Pregel: A System for Large-Scale Graph Proces sing

Size: px
Start display at page:

Download "Pregel: A System for Large-Scale Graph Proces sing"

Transcription

1 Pregel: A System for Large-Scale Graph Proces sing Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkwoski Google, Inc. SIGMOD July 20 Taewhi Lee

2 Outline Introduction Computation Model Writing a Pregel Program System Implementation Experiments Conclusion & Future Work 2

3 Outline Introduction Computation Model Writing a Pregel Program System Implementation Experiments Conclusion & Future Work 3

4 Introduction (1/2) Source: SIGMETRICS 09 Tutorial MapReduce: The Programming Model and Practice, by Jerry Zhao 4

5 Introduction (2/2) Many practical computing problems concern large graphs Large graph data Web graph Transportation routes Citation relationships Social networks Graph algorithms PageRank Shortest path Connected components Clustering techniques MapReduce is ill-suited for graph processing Many iterations are needed for parallel graph processing Materializations of intermediate results at every MapReduce iterati on harm performance

6 Single Source Shortest Path (SSSP) Problem Find shortest path from a source node to all target nodes Solution Single processor machine: Dijkstra s algorithm 6

7 Example: SSSP Dijkstra s Algorithm

8 Example: SSSP Dijkstra s Algorithm

9 Example: SSSP Dijkstra s Algorithm

10 Example: SSSP Dijkstra s Algorithm

11 Example: SSSP Dijkstra s Algorithm

12 Example: SSSP Dijkstra s Algorithm

13 Single Source Shortest Path (SSSP) Problem Find shortest path from a source node to all target nodes Solution Single processor machine: Dijkstra s algorithm MapReduce/Pregel: parallel breadth-first search (BFS) 13

14 MapReduce Execution Overview 14

15 Example: SSSP Parallel BFS in MapRed uce Adjacency matrix A B C D E A B 1 2 C 4 D E 6 Adjacency List B C 1 A A: (B, ), (D, ) B: (C, 1), (D, 2) C: (E, 4) D 2 E D: (B, 3), (C, 9), (E, 2) E: (A, ), (C, 6) 1

16 Example: SSSP Parallel BFS in MapRed uce Map input: <node ID, <dist, adj list>> B C <A, <0, <(B, ), (D, )>>> 1 <B, <inf, <(C, 1), (D, 2)>>> <C, <inf, <(E, 4)>>> A <D, <inf, <(B, 3), (C, 9), (E, 2)>>> <E, <inf, <(A, ), (C, 6)>>> Map output: <dest node ID, dist> <B, > <D, > <C, inf> <D, inf> <E, inf> <B, inf> <C, inf> <E, inf> <A, inf> <C, inf> <A, <0, <(B, ), (D, )>>> <B, <inf, <(C, 1), (D, 2)>>> D <C, <inf, <(E, 4)>>> <D, <inf, <(B, 3), (C, 9), (E, 2)>>> <E, <inf, <(A, ), (C, 6)>>> 16 2 E Flushed to local disk!!

17 Example: SSSP Parallel BFS in MapRed uce Reduce input: <node ID, dist> B C <A, <0, <(B, ), (D, )>>> <A, inf> A <B, <inf, <(C, 1), (D, 2)>>> 1 <B, > <B, inf> <C, <inf, <(E, 4)>>> <C, inf> <C, inf> <C, inf> <D, <inf, <(B, 3), (C, 9), (E, 2)>>> <D, > <D, inf> D 2 E <E, <inf, <(A, ), (C, 6)>>> <E, inf> <E, inf> 1

18 Example: SSSP Parallel BFS in MapRed uce Reduce input: <node ID, dist> B C <A, <0, <(B, ), (D, )>>> <A, inf> A <B, <inf, <(C, 1), (D, 2)>>> 1 <B, > <B, inf> <C, <inf, <(E, 4)>>> <C, inf> <C, inf> <C, inf> <D, <inf, <(B, 3), (C, 9), (E, 2)>>> <D, > <D, inf> D 2 E <E, <inf, <(A, ), (C, 6)>>> <E, inf> <E, inf> 18

19 Example: SSSP Parallel BFS in MapRed uce Reduce output: <node ID, <dist, adj list>> B = Map input for next iteration <A, <0, <(B, ), (D, )>>> <B, <, <(C, 1), (D, 2)>>> <C, <inf, <(E, 4)>>> <D, <, <(B, 3), (C, 9), (E, 2)>>> <E, <inf, <(A, ), (C, 6)>>> Flushed to DFS!! Map output: <dest node ID, dist> C 1 A <B, > <D, > <C, 11> <D, 12> <E, inf> <B, 8> <C, 14> <E, > <A, inf> <C, inf> <A, <0, <(B, ), (D, )>>> 2 <B, <, <(C, 1), (D, 2)>>> D E <C, <inf, <(E, 4)>>> <D, <, <(B, 3), (C, 9), (E, 2)>>> <E, <inf, <(A, ), (C, 6)>>> Flushed to local disk!! 19

20 Example: SSSP Parallel BFS in MapRed uce Reduce input: <node ID, dist> <A, <0, <(B, ), (D, )>>> <A, inf> B C 1 <B, <, <(C, 1), (D, 2)>>> A <B, > <B, 8> <C, <inf, <(E, 4)>>> <C, 11> <C, 14> <C, inf> <D, <, <(B, 3), (C, 9), (E, 2)>>> <D, > <D, 12> D 2 E <E, <inf, <(A, ), (C, 6)>>> <E, inf> <E, > 20

21 Example: SSSP Parallel BFS in MapRed uce Reduce input: <node ID, dist> <A, <0, <(B, ), (D, )>>> <A, inf> B C 1 <B, <, <(C, 1), (D, 2)>>> A <B, > <B, 8> <C, <inf, <(E, 4)>>> <C, 11> <C, 14> <C, inf> <D, <, <(B, 3), (C, 9), (E, 2)>>> <D, > <D, 12> D 2 E <E, <inf, <(A, ), (C, 6)>>> <E, inf> <E, > 21

22 Example: SSSP Parallel BFS in MapRed uce Reduce output: <node ID, <dist, adj list>> B = Map input for next iteration <A, <0, <(B, ), (D, )>>> Flushed to DFS!! 8 C 1 11 <B, <8, <(C, 1), (D, 2)>>> <C, <11, <(E, 4)>>> A <D, <, <(B, 3), (C, 9), (E, 2)>>> <E, <, <(A, ), (C, 6)>>> the rest omitted 2 D E 22

23 Outline Introduction Computation Model Writing a Pregel Program System Implementation Experiments Conclusion & Future Work 23

24 Computation Model (1/3) Input Supersteps (a sequence of iterations) Output 24

25 Computation Model (2/3) Think like a vertex Inspired by Valiant s Bulk Synchronous Parallel model (199 0) Source: 2

26 Computation Model (3/3) Superstep: the vertices compute in parallel Each vertex Receives messages sent in the previous superstep Executes the same user-defined function Modifies its value or that of its outgoing edges Sends messages to other vertices (to be received in the next superstep) Mutates the topology of the graph Votes to halt if it has no further work to do Termination condition All vertices are simultaneously inactive There are no messages in transit 26

27 Example: SSSP Parallel BFS in Pregel

28 Example: SSSP Parallel BFS in Pregel

29 Example: SSSP Parallel BFS in Pregel

30 Example: SSSP Parallel BFS in Pregel

31 Example: SSSP Parallel BFS in Pregel

32 Example: SSSP Parallel BFS in Pregel

33 Example: SSSP Parallel BFS in Pregel

34 Example: SSSP Parallel BFS in Pregel

35 Example: SSSP Parallel BFS in Pregel

36 Differences from MapReduce Graph algorithms can be written as a series of chained Ma preduce invocation Pregel Keeps vertices & edges on the machine that performs computation Uses network transfers only for messages MapReduce Passes the entire state of the graph from one stage to the next Needs to coordinate the steps of a chained MapReduce 36

37 Outline Introduction Computation Model Writing a Pregel Program System Implementation Experiments Conclusion & Future Work 3

38 C++ API Writing a Pregel program Subclassing the predefined Vertex class Override this! in msgs out msg 38

39 Example: Vertex Class for SSSP 39

40 Outline Introduction Computation Model Writing a Pregel Program System Implementation Experiments Conclusion & Future Work 40

41 System Architecture Pregel system also uses the master/worker model Master Maintains worker Recovers faults of workers Provides Web-UI monitoring tool of job progress Worker Processes its task Communicates with the other workers Persistent data is stored as files on a distributed storage sy stem (such as GFS or BigTable) Temporary data is stored on local disk 41

42 Execution of a Pregel Program 1. Many copies of the program begin executing on a cluster of m achines 2. The master assigns a partition of the input to each worker Each worker loads the vertices and marks them as active 3. The master instructs each worker to perform a superstep Each worker loops through its active vertices & computes for each vertex Messages are sent asynchronously, but are delivered before the en d of the superstep This step is repeated as long as any vertices are active, or any mess ages are in transit 4. After the computation halts, the master may instruct each wor ker to save its portion of the graph 42

43 Fault Tolerance Checkpointing The master periodically instructs the workers to save the state of th eir partitions to persistent storage e.g., Vertex values, edge values, incoming messages Failure detection Using regular ping messages Recovery The master reassigns graph partitions to the currently available wor kers The workers all reload their partition state from most recent availabl e checkpoint 43

44 Outline Introduction Computation Model Writing a Pregel Program System Implementation Experiments Conclusion & Future Work 44

45 Experiments Environment H/W: A cluster of 300 multicore commodity PCs Data: binary trees, log-normal random graphs (general graphs) Naïve SSSP implementation The weight of all edges = 1 No checkpointing 4

46 Experiments SSSP 1 billion vertex binary tree: varying # of worker task s 46

47 Experiments SSSP binary trees: varying graph sizes on 800 worker task s 4

48 Experiments SSSP Random graphs: varying graph sizes on 800 worker tasks 48

49 Outline Introduction Computation Model Writing a Pregel Program System Implementation Experiments Conclusion & Future Work 49

50 Conclusion & Future Work Pregel is a scalable and fault-tolerant platform with an API that is sufficiently flexible to express arbitrary graph algorit hms Future work Relaxing the synchronicity of the model Not to wait for slower workers at inter-superstep barriers Assigning vertices to machines to minimize inter-machine commun ication Caring dense graphs in which most vertices send messages to mos t other vertices 0

51 Thank You! Any questions or comments?

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective ECE 60 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective Part II: Data Center Software Architecture: Topic 3: Programming Models Pregel: A System for Large-Scale Graph Processing

More information

Authors: Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, L., Leiser, N., Czjkowski, G.

Authors: Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, L., Leiser, N., Czjkowski, G. Authors: Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, L., Leiser, N., Czjkowski, G. Speaker: Chong Li Department: Applied Health Science Program: Master of Health Informatics 1 Term

More information

PREGEL: A SYSTEM FOR LARGE-SCALE GRAPH PROCESSING

PREGEL: A SYSTEM FOR LARGE-SCALE GRAPH PROCESSING PREGEL: A SYSTEM FOR LARGE-SCALE GRAPH PROCESSING Grzegorz Malewicz, Matthew Austern, Aart Bik, James Dehnert, Ilan Horn, Naty Leiser, Grzegorz Czajkowski (Google, Inc.) SIGMOD 2010 Presented by : Xiu

More information

PREGEL: A SYSTEM FOR LARGE- SCALE GRAPH PROCESSING

PREGEL: A SYSTEM FOR LARGE- SCALE GRAPH PROCESSING PREGEL: A SYSTEM FOR LARGE- SCALE GRAPH PROCESSING G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, G. Czajkowski Google, Inc. SIGMOD 2010 Presented by Ke Hong (some figures borrowed from

More information

Big Graph Processing. Fenggang Wu Nov. 6, 2016

Big Graph Processing. Fenggang Wu Nov. 6, 2016 Big Graph Processing Fenggang Wu Nov. 6, 2016 Agenda Project Publication Organization Pregel SIGMOD 10 Google PowerGraph OSDI 12 CMU GraphX OSDI 14 UC Berkeley AMPLab PowerLyra EuroSys 15 Shanghai Jiao

More information

Pregel: A System for Large- Scale Graph Processing. Written by G. Malewicz et al. at SIGMOD 2010 Presented by Chris Bunch Tuesday, October 12, 2010

Pregel: A System for Large- Scale Graph Processing. Written by G. Malewicz et al. at SIGMOD 2010 Presented by Chris Bunch Tuesday, October 12, 2010 Pregel: A System for Large- Scale Graph Processing Written by G. Malewicz et al. at SIGMOD 2010 Presented by Chris Bunch Tuesday, October 12, 2010 1 Graphs are hard Poor locality of memory access Very

More information

PREGEL AND GIRAPH. Why Pregel? Processing large graph problems is challenging Options

PREGEL AND GIRAPH. Why Pregel? Processing large graph problems is challenging Options Data Management in the Cloud PREGEL AND GIRAPH Thanks to Kristin Tufte 1 Why Pregel? Processing large graph problems is challenging Options Custom distributed infrastructure Existing distributed computing

More information

Pregel. Ali Shah

Pregel. Ali Shah Pregel Ali Shah s9alshah@stud.uni-saarland.de 2 Outline Introduction Model of Computation Fundamentals of Pregel Program Implementation Applications Experiments Issues with Pregel 3 Outline Costs of Computation

More information

Distributed Systems. 21. Graph Computing Frameworks. Paul Krzyzanowski. Rutgers University. Fall 2016

Distributed Systems. 21. Graph Computing Frameworks. Paul Krzyzanowski. Rutgers University. Fall 2016 Distributed Systems 21. Graph Computing Frameworks Paul Krzyzanowski Rutgers University Fall 2016 November 21, 2016 2014-2016 Paul Krzyzanowski 1 Can we make MapReduce easier? November 21, 2016 2014-2016

More information

modern database systems lecture 10 : large-scale graph processing

modern database systems lecture 10 : large-scale graph processing modern database systems lecture 1 : large-scale graph processing Aristides Gionis spring 18 timeline today : homework is due march 6 : homework out april 5, 9-1 : final exam april : homework due graphs

More information

Large-Scale Graph Processing 1: Pregel & Apache Hama Shiow-yang Wu ( 吳秀陽 ) CSIE, NDHU, Taiwan, ROC

Large-Scale Graph Processing 1: Pregel & Apache Hama Shiow-yang Wu ( 吳秀陽 ) CSIE, NDHU, Taiwan, ROC Large-Scale Graph Processing 1: Pregel & Apache Hama Shiow-yang Wu ( 吳秀陽 ) CSIE, NDHU, Taiwan, ROC Lecture material is mostly home-grown, partly taken with permission and courtesy from Professor Shih-Wei

More information

Pregel: A System for Large-Scale Graph Processing

Pregel: A System for Large-Scale Graph Processing Pregel: A System for Large-Scale Graph Processing Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski Google, Inc. {malewicz,austern,ajcbik,dehnert,ilan,naty,gczaj@google.com

More information

COSC 6339 Big Data Analytics. Graph Algorithms and Apache Giraph

COSC 6339 Big Data Analytics. Graph Algorithms and Apache Giraph COSC 6339 Big Data Analytics Graph Algorithms and Apache Giraph Parts of this lecture are adapted from UMD Jimmy Lin s slides, which is licensed under a Creative Commons Attribution-Noncommercial-Share

More information

CS /21/2016. Paul Krzyzanowski 1. Can we make MapReduce easier? Distributed Systems. Apache Pig. Apache Pig. Pig: Loading Data.

CS /21/2016. Paul Krzyzanowski 1. Can we make MapReduce easier? Distributed Systems. Apache Pig. Apache Pig. Pig: Loading Data. Distributed Systems 1. Graph Computing Frameworks Can we make MapReduce easier? Paul Krzyzanowski Rutgers University Fall 016 1 Apache Pig Apache Pig Why? Make it easy to use MapReduce via scripting instead

More information

Part II: Software Infrastructure in Data Centers: Distributed Execution Engines

Part II: Software Infrastructure in Data Centers: Distributed Execution Engines CSE 6350 File and Storage System Infrastructure in Data centers Supporting Internet-wide Services Part II: Software Infrastructure in Data Centers: Distributed Execution Engines 1 MapReduce: Simplified

More information

CS 347 Parallel and Distributed Data Processing

CS 347 Parallel and Distributed Data Processing CS 347 Parallel and Distributed Data Processing Spring 2016 Notes 14: Distributed Graph Processing Motivation Many applications require graph processing E.g., PageRank Some graph data sets are very large

More information

CS 347 Parallel and Distributed Data Processing

CS 347 Parallel and Distributed Data Processing CS 347 Parallel and Distributed Data Processing Spring 2016 Notes 14: Distributed Graph Processing Motivation Many applications require graph processing E.g., PageRank Some graph data sets are very large

More information

PREGEL. A System for Large-Scale Graph Processing

PREGEL. A System for Large-Scale Graph Processing PREGEL A System for Large-Scale Graph Processing The Problem Large Graphs are often part of computations required in modern systems (Social networks and Web graphs etc.) There are many graph computing

More information

Handling limits of high degree vertices in graph processing using MapReduce and Pregel

Handling limits of high degree vertices in graph processing using MapReduce and Pregel Handling limits of high degree vertices in graph processing using MapReduce and Pregel Mostafa Bamha, Mohamad Al Hajj Hassan To cite this version: Mostafa Bamha, Mohamad Al Hajj Hassan. Handling limits

More information

King Abdullah University of Science and Technology. CS348: Cloud Computing. Large-Scale Graph Processing

King Abdullah University of Science and Technology. CS348: Cloud Computing. Large-Scale Graph Processing King Abdullah University of Science and Technology CS348: Cloud Computing Large-Scale Graph Processing Zuhair Khayyat 10/March/2013 The Importance of Graphs A graph is a mathematical structure that represents

More information

Graph Processing. Connor Gramazio Spiros Boosalis

Graph Processing. Connor Gramazio Spiros Boosalis Graph Processing Connor Gramazio Spiros Boosalis Pregel why not MapReduce? semantics: awkward to write graph algorithms efficiency: mapreduces serializes state (e.g. all nodes and edges) while pregel keeps

More information

Giraph: Large-scale graph processing infrastructure on Hadoop. Qu Zhi

Giraph: Large-scale graph processing infrastructure on Hadoop. Qu Zhi Giraph: Large-scale graph processing infrastructure on Hadoop Qu Zhi Why scalable graph processing? Web and social graphs are at immense scale and continuing to grow In 2008, Google estimated the number

More information

Parallel HITS Algorithm Implemented Using HADOOP GIRAPH Framework to resolve Big Data Problem

Parallel HITS Algorithm Implemented Using HADOOP GIRAPH Framework to resolve Big Data Problem I J C T A, 9(41) 2016, pp. 1235-1239 International Science Press Parallel HITS Algorithm Implemented Using HADOOP GIRAPH Framework to resolve Big Data Problem Hema Dubey *, Nilay Khare *, Alind Khare **

More information

Large Scale Graph Processing Pregel, GraphLab and GraphX

Large Scale Graph Processing Pregel, GraphLab and GraphX Large Scale Graph Processing Pregel, GraphLab and GraphX Amir H. Payberah amir@sics.se KTH Royal Institute of Technology Amir H. Payberah (KTH) Large Scale Graph Processing 2016/10/03 1 / 76 Amir H. Payberah

More information

GPS: A Graph Processing System

GPS: A Graph Processing System GPS: A Graph Processing System Semih Salihoglu and Jennifer Widom Stanford University {semih,widom}@cs.stanford.edu Abstract GPS (for Graph Processing System) is a complete open-source system we developed

More information

Distributed Systems. 20. Other parallel frameworks. Paul Krzyzanowski. Rutgers University. Fall 2017

Distributed Systems. 20. Other parallel frameworks. Paul Krzyzanowski. Rutgers University. Fall 2017 Distributed Systems 20. Other parallel frameworks Paul Krzyzanowski Rutgers University Fall 2017 November 20, 2017 2014-2017 Paul Krzyzanowski 1 Can we make MapReduce easier? 2 Apache Pig Why? Make it

More information

Report. X-Stream Edge-centric Graph processing

Report. X-Stream Edge-centric Graph processing Report X-Stream Edge-centric Graph processing Yassin Hassan hassany@student.ethz.ch Abstract. X-Stream is an edge-centric graph processing system, which provides an API for scatter gather algorithms. The

More information

CS November 2017

CS November 2017 Distributed Systems 0. Other parallel frameworks Can we make MapReduce easier? Paul Krzyzanowski Rutgers University Fall 017 November 0, 017 014-017 Paul Krzyzanowski 1 Apache Pig Apache Pig Why? Make

More information

Memory-Optimized Distributed Graph Processing. through Novel Compression Techniques

Memory-Optimized Distributed Graph Processing. through Novel Compression Techniques Memory-Optimized Distributed Graph Processing through Novel Compression Techniques Katia Papakonstantinopoulou Joint work with Panagiotis Liakos and Alex Delis University of Athens Athens Colloquium in

More information

TI2736-B Big Data Processing. Claudia Hauff

TI2736-B Big Data Processing. Claudia Hauff TI2736-B Big Data Processing Claudia Hauff ti2736b-ewi@tudelft.nl Intro Streams Streams Map Reduce HDFS Pig Ctd. Graphs Pig Design Patterns Hadoop Ctd. Giraph Zoo Keeper Spark Spark Ctd. Learning objectives

More information

GraphHP: A Hybrid Platform for Iterative Graph Processing

GraphHP: A Hybrid Platform for Iterative Graph Processing GraphHP: A Hybrid Platform for Iterative Graph Processing Qun Chen, Song Bai, Zhanhuai Li, Zhiying Gou, Bo Suo and Wei Pan Northwestern Polytechnical University Xi an, China {chenbenben, baisong, lizhh,

More information

Graph Processing & Bulk Synchronous Parallel Model

Graph Processing & Bulk Synchronous Parallel Model Graph Processing & Bulk Synchronous Parallel Model CompSci 590.03 Instructor: Ashwin Machanavajjhala Lecture 14 : 590.02 Spring 13 1 Recap: Graph Algorithms Many graph algorithms need iterafve computafon

More information

The MapReduce Abstraction

The MapReduce Abstraction The MapReduce Abstraction Parallel Computing at Google Leverages multiple technologies to simplify large-scale parallel computations Proprietary computing clusters Map/Reduce software library Lots of other

More information

[CoolName++]: A Graph Processing Framework for Charm++

[CoolName++]: A Graph Processing Framework for Charm++ [CoolName++]: A Graph Processing Framework for Charm++ Hassan Eslami, Erin Molloy, August Shi, Prakalp Srivastava Laxmikant V. Kale Charm++ Workshop University of Illinois at Urbana-Champaign {eslami2,emolloy2,awshi2,psrivas2,kale}@illinois.edu

More information

Palgol: A High-Level DSL for Vertex-Centric Graph Processing with Remote Access

Palgol: A High-Level DSL for Vertex-Centric Graph Processing with Remote Access Palgol: A High-Level DSL for Vertex-Centric Graph Processing with Remote Access Yongzhe Zhang National Institute of Informatics 3rd Spring Festival Workshop March 21, 2017 Outline Background of vertex-centric

More information

Frameworks for Graph-Based Problems

Frameworks for Graph-Based Problems Frameworks for Graph-Based Problems Dakshil Shah U.G. Student Computer Engineering Department Dwarkadas J. Sanghvi College of Engineering, Mumbai, India Chetashri Bhadane Assistant Professor Computer Engineering

More information

One Trillion Edges. Graph processing at Facebook scale

One Trillion Edges. Graph processing at Facebook scale One Trillion Edges Graph processing at Facebook scale Introduction Platform improvements Compute model extensions Experimental results Operational experience How Facebook improved Apache Giraph Facebook's

More information

Map-Reduce Applications: Counting, Graph Shortest Paths

Map-Reduce Applications: Counting, Graph Shortest Paths Map-Reduce Applications: Counting, Graph Shortest Paths Adapted from UMD Jimmy Lin s slides, which is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States. See http://creativecommons.org/licenses/by-nc-sa/3.0/us/

More information

Clash of the Titans: MapReduce vs. Spark for Large Scale Data Analytics

Clash of the Titans: MapReduce vs. Spark for Large Scale Data Analytics Clash of the Titans: MapReduce vs. Spark for Large Scale Data Analytics Presented by: Dishant Mittal Authors: Juwei Shi, Yunjie Qiu, Umar Firooq Minhas, Lemei Jiao, Chen Wang, Berthold Reinwald and Fatma

More information

BSP, Pregel and the need for Graph Processing

BSP, Pregel and the need for Graph Processing BSP, Pregel and the need for Graph Processing Patrizio Dazzi, HPC Lab ISTI - CNR mail: patrizio.dazzi@isti.cnr.it web: http://hpc.isti.cnr.it/~dazzi/ National Research Council of Italy A need for Graph

More information

Map-Reduce Applications: Counting, Graph Shortest Paths

Map-Reduce Applications: Counting, Graph Shortest Paths Map-Reduce Applications: Counting, Graph Shortest Paths Adapted from UMD Jimmy Lin s slides, which is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States. See http://creativecommons.org/licenses/by-nc-sa/3.0/us/

More information

Putting it together. Data-Parallel Computation. Ex: Word count using partial aggregation. Big Data Processing. COS 418: Distributed Systems Lecture 21

Putting it together. Data-Parallel Computation. Ex: Word count using partial aggregation. Big Data Processing. COS 418: Distributed Systems Lecture 21 Big Processing -Parallel Computation COS 418: Distributed Systems Lecture 21 Michael Freedman 2 Ex: Word count using partial aggregation Putting it together 1. Compute word counts from individual files

More information

Distributed Systems. 21. Other parallel frameworks. Paul Krzyzanowski. Rutgers University. Fall 2018

Distributed Systems. 21. Other parallel frameworks. Paul Krzyzanowski. Rutgers University. Fall 2018 Distributed Systems 21. Other parallel frameworks Paul Krzyzanowski Rutgers University Fall 2018 1 Can we make MapReduce easier? 2 Apache Pig Why? Make it easy to use MapReduce via scripting instead of

More information

Turning NoSQL data into Graph Playing with Apache Giraph and Apache Gora

Turning NoSQL data into Graph Playing with Apache Giraph and Apache Gora Turning NoSQL data into Graph Playing with Apache Giraph and Apache Gora Team Renato Marroquín! PhD student: Interested in: Information retrieval. Distributed and scalable data management. Apache Gora:

More information

CS November 2018

CS November 2018 Distributed Systems 1. Other parallel frameworks Can we make MapReduce easier? Paul Krzyzanowski Rutgers University Fall 018 1 Apache Pig Apache Pig Why? Make it easy to use MapReduce via scripting instead

More information

I ++ Mapreduce: Incremental Mapreduce for Mining the Big Data

I ++ Mapreduce: Incremental Mapreduce for Mining the Big Data IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 18, Issue 3, Ver. IV (May-Jun. 2016), PP 125-129 www.iosrjournals.org I ++ Mapreduce: Incremental Mapreduce for

More information

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective Part II: Data Center Software Architecture: Topic 3: Programming Models Piccolo: Building Fast, Distributed Programs

More information

USING DYNAMOGRAPH: APPLICATION SCENARIOS FOR LARGE-SCALE TEMPORAL GRAPH PROCESSING

USING DYNAMOGRAPH: APPLICATION SCENARIOS FOR LARGE-SCALE TEMPORAL GRAPH PROCESSING USING DYNAMOGRAPH: APPLICATION SCENARIOS FOR LARGE-SCALE TEMPORAL GRAPH PROCESSING Matthias Steinbauer, Gabriele Anderst-Kotsis Institute of Telecooperation TALK OUTLINE Introduction and Motivation Preliminaries

More information

Oolong: Asynchronous Distributed Applications Made Easy

Oolong: Asynchronous Distributed Applications Made Easy Oolong: Asynchronous Distributed Applications Made Easy Christopher Mitchell Russell Power Jinyang Li New York University {cmitchell, power, jinyang}@cs.nyu.edu Abstract We present Oolong, a distributed

More information

Data-Intensive Distributed Computing

Data-Intensive Distributed Computing Data-Intensive Distributed Computing CS 451/651 431/631 (Winter 2018) Part 8: Analyzing Graphs, Redux (1/2) March 20, 2018 Jimmy Lin David R. Cheriton School of Computer Science University of Waterloo

More information

DFA-G: A Unified Programming Model for Vertex-centric Parallel Graph Processing

DFA-G: A Unified Programming Model for Vertex-centric Parallel Graph Processing SCHOOL OF COMPUTER SCIENCE AND ENGINEERING DFA-G: A Unified Programming Model for Vertex-centric Parallel Graph Processing Bo Suo, Jing Su, Qun Chen, Zhanhuai Li, Wei Pan 2016-08-19 1 ABSTRACT Many systems

More information

PREGEL. A System for Large Scale Graph Processing

PREGEL. A System for Large Scale Graph Processing PREGEL A System for Large Scale Graph Processing The Problem Large Graphs are often part of computations required in modern systems (Social networks and Web graphs etc.) There are many graph computing

More information

AN INTRODUCTION TO GRAPH COMPRESSION TECHNIQUES FOR IN-MEMORY GRAPH COMPUTATION

AN INTRODUCTION TO GRAPH COMPRESSION TECHNIQUES FOR IN-MEMORY GRAPH COMPUTATION AN INTRODUCTION TO GRAPH COMPRESSION TECHNIQUES FOR IN-MEMORY GRAPH COMPUTATION AMIT CHAVAN Computer Science Department University of Maryland, College Park amitc@cs.umd.edu ABSTRACT. In this work we attempt

More information

Fast Failure Recovery in Distributed Graph Processing Systems

Fast Failure Recovery in Distributed Graph Processing Systems Fast Failure Recovery in Distributed Graph Processing Systems Yanyan Shen, Gang Chen, H. V. agadish, Wei Lu, Beng Chin Ooi, Bogdan Marius Tudor National University of Singapore, Zhejiang University, University

More information

GiViP: A Visual Profiler for Distributed Graph Processing Systems

GiViP: A Visual Profiler for Distributed Graph Processing Systems GiViP: A Visual Profiler for Distributed Graph Processing Systems Alessio Arleo, Walter Didimo, Giuseppe Liotta and Fabrizio Montecchiani University of Perugia, Italy The Value of Big Graphs The analysis

More information

Lecture 8, 4/22/2015. Scribed by Orren Karniol-Tambour, Hao Yi Ong, Swaroop Ramaswamy, and William Song.

Lecture 8, 4/22/2015. Scribed by Orren Karniol-Tambour, Hao Yi Ong, Swaroop Ramaswamy, and William Song. CME 323: Distributed Algorithms and Optimization, Spring 2015 http://stanford.edu/~rezab/dao. Instructor: Reza Zadeh, Databricks and Stanford. Lecture 8, 4/22/2015. Scribed by Orren Karniol-Tambour, Hao

More information

Map-Reduce. Marco Mura 2010 March, 31th

Map-Reduce. Marco Mura 2010 March, 31th Map-Reduce Marco Mura (mura@di.unipi.it) 2010 March, 31th This paper is a note from the 2009-2010 course Strumenti di programmazione per sistemi paralleli e distribuiti and it s based by the lessons of

More information

CSE 100 Minimum Spanning Trees Prim s and Kruskal

CSE 100 Minimum Spanning Trees Prim s and Kruskal CSE 100 Minimum Spanning Trees Prim s and Kruskal Your Turn The array of vertices, which include dist, prev, and done fields (initialize dist to INFINITY and done to false ): V0: dist= prev= done= adj:

More information

Drakkar: a graph based All-Nearest Neighbour search algorithm for bibliographic coupling

Drakkar: a graph based All-Nearest Neighbour search algorithm for bibliographic coupling Drakkar: a graph based All-Nearest Neighbour search algorithm for bibliographic coupling Bart Thijs KU Leuven, FEB, ECOOM; Leuven; Belgium Bart.thijs@kuleuven.be Abstract Drakkar is a novel algorithm for

More information

Parallel Computing: MapReduce Jin, Hai

Parallel Computing: MapReduce Jin, Hai Parallel Computing: MapReduce Jin, Hai School of Computer Science and Technology Huazhong University of Science and Technology ! MapReduce is a distributed/parallel computing framework introduced by Google

More information

Distributed Computations MapReduce. adapted from Jeff Dean s slides

Distributed Computations MapReduce. adapted from Jeff Dean s slides Distributed Computations MapReduce adapted from Jeff Dean s slides What we ve learnt so far Basic distributed systems concepts Consistency (sequential, eventual) Fault tolerance (recoverability, availability)

More information

Resilient Distributed Datasets

Resilient Distributed Datasets Resilient Distributed Datasets A Fault- Tolerant Abstraction for In- Memory Cluster Computing Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin,

More information

Exam 2 Review. October 29, Paul Krzyzanowski 1

Exam 2 Review. October 29, Paul Krzyzanowski 1 Exam 2 Review October 29, 2015 2013 Paul Krzyzanowski 1 Question 1 Why did Dropbox add notification servers to their architecture? To avoid the overhead of clients polling the servers periodically to check

More information

Distributed Filesystem

Distributed Filesystem Distributed Filesystem 1 How do we get data to the workers? NAS Compute Nodes SAN 2 Distributing Code! Don t move data to workers move workers to the data! - Store data on the local disks of nodes in the

More information

Defining supersteps for BSP

Defining supersteps for BSP efining supersteps for SP arrier Synchronization arrier Synchronization igure 1 Superstep with same nature of computation executed in parallel today. (The arrows denote just the temporal progress of task

More information

Apache Flink. Alessandro Margara

Apache Flink. Alessandro Margara Apache Flink Alessandro Margara alessandro.margara@polimi.it http://home.deib.polimi.it/margara Recap: scenario Big Data Volume and velocity Process large volumes of data possibly produced at high rate

More information

Graph Processing Frameworks

Graph Processing Frameworks Graph Processing Frameworks Lecture 24 CSCI 4974/6971 5 Dec 2016 1 / 13 Today s Biz 1. Reminders 2. Review 3. Graph Processing Frameworks 4. 2D Partitioning 2 / 13 Reminders Assignment 6: due date Dec

More information

Apache Giraph. for applications in Machine Learning & Recommendation Systems. Maria Novartis

Apache Giraph. for applications in Machine Learning & Recommendation Systems. Maria Novartis Apache Giraph for applications in Machine Learning & Recommendation Systems Maria Stylianou @marsty5 Novartis Züri Machine Learning Meetup #5 June 16, 2014 Apache Giraph for applications in Machine Learning

More information

Apache Giraph: Facebook-scale graph processing infrastructure. 3/31/2014 Avery Ching, Facebook GDM

Apache Giraph: Facebook-scale graph processing infrastructure. 3/31/2014 Avery Ching, Facebook GDM Apache Giraph: Facebook-scale graph processing infrastructure 3/31/2014 Avery Ching, Facebook GDM Motivation Apache Giraph Inspired by Google s Pregel but runs on Hadoop Think like a vertex Maximum value

More information

Webinar Series TMIP VISION

Webinar Series TMIP VISION Webinar Series TMIP VISION TMIP provides technical support and promotes knowledge and information exchange in the transportation planning and modeling community. Today s Goals To Consider: Parallel Processing

More information

NPTEL Course Jan K. Gopinath Indian Institute of Science

NPTEL Course Jan K. Gopinath Indian Institute of Science Storage Systems NPTEL Course Jan 2012 (Lecture 39) K. Gopinath Indian Institute of Science Google File System Non-Posix scalable distr file system for large distr dataintensive applications performance,

More information

Giraphx: Parallel Yet Serializable Large-Scale Graph Processing

Giraphx: Parallel Yet Serializable Large-Scale Graph Processing Giraphx: Parallel Yet Serializable Large-Scale Graph Processing Serafettin Tasci and Murat Demirbas Computer Science & Engineering Department University at Buffalo, SUNY Abstract. Bulk Synchronous Parallelism

More information

Where We Are. Review: Parallel DBMS. Parallel DBMS. Introduction to Data Management CSE 344

Where We Are. Review: Parallel DBMS. Parallel DBMS. Introduction to Data Management CSE 344 Where We Are Introduction to Data Management CSE 344 Lecture 22: MapReduce We are talking about parallel query processing There exist two main types of engines: Parallel DBMSs (last lecture + quick review)

More information

ZHT+ : Design and Implementation of a Graph Database Using ZHT

ZHT+ : Design and Implementation of a Graph Database Using ZHT ZHT+ : Design and Implementation of a Graph Database Using ZHT Gagan Munisiddha Gowda Benjamin L. Miwa Anirudh Sunkineni Department of Computer Science Illinois Institute of Technology Chicago, IL Abstract

More information

CS 345A Data Mining. MapReduce

CS 345A Data Mining. MapReduce CS 345A Data Mining MapReduce Single-node architecture CPU Machine Learning, Statistics Memory Classical Data Mining Disk Commodity Clusters Web data sets can be very large Tens to hundreds of terabytes

More information

Optimizing CPU Cache Performance for Pregel-Like Graph Computation

Optimizing CPU Cache Performance for Pregel-Like Graph Computation Optimizing CPU Cache Performance for Pregel-Like Graph Computation Songjie Niu, Shimin Chen* State Key Laboratory of Computer Architecture Institute of Computing Technology Chinese Academy of Sciences

More information

Sync-on-the-fly: A Parallel Framework for Gradient Descent Algorithms on Transient Resources

Sync-on-the-fly: A Parallel Framework for Gradient Descent Algorithms on Transient Resources Sync-on-the-fly: A Parallel Framework for Gradient Descent Algorithms on Transient Resources Guoyi Zhao, Lixin Gao and David Irwin Dept. of Electrical and Computer Engineering University of Massachusetts

More information

MapReduce: Simplified Data Processing on Large Clusters 유연일민철기

MapReduce: Simplified Data Processing on Large Clusters 유연일민철기 MapReduce: Simplified Data Processing on Large Clusters 유연일민철기 Introduction MapReduce is a programming model and an associated implementation for processing and generating large data set with parallel,

More information

Batch & Stream Graph Processing with Apache Flink. Vasia

Batch & Stream Graph Processing with Apache Flink. Vasia Batch & Stream Graph Processing with Apache Flink Vasia Kalavri vasia@apache.org @vkalavri Outline Distributed Graph Processing Gelly: Batch Graph Processing with Flink Gelly-Stream: Continuous Graph

More information

Jordan Boyd-Graber University of Maryland. Thursday, March 3, 2011

Jordan Boyd-Graber University of Maryland. Thursday, March 3, 2011 Data-Intensive Information Processing Applications! Session #5 Graph Algorithms Jordan Boyd-Graber University of Maryland Thursday, March 3, 2011 This work is licensed under a Creative Commons Attribution-Noncommercial-Share

More information

MapReduce: A Programming Model for Large-Scale Distributed Computation

MapReduce: A Programming Model for Large-Scale Distributed Computation CSC 258/458 MapReduce: A Programming Model for Large-Scale Distributed Computation University of Rochester Department of Computer Science Shantonu Hossain April 18, 2011 Outline Motivation MapReduce Overview

More information

Today s content. Resilient Distributed Datasets(RDDs) Spark and its data model

Today s content. Resilient Distributed Datasets(RDDs) Spark and its data model Today s content Resilient Distributed Datasets(RDDs) ------ Spark and its data model Resilient Distributed Datasets: A Fault- Tolerant Abstraction for In-Memory Cluster Computing -- Spark By Matei Zaharia,

More information

CIM/E Oriented Graph Database Model Architecture and Parallel Network Topology Processing

CIM/E Oriented Graph Database Model Architecture and Parallel Network Topology Processing CIM/E Oriented Graph Model Architecture and Parallel Network Topology Processing Zhangxin Zhou a, b, Chen Yuan a, Ziyan Yao a, Jiangpeng Dai a, Guangyi Liu a, Renchang Dai a, Zhiwei Wang a, and Garng M.

More information

Giraph Unchained: Barrierless Asynchronous Parallel Execution in Pregel-like Graph Processing Systems

Giraph Unchained: Barrierless Asynchronous Parallel Execution in Pregel-like Graph Processing Systems Giraph Unchained: Barrierless Asynchronous Parallel Execution in Pregel-like Graph Processing Systems ABSTRACT Minyang Han David R. Cheriton School of Computer Science University of Waterloo m25han@uwaterloo.ca

More information

CSE 444: Database Internals. Lectures 26 NoSQL: Extensible Record Stores

CSE 444: Database Internals. Lectures 26 NoSQL: Extensible Record Stores CSE 444: Database Internals Lectures 26 NoSQL: Extensible Record Stores CSE 444 - Spring 2014 1 References Scalable SQL and NoSQL Data Stores, Rick Cattell, SIGMOD Record, December 2010 (Vol. 39, No. 4)

More information

Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing

Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing /34 Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing Zuhair Khayyat 1 Karim Awara 1 Amani Alonazi 1 Hani Jamjoom 2 Dan Williams 2 Panos Kalnis 1 1 King Abdullah University of

More information

Distributed computing: index building and use

Distributed computing: index building and use Distributed computing: index building and use Distributed computing Goals Distributing computation across several machines to Do one computation faster - latency Do more computations in given time - throughput

More information

Spark. In- Memory Cluster Computing for Iterative and Interactive Applications

Spark. In- Memory Cluster Computing for Iterative and Interactive Applications Spark In- Memory Cluster Computing for Iterative and Interactive Applications Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin, Scott Shenker,

More information

Distributed Systems. Fall 2017 Exam 3 Review. Paul Krzyzanowski. Rutgers University. Fall 2017

Distributed Systems. Fall 2017 Exam 3 Review. Paul Krzyzanowski. Rutgers University. Fall 2017 Distributed Systems Fall 2017 Exam 3 Review Paul Krzyzanowski Rutgers University Fall 2017 December 11, 2017 CS 417 2017 Paul Krzyzanowski 1 Question 1 The core task of the user s map function within a

More information

Distributed computing: index building and use

Distributed computing: index building and use Distributed computing: index building and use Distributed computing Goals Distributing computation across several machines to Do one computation faster - latency Do more computations in given time - throughput

More information

PAGE: A Partition Aware Graph Computation Engine

PAGE: A Partition Aware Graph Computation Engine PAGE: A Graph Computation Engine Yingxia Shao, Junjie Yao, Bin Cui, Lin Ma Department of Computer Science Key Lab of High Confidence Software Technologies (Ministry of Education) Peking University {simon227,

More information

MapReduce Spark. Some slides are adapted from those of Jeff Dean and Matei Zaharia

MapReduce Spark. Some slides are adapted from those of Jeff Dean and Matei Zaharia MapReduce Spark Some slides are adapted from those of Jeff Dean and Matei Zaharia What have we learnt so far? Distributed storage systems consistency semantics protocols for fault tolerance Paxos, Raft,

More information

RESILIENT DISTRIBUTED DATASETS: A FAULT-TOLERANT ABSTRACTION FOR IN-MEMORY CLUSTER COMPUTING

RESILIENT DISTRIBUTED DATASETS: A FAULT-TOLERANT ABSTRACTION FOR IN-MEMORY CLUSTER COMPUTING RESILIENT DISTRIBUTED DATASETS: A FAULT-TOLERANT ABSTRACTION FOR IN-MEMORY CLUSTER COMPUTING Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin,

More information

Lecture 11 Hadoop & Spark

Lecture 11 Hadoop & Spark Lecture 11 Hadoop & Spark Dr. Wilson Rivera ICOM 6025: High Performance Computing Electrical and Computer Engineering Department University of Puerto Rico Outline Distributed File Systems Hadoop Ecosystem

More information

Giraph Unchained: Barrierless Asynchronous Parallel Execution in Pregel-like Graph Processing Systems

Giraph Unchained: Barrierless Asynchronous Parallel Execution in Pregel-like Graph Processing Systems Giraph Unchained: Barrierless Asynchronous Parallel Execution in Pregel-like Graph Processing Systems University of Waterloo Technical Report CS-215-4 ABSTRACT Minyang Han David R. Cheriton School of Computer

More information

References. What is Bigtable? Bigtable Data Model. Outline. Key Features. CSE 444: Database Internals

References. What is Bigtable? Bigtable Data Model. Outline. Key Features. CSE 444: Database Internals References CSE 444: Database Internals Scalable SQL and NoSQL Data Stores, Rick Cattell, SIGMOD Record, December 2010 (Vol 39, No 4) Lectures 26 NoSQL: Extensible Record Stores Bigtable: A Distributed

More information

Hadoop File System S L I D E S M O D I F I E D F R O M P R E S E N T A T I O N B Y B. R A M A M U R T H Y 11/15/2017

Hadoop File System S L I D E S M O D I F I E D F R O M P R E S E N T A T I O N B Y B. R A M A M U R T H Y 11/15/2017 Hadoop File System 1 S L I D E S M O D I F I E D F R O M P R E S E N T A T I O N B Y B. R A M A M U R T H Y Moving Computation is Cheaper than Moving Data Motivation: Big Data! What is BigData? - Google

More information

2. True or false: even though BFS and DFS have the same space complexity, they do not always have the same worst case asymptotic time complexity.

2. True or false: even though BFS and DFS have the same space complexity, they do not always have the same worst case asymptotic time complexity. 1. T F: Consider a directed graph G = (V, E) and a vertex s V. Suppose that for all v V, there exists a directed path in G from s to v. Suppose that a DFS is run on G, starting from s. Then, true or false:

More information

Implementing Graph Transformations in the Bulk Synchronous Parallel Model

Implementing Graph Transformations in the Bulk Synchronous Parallel Model Implementing Graph Transformations in the Bulk Synchronous Parallel Model Christian Krause 1, Matthias Tichy 2, and Holger Giese 3 1 SAP Innovation Center, Potsdam, Germany, christian.krause01@sap.com

More information

TENSORFLOW: LARGE-SCALE MACHINE LEARNING ON HETEROGENEOUS DISTRIBUTED SYSTEMS. by Google Research. presented by Weichen Wang

TENSORFLOW: LARGE-SCALE MACHINE LEARNING ON HETEROGENEOUS DISTRIBUTED SYSTEMS. by Google Research. presented by Weichen Wang TENSORFLOW: LARGE-SCALE MACHINE LEARNING ON HETEROGENEOUS DISTRIBUTED SYSTEMS by Google Research presented by Weichen Wang 2016.11.28 OUTLINE Introduction The Programming Model The Implementation Single

More information