 1 (x, y) g 3 (x, y) ) = y ( ) g 2 (x, y) g 3 (x, y) (or they x should be similar, at least) We can now recover the surface height at any point by integration along some path, e.g. f (x, y) = y 0 x f x (s, y)ds + 0 f y (x,t)dt + c Slide courtesy of David Forsyth

57 Light Sources

58 Lambertian Surface The intensity of a pixel I(u,v) is: I(u,v) ^ s ^ n a I(u,v) = [a(u,v) ˆ n (u,v)] [s 0 ˆ s ] = b(u,v) s a(u,v) is the albedo of the surface projecting to (u,v). n(u,v) is the direction of the surface normal. s 0 is the light source intensity. s is the direction to the light source. Slide courtesy of David Kriegman

59 Orthographic Projection Simplification for light sources that are sufficiently far away from an object. All incoming light rays are parallel. Thus, while b vectors vary over the surface, s vector is constant. s b s s b b Pixels : b 1 T s, b 2 T s, b 3 T s,... Bs

Photometric Stereo, Shape from Shading SfS Chapter Szelisky

Photometric Stereo, Shape from Shading SfS Chapter Szelisky Photometric Stereo, Shape from Shading SfS Chapter 12.1.1. Szelisky Guido Gerig CS 6320, Spring 2012 Credits: M. Pollefey UNC CS256, Ohad Ben-Shahar CS BGU, Wolff JUN (http://www.cs.jhu.edu/~wolff/course600.461/week9.3/index.htm)

More information

Global Illumination. Frank Dellaert Some slides by Jim Rehg, Philip Dutre

Global Illumination. Frank Dellaert Some slides by Jim Rehg, Philip Dutre Global Illumination Frank Dellaert Some slides by Jim Rehg, Philip Dutre Color and Radiometry What is color? What is Color? A perceptual attribute of objects and scenes constructed by the visual system

More information

Capturing light. Source: A. Efros

Capturing light. Source: A. Efros Capturing light Source: A. Efros Review Pinhole projection models What are vanishing points and vanishing lines? What is orthographic projection? How can we approximate orthographic projection? Lenses

More information

Starting this chapter

Starting this chapter Computer Vision 5. Source, Shadow, Shading Department of Computer Engineering Jin-Ho Choi 05, April, 2012. 1/40 Starting this chapter The basic radiometric properties of various light sources Develop models

More information

Radiance. Pixels measure radiance. This pixel Measures radiance along this ray

Radiance. Pixels measure radiance. This pixel Measures radiance along this ray Photometric stereo Radiance Pixels measure radiance This pixel Measures radiance along this ray Where do the rays come from? Rays from the light source reflect off a surface and reach camera Reflection:

More information

Announcements. Photometric Stereo. Shading reveals 3-D surface geometry. Photometric Stereo Rigs: One viewpoint, changing lighting

Announcements. Photometric Stereo. Shading reveals 3-D surface geometry. Photometric Stereo Rigs: One viewpoint, changing lighting Announcements Today Photometric Stereo, next lecture return to stereo Photometric Stereo Introduction to Computer Vision CSE152 Lecture 16 Shading reveals 3-D surface geometry Two shape-from-x methods

More information

Photometric Stereo. Lighting and Photometric Stereo. Computer Vision I. Last lecture in a nutshell BRDF. CSE252A Lecture 7

Photometric Stereo. Lighting and Photometric Stereo. Computer Vision I. Last lecture in a nutshell BRDF. CSE252A Lecture 7 Lighting and Photometric Stereo Photometric Stereo HW will be on web later today CSE5A Lecture 7 Radiometry of thin lenses δa Last lecture in a nutshell δa δa'cosα δacos β δω = = ( z' / cosα ) ( z / cosα

More information

Photometric Stereo. Photometric Stereo. Shading reveals 3-D surface geometry BRDF. HW3 is assigned. An example of photometric stereo

Photometric Stereo. Photometric Stereo. Shading reveals 3-D surface geometry BRDF. HW3 is assigned. An example of photometric stereo Photometric Stereo Photometric Stereo HW3 is assigned Introduction to Computer Vision CSE5 Lecture 6 Shading reveals 3-D surface geometry Shape-from-shading: Use just one image to recover shape. Requires

More information

Other approaches to obtaining 3D structure

Other approaches to obtaining 3D structure Other approaches to obtaining 3D structure Active stereo with structured light Project structured light patterns onto the object simplifies the correspondence problem Allows us to use only one camera camera

More information

Photometric stereo. Recovering the surface f(x,y) Three Source Photometric stereo: Step1. Reflectance Map of Lambertian Surface

Photometric stereo. Recovering the surface f(x,y) Three Source Photometric stereo: Step1. Reflectance Map of Lambertian Surface Photometric stereo Illumination Cones and Uncalibrated Photometric Stereo Single viewpoint, multiple images under different lighting. 1. Arbitrary known BRDF, known lighting 2. Lambertian BRDF, known lighting

More information

Announcement. Photometric Stereo. Computer Vision I. Shading reveals 3-D surface geometry. Shape-from-X. CSE252A Lecture 8

Announcement. Photometric Stereo. Computer Vision I. Shading reveals 3-D surface geometry. Shape-from-X. CSE252A Lecture 8 Announcement Photometric Stereo Lecture 8 Read Chapter 2 of Forsyth & Ponce Office hours tomorrow: 3-5, CSE 4127 5-6, CSE B260A Piazza Next lecture Shape-from-X Shading reveals 3-D surface geometry Where

More information

CS4670/5760: Computer Vision Kavita Bala Scott Wehrwein. Lecture 23: Photometric Stereo

CS4670/5760: Computer Vision Kavita Bala Scott Wehrwein. Lecture 23: Photometric Stereo CS4670/5760: Computer Vision Kavita Bala Scott Wehrwein Lecture 23: Photometric Stereo Announcements PA3 Artifact due tonight PA3 Demos Thursday Signups close at 4:30 today No lecture on Friday Last Time:

More information

Using a Raster Display Device for Photometric Stereo

Using a Raster Display Device for Photometric Stereo DEPARTMEN T OF COMP UTING SC IENC E Using a Raster Display Device for Photometric Stereo Nathan Funk & Yee-Hong Yang CRV 2007 May 30, 2007 Overview 2 MODEL 3 EXPERIMENTS 4 CONCLUSIONS 5 QUESTIONS 1. Background

More information

Lambertian model of reflectance I: shape from shading and photometric stereo. Ronen Basri Weizmann Institute of Science

Lambertian model of reflectance I: shape from shading and photometric stereo. Ronen Basri Weizmann Institute of Science Lambertian model of reflectance I: shape from shading and photometric stereo Ronen Basri Weizmann Institute of Science Variations due to lighting (and pose) Relief Dumitru Verdianu Flying Pregnant Woman

More information

Assignment #2. (Due date: 11/6/2012)

Assignment #2. (Due date: 11/6/2012) Computer Vision I CSE 252a, Fall 2012 David Kriegman Assignment #2 (Due date: 11/6/2012) Name: Student ID: Email: Problem 1 [1 pts] Calculate the number of steradians contained in a spherical wedge with

More information

Epipolar geometry contd.

Epipolar geometry contd. Epipolar geometry contd. Estimating F 8-point algorithm The fundamental matrix F is defined by x' T Fx = 0 for any pair of matches x and x in two images. Let x=(u,v,1) T and x =(u,v,1) T, each match gives

More information

Lecture 22: Basic Image Formation CAP 5415

Lecture 22: Basic Image Formation CAP 5415 Lecture 22: Basic Image Formation CAP 5415 Today We've talked about the geometry of scenes and how that affects the image We haven't talked about light yet Today, we will talk about image formation and

More information

Homework 4 Computer Vision CS 4731, Fall 2011 Due Date: Nov. 15, 2011 Total Points: 40

Homework 4 Computer Vision CS 4731, Fall 2011 Due Date: Nov. 15, 2011 Total Points: 40 Homework 4 Computer Vision CS 4731, Fall 2011 Due Date: Nov. 15, 2011 Total Points: 40 Note 1: Both the analytical problems and the programming assignments are due at the beginning of class on Nov 15,

More information

Announcements. Recognition I. Gradient Space (p,q) What is the reflectance map?

Announcements. Recognition I. Gradient Space (p,q) What is the reflectance map? Announcements I HW 3 due 12 noon, tomorrow. HW 4 to be posted soon recognition Lecture plan recognition for next two lectures, then video and motion. Introduction to Computer Vision CSE 152 Lecture 17

More information

Faces. Face Modeling. Topics in Image-Based Modeling and Rendering CSE291 J00 Lecture 17

Faces. Face Modeling. Topics in Image-Based Modeling and Rendering CSE291 J00 Lecture 17 Face Modeling Topics in Image-Based Modeling and Rendering CSE291 J00 Lecture 17 Faces CS291-J00, Winter 2003 From David Romdhani Kriegman, slides 2003 1 Approaches 2-D Models morphing, indexing, etc.

More information

Photometric Stereo.

Photometric Stereo. Photometric Stereo Photometric Stereo v.s.. Structure from Shading [1] Photometric stereo is a technique in computer vision for estimating the surface normals of objects by observing that object under

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 20: Light, reflectance and photometric stereo Light by Ted Adelson Readings Szeliski, 2.2, 2.3.2 Light by Ted Adelson Readings Szeliski, 2.2, 2.3.2 Properties

More information

CS 4495/7495 Computer Vision Frank Dellaert, Fall 07. Dense Stereo Some Slides by Forsyth & Ponce, Jim Rehg, Sing Bing Kang

CS 4495/7495 Computer Vision Frank Dellaert, Fall 07. Dense Stereo Some Slides by Forsyth & Ponce, Jim Rehg, Sing Bing Kang CS 4495/7495 Computer Vision Frank Dellaert, Fall 07 Dense Stereo Some Slides by Forsyth & Ponce, Jim Rehg, Sing Bing Kang Etymology Stereo comes from the Greek word for solid (στερεο), and the term can

More information

Ligh%ng and Reflectance

Ligh%ng and Reflectance Ligh%ng and Reflectance 2 3 4 Ligh%ng Ligh%ng can have a big effect on how an object looks. Modeling the effect of ligh%ng can be used for: Recogni%on par%cularly face recogni%on Shape reconstruc%on Mo%on

More information

HW2. October 24, CSE 252A Computer Vision I Fall Assignment 2

HW2. October 24, CSE 252A Computer Vision I Fall Assignment 2 HW2 October 24, 2018 1 CSE 252A Computer Vision I Fall 2018 - Assignment 2 1.0.1 Instructor: David Kriegman 1.0.2 Assignment Published On: Wednesday, October 24, 2018 1.0.3 Due On: Wednesday, November

More information

Announcements. Introduction. Why is this hard? What is Computer Vision? We all make mistakes. What do you see? Class Web Page is up:

Announcements. Introduction. Why is this hard? What is Computer Vision? We all make mistakes. What do you see? Class Web Page is up: Announcements Introduction Computer Vision I CSE 252A Lecture 1 Class Web Page is up: http://www.cs.ucsd.edu/classes/wi05/cse252a/ Assignment 0: Getting Started with Matlab is posted to web page, due 1/13/04

More information

CS4670/5760: Computer Vision

CS4670/5760: Computer Vision CS4670/5760: Computer Vision Kavita Bala! Lecture 28: Photometric Stereo Thanks to ScoC Wehrwein Announcements PA 3 due at 1pm on Monday PA 4 out on Monday HW 2 out on weekend Next week: MVS, sfm Last

More information

What is Computer Vision? Introduction. We all make mistakes. Why is this hard? What was happening. What do you see? Intro Computer Vision

What is Computer Vision? Introduction. We all make mistakes. Why is this hard? What was happening. What do you see? Intro Computer Vision What is Computer Vision? Trucco and Verri (Text): Computing properties of the 3-D world from one or more digital images Introduction Introduction to Computer Vision CSE 152 Lecture 1 Sockman and Shapiro:

More information

Lambertian model of reflectance II: harmonic analysis. Ronen Basri Weizmann Institute of Science

Lambertian model of reflectance II: harmonic analysis. Ronen Basri Weizmann Institute of Science Lambertian model of reflectance II: harmonic analysis Ronen Basri Weizmann Institute of Science Illumination cone What is the set of images of an object under different lighting, with any number of sources?

More information

Announcement. Lighting and Photometric Stereo. Computer Vision I. Surface Reflectance Models. Lambertian (Diffuse) Surface.

Announcement. Lighting and Photometric Stereo. Computer Vision I. Surface Reflectance Models. Lambertian (Diffuse) Surface. Lighting and Photometric Stereo CSE252A Lecture 7 Announcement Read Chapter 2 of Forsyth & Ponce Might find section 12.1.3 of Forsyth & Ponce useful. HW Problem Emitted radiance in direction f r for incident

More information

Using a Raster Display for Photometric Stereo

Using a Raster Display for Photometric Stereo Using a Raster Display for Photometric Stereo Nathan Funk Singular Systems Edmonton, Canada nathan.funk@singularsys.com Yee-Hong Yang Computing Science University of Alberta Edmonton, Canada yang@cs.ualberta.ca

More information

A method for improving consistency in photometric databases

A method for improving consistency in photometric databases HERNÁNDEZ-RODRÍGUEZ, CASTELÁN: IMPROVING PHOTOMETRIC CONSISTENCY A method for improving consistency in photometric databases Felipe Hernández-Rodríguez felipe.hernandez@cinvestav.edu.mx Mario Castelán

More information

CS5670: Computer Vision

CS5670: Computer Vision CS5670: Computer Vision Noah Snavely Light & Perception Announcements Quiz on Tuesday Project 3 code due Monday, April 17, by 11:59pm artifact due Wednesday, April 19, by 11:59pm Can we determine shape

More information

Prof. Trevor Darrell Lecture 18: Multiview and Photometric Stereo

Prof. Trevor Darrell Lecture 18: Multiview and Photometric Stereo C280, Computer Vision Prof. Trevor Darrell trevor@eecs.berkeley.edu Lecture 18: Multiview and Photometric Stereo Today Multiview stereo revisited Shape from large image collections Voxel Coloring Digital

More information

Image Processing 1 (IP1) Bildverarbeitung 1

Image Processing 1 (IP1) Bildverarbeitung 1 MIN-Fakultät Fachbereich Informatik Arbeitsbereich SAV/BV (KOGS) Image Processing 1 (IP1) Bildverarbeitung 1 Lecture 20: Shape from Shading Winter Semester 2015/16 Slides: Prof. Bernd Neumann Slightly

More information

Practical 3d reconstruction based on Photometric Stereo

Practical 3d reconstruction based on Photometric Stereo Practical 3d reconstruction based on Photometric Stereo George Vogiatzis and Carlos Hernández Abstract Photometric Stereo is a powerful image based 3d reconstruction technique that has recently been used

More information

COMP 558 lecture 16 Nov. 8, 2010

COMP 558 lecture 16 Nov. 8, 2010 Shading The term shading typically refers to variations in irradiance along a smooth Lambertian surface. Recall that if a surface point is illuminated by parallel light source from direction l, then the

More information

Recovery of Fingerprints using Photometric Stereo

Recovery of Fingerprints using Photometric Stereo Recovery of Fingerprints using Photometric Stereo G. McGunnigle and M.J. Chantler Department of Computing and Electrical Engineering Heriot Watt University Riccarton Edinburgh EH14 4AS United Kingdom gmg@cee.hw.ac.uk

More information

3D Shape Recovery of Smooth Surfaces: Dropping the Fixed Viewpoint Assumption

3D Shape Recovery of Smooth Surfaces: Dropping the Fixed Viewpoint Assumption IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL., NO., 1 3D Shape Recovery of Smooth Surfaces: Dropping the Fixed Viewpoint Assumption Yael Moses Member, IEEE and Ilan Shimshoni Member,

More information

Feature Tracking and Optical Flow

Feature Tracking and Optical Flow Feature Tracking and Optical Flow Prof. D. Stricker Doz. G. Bleser Many slides adapted from James Hays, Derek Hoeim, Lana Lazebnik, Silvio Saverse, who 1 in turn adapted slides from Steve Seitz, Rick Szeliski,

More information

Feature Tracking and Optical Flow

Feature Tracking and Optical Flow Feature Tracking and Optical Flow Prof. D. Stricker Doz. G. Bleser Many slides adapted from James Hays, Derek Hoeim, Lana Lazebnik, Silvio Saverse, who in turn adapted slides from Steve Seitz, Rick Szeliski,

More information

SOURCES, SHADOWS AND SHADING

SOURCES, SHADOWS AND SHADING Chapter 3 SOURCES, SHADOWS AND SHADING We shall start by describing the basic radiometric properties of various light sources. We shall then develop models of source geometries and discuss the radiosity

More information

Lighting affects appearance

Lighting affects appearance Lighting affects appearance 1 Image Normalization Global Histogram Equalization. Make two images have same histogram. Or, pick a standard histogram, and make adjust each image to have that histogram. Apply

More information

1 (5 max) 2 (10 max) 3 (20 max) 4 (30 max) 5 (10 max) 6 (15 extra max) total (75 max + 15 extra)

1 (5 max) 2 (10 max) 3 (20 max) 4 (30 max) 5 (10 max) 6 (15 extra max) total (75 max + 15 extra) Mierm Exam CS223b Stanford CS223b Computer Vision, Winter 2004 Feb. 18, 2004 Full Name: Email: This exam has 7 pages. Make sure your exam is not missing any sheets, and write your name on every page. The

More information

Classification and Detection in Images. D.A. Forsyth

Classification and Detection in Images. D.A. Forsyth Classification and Detection in Images D.A. Forsyth Classifying Images Motivating problems detecting explicit images classifying materials classifying scenes Strategy build appropriate image features train

More information

Resolving the Generalized Bas-Relief Ambiguity by Entropy Minimization

Resolving the Generalized Bas-Relief Ambiguity by Entropy Minimization Resolving the Generalized Bas-Relief Ambiguity by Entropy Minimization Neil G. Alldrin Satya P. Mallick David J. Kriegman nalldrin@cs.ucsd.edu spmallick@vision.ucsd.edu kriegman@cs.ucsd.edu University

More information

Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus

Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus Presented by: Rex Ying and Charles Qi Input: A Single RGB Image Estimate

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision Epipolar Geometry and Stereo Vision Computer Vision Shiv Ram Dubey, IIIT Sri City Many slides from S. Seitz and D. Hoiem Last class: Image Stitching Two images with rotation/zoom but no translation. X

More information

Structure from Motion and Multi- view Geometry. Last lecture

Structure from Motion and Multi- view Geometry. Last lecture Structure from Motion and Multi- view Geometry Topics in Image-Based Modeling and Rendering CSE291 J00 Lecture 5 Last lecture S. J. Gortler, R. Grzeszczuk, R. Szeliski,M. F. Cohen The Lumigraph, SIGGRAPH,

More information

Shading I Computer Graphics I, Fall 2008

Shading I Computer Graphics I, Fall 2008 Shading I 1 Objectives Learn to shade objects ==> images appear threedimensional Introduce types of light-material interactions Build simple reflection model Phong model Can be used with real time graphics

More information

Introduction to Computer Vision

Introduction to Computer Vision Introduction to Computer Vision Michael J. Black Nov 2009 Perspective projection and affine motion Goals Today Perspective projection 3D motion Wed Projects Friday Regularization and robust statistics

More information

DIFFUSE-SPECULAR SEPARATION OF MULTI-VIEW IMAGES UNDER VARYING ILLUMINATION. Department of Artificial Intelligence Kyushu Institute of Technology

DIFFUSE-SPECULAR SEPARATION OF MULTI-VIEW IMAGES UNDER VARYING ILLUMINATION. Department of Artificial Intelligence Kyushu Institute of Technology DIFFUSE-SPECULAR SEPARATION OF MULTI-VIEW IMAGES UNDER VARYING ILLUMINATION Kouki Takechi Takahiro Okabe Department of Artificial Intelligence Kyushu Institute of Technology ABSTRACT Separating diffuse

More information

Volume Illumination. Visualisation Lecture 11. Taku Komura. Institute for Perception, Action & Behaviour School of Informatics

Volume Illumination. Visualisation Lecture 11. Taku Komura. Institute for Perception, Action & Behaviour School of Informatics Volume Illumination Visualisation Lecture 11 Taku Komura Institute for Perception, Action & Behaviour School of Informatics Taku Komura Volume Illumination & Vector Vis. 1 Previously : Volume Rendering

More information

Computer Graphics. Shadows

Computer Graphics. Shadows Computer Graphics Lecture 10 Shadows Taku Komura Today Shadows Overview Projective shadows Shadow texture Shadow volume Shadow map Soft shadows Why Shadows? Shadows tell us about the relative locations

More information

And if that 120MP Camera was cool

And if that 120MP Camera was cool Reflectance, Lights and on to photometric stereo CSE 252A Lecture 7 And if that 120MP Camera was cool Large Synoptic Survey Telescope 3.2Gigapixel camera 189 CCD s, each with 16 megapixels Pixels are 10µm

More information

CS6320: 3D Computer Vision Project 3 Shape from Shading

CS6320: 3D Computer Vision Project 3 Shape from Shading CS6320: 3D Computer Vision Project 3 Shape from Shading Arthur Coste: coste.arthur@gmail.com March 2013 1 Contents 1 Introduction 3 2 Theoretical Problems 4 2.1 Bidirectional Reflectance Function............................

More information

Shading and Recognition OR The first Mrs Rochester. D.A. Forsyth, UIUC

Shading and Recognition OR The first Mrs Rochester. D.A. Forsyth, UIUC Shading and Recognition OR The first Mrs Rochester D.A. Forsyth, UIUC Structure Argument: History why shading why shading analysis died reasons for hope Classical SFS+Critiques Primitives Reconstructions

More information

Passive 3D Photography

Passive 3D Photography SIGGRAPH 99 Course on 3D Photography Passive 3D Photography Steve Seitz Carnegie Mellon University http:// ://www.cs.cmu.edu/~seitz Talk Outline. Visual Cues 2. Classical Vision Algorithms 3. State of

More information

Pipeline Operations. CS 4620 Lecture 10

Pipeline Operations. CS 4620 Lecture 10 Pipeline Operations CS 4620 Lecture 10 2008 Steve Marschner 1 Hidden surface elimination Goal is to figure out which color to make the pixels based on what s in front of what. Hidden surface elimination

More information

Photometric stereo , , Computational Photography Fall 2018, Lecture 17

Photometric stereo , , Computational Photography Fall 2018, Lecture 17 Photometric stereo http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 17 Course announcements Homework 4 is still ongoing - Any questions? Feedback

More information

High Quality Shape from a Single RGB-D Image under Uncalibrated Natural Illumination

High Quality Shape from a Single RGB-D Image under Uncalibrated Natural Illumination High Quality Shape from a Single RGB-D Image under Uncalibrated Natural Illumination Yudeog Han Joon-Young Lee In So Kweon Robotics and Computer Vision Lab., KAIST ydhan@rcv.kaist.ac.kr jylee@rcv.kaist.ac.kr

More information

General Principles of 3D Image Analysis

General Principles of 3D Image Analysis General Principles of 3D Image Analysis high-level interpretations objects scene elements Extraction of 3D information from an image (sequence) is important for - vision in general (= scene reconstruction)

More information

Computer Graphics 10 - Shadows

Computer Graphics 10 - Shadows Computer Graphics 10 - Shadows Tom Thorne Slides courtesy of Taku Komura www.inf.ed.ac.uk/teaching/courses/cg Overview Shadows Overview Projective shadows Shadow textures Shadow volume Shadow map Soft

More information

CHAPTER 9. Classification Scheme Using Modified Photometric. Stereo and 2D Spectra Comparison

CHAPTER 9. Classification Scheme Using Modified Photometric. Stereo and 2D Spectra Comparison CHAPTER 9 Classification Scheme Using Modified Photometric Stereo and 2D Spectra Comparison 9.1. Introduction In Chapter 8, even we combine more feature spaces and more feature generators, we note that

More information

Lighting affects appearance

Lighting affects appearance Lighting affects appearance 1 Source emits photons Light And then some reach the eye/camera. Photons travel in a straight line When they hit an object they: bounce off in a new direction or are absorbed

More information

Interreflection Removal for Photometric Stereo by Using Spectrum-dependent Albedo

Interreflection Removal for Photometric Stereo by Using Spectrum-dependent Albedo Interreflection Removal for Photometric Stereo by Using Spectrum-dependent Albedo Miao Liao 1, Xinyu Huang, and Ruigang Yang 1 1 Department of Computer Science, University of Kentucky Department of Mathematics

More information

Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11

Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11 Pipeline Operations CS 4620 Lecture 11 1 Pipeline you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives to pixels RASTERIZATION

More information

CS201 Computer Vision Lect 4 - Image Formation

CS201 Computer Vision Lect 4 - Image Formation CS201 Computer Vision Lect 4 - Image Formation John Magee 9 September, 2014 Slides courtesy of Diane H. Theriault Question of the Day: Why is Computer Vision hard? Something to think about from our view

More information

Introduction to Computer Vision. Week 8, Fall 2010 Instructor: Prof. Ko Nishino

Introduction to Computer Vision. Week 8, Fall 2010 Instructor: Prof. Ko Nishino Introduction to Computer Vision Week 8, Fall 2010 Instructor: Prof. Ko Nishino Midterm Project 2 without radial distortion correction with radial distortion correction Light Light Light! How do you recover

More information

Straight Lines and Hough

Straight Lines and Hough 09/30/11 Straight Lines and Hough Computer Vision CS 143, Brown James Hays Many slides from Derek Hoiem, Lana Lazebnik, Steve Seitz, David Forsyth, David Lowe, Fei-Fei Li Project 1 A few project highlights

More information

Lecture 16: Computer Vision

Lecture 16: Computer Vision CS4442/9542b: Artificial Intelligence II Prof. Olga Veksler Lecture 16: Computer Vision Motion Slides are from Steve Seitz (UW), David Jacobs (UMD) Outline Motion Estimation Motion Field Optical Flow Field

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 21: Light, reflectance and photometric stereo Announcements Final projects Midterm reports due November 24 (next Tuesday) by 11:59pm (upload to CMS) State the

More information

Image-based BRDF Acquisition for Non-spherical Objects

Image-based BRDF Acquisition for Non-spherical Objects Image-based BRDF Acquisition for Non-spherical Objects Tsung-Yi Wu Wan-Chun Ma Yung-Yu Chuang Bing-Yu Chen Ming Ouhyoung National Taiwan University (a) (b) (c) (d) Figure 1: An overview of image-based

More information

Lighting affects appearance

Lighting affects appearance Lighting affects appearance 1 Source emits photons Light And then some reach the eye/camera. Photons travel in a straight line When they hit an object they: bounce off in a new direction or are absorbed

More information

Modeling Light. On Simulating the Visual Experience

Modeling Light. On Simulating the Visual Experience Modeling Light 15-463: Rendering and Image Processing Alexei Efros On Simulating the Visual Experience Just feed the eyes the right data No one will know the difference! Philosophy: Ancient question: Does

More information

Image Restoration. Yao Wang Polytechnic Institute of NYU, Brooklyn, NY 11201

Image Restoration. Yao Wang Polytechnic Institute of NYU, Brooklyn, NY 11201 Image Restoration Yao Wang Polytechnic Institute of NYU, Brooklyn, NY 11201 Partly based on A. K. Jain, Fundamentals of Digital Image Processing, and Gonzalez/Woods, Digital Image Processing Figures from

More information

3D Motion Analysis Based on 2D Point Displacements

3D Motion Analysis Based on 2D Point Displacements 3D Motion Analysis Based on 2D Point Displacements 2D displacements of points observed on an unknown moving rigid body may provide information about - the 3D structure of the points - the 3D motion parameters

More information

Announcements. Rotation. Camera Calibration

Announcements. Rotation. Camera Calibration Announcements HW1 has been posted See links on web page for reading Introduction to Computer Vision CSE 152 Lecture 5 Coordinate Changes: Rigid Transformations both translation and rotatoin Rotation About

More information

Feature descriptors and matching

Feature descriptors and matching Feature descriptors and matching Detections at multiple scales Invariance of MOPS Intensity Scale Rotation Color and Lighting Out-of-plane rotation Out-of-plane rotation Better representation than color:

More information

CONTENTS. High-Accuracy Stereo Depth Maps Using Structured Light. Yeojin Yoon

CONTENTS. High-Accuracy Stereo Depth Maps Using Structured Light. Yeojin Yoon [Paper Seminar 7] CVPR2003, Vol.1, pp.195-202 High-Accuracy Stereo Depth Maps Using Structured Light Daniel Scharstein Middlebury College Richard Szeliski Microsoft Research 2012. 05. 30. Yeojin Yoon Introduction

More information

Pipeline Operations. CS 4620 Lecture 14

Pipeline Operations. CS 4620 Lecture 14 Pipeline Operations CS 4620 Lecture 14 2014 Steve Marschner 1 Pipeline you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives

More information

Sources, shadows and shading

Sources, shadows and shading Sources, shadows and shading But how bright (or what colour) are objects? One more definition: Exitance of a source is the internally generated power radiated per unit area on the radiating surface similar

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision Epipolar Geometry and Stereo Vision Computer Vision Jia-Bin Huang, Virginia Tech Many slides from S. Seitz and D. Hoiem Last class: Image Stitching Two images with rotation/zoom but no translation. X x

More information

Announcements. Image Formation: Outline. Homogenous coordinates. Image Formation and Cameras (cont.)

Announcements. Image Formation: Outline. Homogenous coordinates. Image Formation and Cameras (cont.) Announcements Image Formation and Cameras (cont.) HW1 due, InitialProject topics due today CSE 190 Lecture 6 Image Formation: Outline Factors in producing images Projection Perspective Vanishing points

More information

convolution shift invariant linear system Fourier Transform Aliasing and sampling scale representation edge detection corner detection

convolution shift invariant linear system Fourier Transform Aliasing and sampling scale representation edge detection corner detection COS 429: COMPUTER VISON Linear Filters and Edge Detection convolution shift invariant linear system Fourier Transform Aliasing and sampling scale representation edge detection corner detection Reading:

More information

Visibility Subspaces: Uncalibrated Photometric Stereo with Shadows

Visibility Subspaces: Uncalibrated Photometric Stereo with Shadows Visibility Subspaces: Uncalibrated Photometric Stereo with Shadows Kalyan Sunkavalli, Todd Zickler, and Hanspeter Pfister Harvard University 33 Oxford St., Cambridge, MA, USA, 02138 {kalyans,zickler,pfister}@seas.harvard.edu

More information

Ray Tracer Due date: April 27, 2011

Ray Tracer Due date: April 27, 2011 Computer graphics Assignment 4 1 Overview Ray Tracer Due date: April 27, 2011 In this assignment you will implement the camera and several primitive objects for a ray tracer, and a basic ray tracing algorithm.

More information

Non-Contact Pulmonary Functional Testing through an improved Photometric Stereo Approach

Non-Contact Pulmonary Functional Testing through an improved Photometric Stereo Approach NON-CONTACT PULMONARY FUNCTIONAL TESTING: 1 Non-Contact Pulmonary Functional Testing through an improved Photometric Stereo Approach Jahanzeb Ahmad jahanzeb.ahmad@uwe.ac.uk Jiuai Sun jiuai2.sun@uwe.ac.uk

More information

Announcements. Camera Calibration. Thin Lens: Image of Point. Limits for pinhole cameras. f O Z

Announcements. Camera Calibration. Thin Lens: Image of Point. Limits for pinhole cameras. f O Z Announcements Introduction to Computer Vision CSE 152 Lecture 5 Assignment 1 has been posted. See links on web page for reading Irfanview: http://www.irfanview.com/ is a good windows utility for manipulating

More information

Stereo. Outline. Multiple views 3/29/2017. Thurs Mar 30 Kristen Grauman UT Austin. Multi-view geometry, matching, invariant features, stereo vision

Stereo. Outline. Multiple views 3/29/2017. Thurs Mar 30 Kristen Grauman UT Austin. Multi-view geometry, matching, invariant features, stereo vision Stereo Thurs Mar 30 Kristen Grauman UT Austin Outline Last time: Human stereopsis Epipolar geometry and the epipolar constraint Case example with parallel optical axes General case with calibrated cameras

More information

Announcements. Hough Transform [ Patented 1962 ] Generalized Hough Transform, line fitting. Assignment 2: Due today Midterm: Thursday, May 5 in class

Announcements. Hough Transform [ Patented 1962 ] Generalized Hough Transform, line fitting. Assignment 2: Due today Midterm: Thursday, May 5 in class Announcements Generalized Hough Transform, line fitting Assignment 2: Due today Midterm: Thursday, May 5 in class Introduction to Computer Vision CSE 152 Lecture 11a What is region like if: 1. λ 1 = 0?

More information

Geometry: Outline. Projections. Orthographic Perspective

Geometry: Outline. Projections. Orthographic Perspective Geometry: Cameras Outline Setting up the camera Projections Orthographic Perspective 1 Controlling the camera Default OpenGL camera: At (0, 0, 0) T in world coordinates looking in Z direction with up vector

More information

Recovering illumination and texture using ratio images

Recovering illumination and texture using ratio images Recovering illumination and texture using ratio images Alejandro Troccoli atroccol@cscolumbiaedu Peter K Allen allen@cscolumbiaedu Department of Computer Science Columbia University, New York, NY Abstract

More information

Topics and things to know about them:

Topics and things to know about them: Practice Final CMSC 427 Distributed Tuesday, December 11, 2007 Review Session, Monday, December 17, 5:00pm, 4424 AV Williams Final: 10:30 AM Wednesday, December 19, 2007 General Guidelines: The final will

More information

Multi-view photometric stereo

Multi-view photometric stereo 1 Multi-view photometric stereo Carlos Hernández, George Vogiatzis, Roberto Cipolla 2 Abstract This paper addresses the problem of obtaining complete, detailed reconstructions of textureless shiny objects.

More information

DIRECT SHAPE FROM ISOPHOTES

DIRECT SHAPE FROM ISOPHOTES DIRECT SHAPE FROM ISOPHOTES V.Dragnea, E.Angelopoulou Computer Science Department, Stevens Institute of Technology, Hoboken, NJ 07030, USA - (vdragnea, elli)@ cs.stevens.edu KEY WORDS: Isophotes, Reflectance

More information

Motion Estimation. There are three main types (or applications) of motion estimation:

Motion Estimation. There are three main types (or applications) of motion estimation: Members: D91922016 朱威達 R93922010 林聖凱 R93922044 謝俊瑋 Motion Estimation There are three main types (or applications) of motion estimation: Parametric motion (image alignment) The main idea of parametric motion

More information

Estimation of Multiple Illuminants from a Single Image of Arbitrary Known Geometry*

Estimation of Multiple Illuminants from a Single Image of Arbitrary Known Geometry* Estimation of Multiple Illuminants from a Single Image of Arbitrary Known Geometry* Yang Wang, Dimitris Samaras Computer Science Department, SUNY-Stony Stony Brook *Support for this research was provided

More information

Robust Photometric Stereo using Sparse Regression

Robust Photometric Stereo using Sparse Regression Robust Photometric Stereo using Sparse Regression Satoshi Ikehata 1 David Wipf 2 Yasuyuki Matsushita 2 Kiyoharu Aizawa 1 1 The University of Tokyo, Japan 2 Microsoft Research Asia Abstract This paper presents

More information

Massachusetts Institute of Technology. Department of Computer Science and Electrical Engineering /6.866 Machine Vision Quiz I

Massachusetts Institute of Technology. Department of Computer Science and Electrical Engineering /6.866 Machine Vision Quiz I Massachusetts Institute of Technology Department of Computer Science and Electrical Engineering 6.801/6.866 Machine Vision Quiz I Handed out: 2004 Oct. 21st Due on: 2003 Oct. 28th Problem 1: Uniform reflecting

More information