An Abstract Domain for Certifying Neural Networks. Department of Computer Science

Size: px
Start display at page:

Download "An Abstract Domain for Certifying Neural Networks. Department of Computer Science"

Transcription

1 An Abstract Domain for Certifying Neural Networks Gagandeep Singh Timon Gehr Markus Püschel Martin Vechev Department of Computer Science

2 Adversarial input perturbations Neural network f 8 I " Neural network f 7 I L % (I ', ε) Neural network f 9 I Rotate(I ', ε,α, β) 2

3 Neural network robustness Given: Perturbation Regions: To Prove: Neural network f: R 5 R 7 Perturbation region R I ', φ. L % I ', ε : All images I where pixel values in I and I ' differ by at most ε 2. Rotate(I ', ε,α, β): All images I in L % I ', ε rotated by θ [α, β] I R I ', φ. f I [c] > f(i)[j] where c is the correct output and j is any other output Challenges The size of R I ', φ grows exponentially in the number of pixels: cannot compute f I for all I separately Prior work on verification Precise but does not scale: SMT solving [CAV 7] input refinement [USENIX 8] semidefinite relaxations [ICLR 8] Scales but imprecise linear relaxations [ICML 8] abstract interpretation [S&P 8, NIPS 8] 3

4 This work: contributions A new abstract domain combining floating point Polyhedra with Intervals: custom transformers for common functions in neural networks such as affine transforms, ReLU, sigmoid, tanh, and maxpool activations scalable and precise analysis DeepPoly: complete and parallelized end-to-end implementation based on ELINA First approach to certify robustness under rotation combined with linear interpolation: based on input refinement ε = 0.00, α = 45 I, β = 65 I Network ε NIPS 8 DeepPoly Ø 6 layers Ø 300 neurons Ø 6 layers Ø 34,688 neurons proves 2% 5.8 sec 0.3 proves 37% 7 sec proves 64% 4.8 sec proves 43% 88 sec 4

5 Neural network transformations 5

6 Our Abstract Domain Shape: associate a lower polyhedral a L M and an upper polyhedral a L N constraint with each x L Concretization of abstract element a: Domain invariant: store auxiliary concrete lower and upper bounds l L, u L for each x L less precise than Polyhedra, restriction needed to ensure scalability captures affine transformation precisely unlike Octagon, TVPI custom transformers for ReLU, sigmoid, tanh, and maxpool activations n: #neurons, m: #constraints w 5WX : max #neurons in a layer, L: # layers Transformer Polyhedra Our domain Affine Ο(nm U U ) Ο(w 5WX L) ReLU Ο(exp (n, m)) Ο() 6

7 Example: Analysis of a Toy Neural Network Input layer Hidden layers Output layer 0 0 [,] x ] x^ max (0, x^) x _ x` max (0, x`) x a x ]] 0 [,] x U x b x c x d x ]' x ]U max (0, x b ) max (0, x d ) constraints per neuron 2. Pointwise transformers => parallelizable. 3. Backsubstitution => helps precision. 4. Non-linear activations => approximate and minimize the area 7

8 [,] 0 0 x ] x^ max (0, x^) x _ x` max (0, x`) x a x ]] 0 [,] x U x b x c x d x ]' x ]U max (0, x b ) max (0, x d )

9 ReLU activation Pointwise transformer for x g max(0, x L ) that uses l L, u L if u L 0, a g M = a g N = 0, l g = u g = 0, if l L 0, a g M = a g N = x L, l g = l L, u g = u L, if l L < 0 and u L > 0 x^ max (0, x^) x _ x b max (0, x b ) x c choose (b) or (c) depending on the area Constant runtime 9

10 Affine transformation after ReLU x _ 0 x` x c Imprecise upper bound u` by substituting u _, u c for x _ and x c in aǹ 0

11 Backsubstitution x _ 0 x` x c

12 x ] 0 x^ max (0, x^) x _ 0 x` x U x b 0 max (0, x b ) x c Affine transformation with backsubstitution is pointwise, complexity: Ο wu 5WX L 2

13 [,] 0 0 max (0, x^) max (0, x`) x ] x^ x _ x` x a x ]] 0 [,] x U x b x c x d x ]' x ]U max (0, x b ) max (0, x d )

14 Checking for robustness Prove x ]] x ]U > 0 for all inputs in, [,] Computing lower bound for x ]] x ]U using l ]], u ]U gives - which is an imprecise result 4 With backsubstitution, one gets as the lower bound for x ]] x ]U, proving robustness

15 More complex perturbations: rotations Challenge: Rotate(I ', ε,α, β) is non-linear and cannot be captured in our domain unlike L % I ', ε Solution: Over-approximate Rotate(I ', ε,α, β) with boxes and use input refinement for precision Result: Prove robustness for networks under Rotate(I ', 0.00,-45,65) 5

16 Experimental evaluation Neural network architectures: fully connected feedforward (FFNN) convolutional (CNN) Training: trained to be robust with DiffAI [ICML 8] and PGD [Madry et al.] without adversarial training Datasets: MNIST CIFAR0 DeepPoly vs. state-of-the-art DeepZ [NIPS 8] and Fast-Lin [ICML 8] 6

17 Results 7

18 MNIST FFNN (3,00 hidden units) 8

19 CIFAR0 CNNs (4,852 hidden units) 9

20 Large Defended CNNs (6 layers) trained via DiffAI [ICML 8] Dataset Model #neurons ε %verified robustness Average runtime (s) DeepZ DeepPoly DeepZ DeepPoly MNIST ConvBig 34, ConvBig 34, ConvBig 34, ConvSuper 88, CIFAR0 ConvBig 62, ConvBig 62,

21 Ongoing work Combine abstract interpretation with MILP/LP solvers [ICLR 9] Geometric perturbations Applying verification during training and improving DiffAI Beyond classification Others. 2

22 Conclusion A new abstract domain combining floating point Polyhedra with Intervals: n: #neurons, m: #constraints w 5WX : max #neurons in a layer, L: # layers Transformer Polyhedra Our domain Affine Ο(nm U U ) Ο(w 5WX L) ReLU Ο(exp (n, m)) Ο() DeepPoly: complete and parallelized end-to-end implementation based on ELINA 22

Deep Learning with Tensorflow AlexNet

Deep Learning with Tensorflow   AlexNet Machine Learning and Computer Vision Group Deep Learning with Tensorflow http://cvml.ist.ac.at/courses/dlwt_w17/ AlexNet Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton, "Imagenet classification

More information

Safety verification for deep neural networks

Safety verification for deep neural networks Safety verification for deep neural networks Marta Kwiatkowska Department of Computer Science, University of Oxford UC Berkeley, 8 th November 2016 Setting the scene Deep neural networks have achieved

More information

Capsule Networks. Eric Mintun

Capsule Networks. Eric Mintun Capsule Networks Eric Mintun Motivation An improvement* to regular Convolutional Neural Networks. Two goals: Replace max-pooling operation with something more intuitive. Keep more info about an activated

More information

Pixel-level Generative Model

Pixel-level Generative Model Pixel-level Generative Model Generative Image Modeling Using Spatial LSTMs (2015NIPS) L. Theis and M. Bethge University of Tübingen, Germany Pixel Recurrent Neural Networks (2016ICML) A. van den Oord,

More information

Dynamic Routing Between Capsules. Yiting Ethan Li, Haakon Hukkelaas, and Kaushik Ram Ramasamy

Dynamic Routing Between Capsules. Yiting Ethan Li, Haakon Hukkelaas, and Kaushik Ram Ramasamy Dynamic Routing Between Capsules Yiting Ethan Li, Haakon Hukkelaas, and Kaushik Ram Ramasamy Problems & Results Object classification in images without losing information about important parts of the picture.

More information

Deep Generative Models Variational Autoencoders

Deep Generative Models Variational Autoencoders Deep Generative Models Variational Autoencoders Sudeshna Sarkar 5 April 2017 Generative Nets Generative models that represent probability distributions over multiple variables in some way. Directed Generative

More information

Convolutional Neural Networks

Convolutional Neural Networks Lecturer: Barnabas Poczos Introduction to Machine Learning (Lecture Notes) Convolutional Neural Networks Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

More information

Dynamic Routing Between Capsules

Dynamic Routing Between Capsules Report Explainable Machine Learning Dynamic Routing Between Capsules Author: Michael Dorkenwald Supervisor: Dr. Ullrich Köthe 28. Juni 2018 Inhaltsverzeichnis 1 Introduction 2 2 Motivation 2 3 CapusleNet

More information

arxiv: v1 [cs.lg] 17 Oct 2018

arxiv: v1 [cs.lg] 17 Oct 2018 Provable Robustness of ReLU networks via Maximization of Linear Regions Francesco Croce Maksym Andriushchenko Matthias Hein Saarland University, Germany Saarland University, Germany University of Tübingen,

More information

Restricted Boltzmann Machines. Shallow vs. deep networks. Stacked RBMs. Boltzmann Machine learning: Unsupervised version

Restricted Boltzmann Machines. Shallow vs. deep networks. Stacked RBMs. Boltzmann Machine learning: Unsupervised version Shallow vs. deep networks Restricted Boltzmann Machines Shallow: one hidden layer Features can be learned more-or-less independently Arbitrary function approximator (with enough hidden units) Deep: two

More information

Vulnerability of machine learning models to adversarial examples

Vulnerability of machine learning models to adversarial examples Vulnerability of machine learning models to adversarial examples Petra Vidnerová Institute of Computer Science The Czech Academy of Sciences Hora Informaticae 1 Outline Introduction Works on adversarial

More information

Machine Learning With Python. Bin Chen Nov. 7, 2017 Research Computing Center

Machine Learning With Python. Bin Chen Nov. 7, 2017 Research Computing Center Machine Learning With Python Bin Chen Nov. 7, 2017 Research Computing Center Outline Introduction to Machine Learning (ML) Introduction to Neural Network (NN) Introduction to Deep Learning NN Introduction

More information

Safety verification for deep neural networks

Safety verification for deep neural networks Safety verification for deep neural networks Marta Kwiatkowska Department of Computer Science, University of Oxford Based on joint work with Xiaowei Huang, Sen Wang, Min Wu and Matthew Wicker CAV, Heidelberg,

More information

Adversarial Examples in Deep Learning. Cho-Jui Hsieh Computer Science & Statistics UC Davis

Adversarial Examples in Deep Learning. Cho-Jui Hsieh Computer Science & Statistics UC Davis Adversarial Examples in Deep Learning Cho-Jui Hsieh Computer Science & Statistics UC Davis Adversarial Example Adversarial Example More Examples Robustness is critical in real systems More Examples Robustness

More information

arxiv: v1 [cs.lg] 28 Nov 2018

arxiv: v1 [cs.lg] 28 Nov 2018 A randomized gradient-free attack on ReLU networks Francesco Croce 1 and Matthias Hein 2 arxiv:1811.11493v1 [cs.lg] 28 Nov 2018 1 Department of Mathematics and Computer Science, Saarland University, Germany

More information

COMP9444 Neural Networks and Deep Learning 7. Image Processing. COMP9444 c Alan Blair, 2017

COMP9444 Neural Networks and Deep Learning 7. Image Processing. COMP9444 c Alan Blair, 2017 COMP9444 Neural Networks and Deep Learning 7. Image Processing COMP9444 17s2 Image Processing 1 Outline Image Datasets and Tasks Convolution in Detail AlexNet Weight Initialization Batch Normalization

More information

Deep Learning. Architecture Design for. Sargur N. Srihari

Deep Learning. Architecture Design for. Sargur N. Srihari Architecture Design for Deep Learning Sargur N. srihari@cedar.buffalo.edu 1 Topics Overview 1. Example: Learning XOR 2. Gradient-Based Learning 3. Hidden Units 4. Architecture Design 5. Backpropagation

More information

Feature Visualization

Feature Visualization CreativeAI: Deep Learning for Graphics Feature Visualization Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel UCL UCL UCL TU Munich UCL Timetable Theory and Basics State of the Art

More information

Learning Discrete Representations via Information Maximizing Self-Augmented Training

Learning Discrete Representations via Information Maximizing Self-Augmented Training A. Relation to Denoising and Contractive Auto-encoders Our method is related to denoising auto-encoders (Vincent et al., 2008). Auto-encoders maximize a lower bound of mutual information (Cover & Thomas,

More information

Lecture 2 Notes. Outline. Neural Networks. The Big Idea. Architecture. Instructors: Parth Shah, Riju Pahwa

Lecture 2 Notes. Outline. Neural Networks. The Big Idea. Architecture. Instructors: Parth Shah, Riju Pahwa Instructors: Parth Shah, Riju Pahwa Lecture 2 Notes Outline 1. Neural Networks The Big Idea Architecture SGD and Backpropagation 2. Convolutional Neural Networks Intuition Architecture 3. Recurrent Neural

More information

Akarsh Pokkunuru EECS Department Contractive Auto-Encoders: Explicit Invariance During Feature Extraction

Akarsh Pokkunuru EECS Department Contractive Auto-Encoders: Explicit Invariance During Feature Extraction Akarsh Pokkunuru EECS Department 03-16-2017 Contractive Auto-Encoders: Explicit Invariance During Feature Extraction 1 AGENDA Introduction to Auto-encoders Types of Auto-encoders Analysis of different

More information

Hidden Units. Sargur N. Srihari

Hidden Units. Sargur N. Srihari Hidden Units Sargur N. srihari@cedar.buffalo.edu 1 Topics in Deep Feedforward Networks Overview 1. Example: Learning XOR 2. Gradient-Based Learning 3. Hidden Units 4. Architecture Design 5. Backpropagation

More information

Machine Learning 13. week

Machine Learning 13. week Machine Learning 13. week Deep Learning Convolutional Neural Network Recurrent Neural Network 1 Why Deep Learning is so Popular? 1. Increase in the amount of data Thanks to the Internet, huge amount of

More information

Generative Modeling with Convolutional Neural Networks. Denis Dus Data Scientist at InData Labs

Generative Modeling with Convolutional Neural Networks. Denis Dus Data Scientist at InData Labs Generative Modeling with Convolutional Neural Networks Denis Dus Data Scientist at InData Labs What we will discuss 1. 2. 3. 4. Discriminative vs Generative modeling Convolutional Neural Networks How to

More information

Supplementary Material for SphereNet: Learning Spherical Representations for Detection and Classification in Omnidirectional Images

Supplementary Material for SphereNet: Learning Spherical Representations for Detection and Classification in Omnidirectional Images Supplementary Material for SphereNet: Learning Spherical Representations for Detection and Classification in Omnidirectional Images Benjamin Coors 1,3, Alexandru Paul Condurache 2,3, and Andreas Geiger

More information

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Si Chen The George Washington University sichen@gwmail.gwu.edu Meera Hahn Emory University mhahn7@emory.edu Mentor: Afshin

More information

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU,

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU, Machine Learning 10-701, Fall 2015 Deep Learning Eric Xing (and Pengtao Xie) Lecture 8, October 6, 2015 Eric Xing @ CMU, 2015 1 A perennial challenge in computer vision: feature engineering SIFT Spin image

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks Jakob Verbeek 2017-2018 Biological motivation Neuron is basic computational unit of the brain about 10^11 neurons in human brain Simplified neuron model as linear threshold

More information

Deep Learning on Graphs

Deep Learning on Graphs Deep Learning on Graphs with Graph Convolutional Networks Hidden layer Hidden layer Input Output ReLU ReLU, 6 April 2017 joint work with Max Welling (University of Amsterdam) The success story of deep

More information

Convolutional Neural Networks

Convolutional Neural Networks NPFL114, Lecture 4 Convolutional Neural Networks Milan Straka March 25, 2019 Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics unless otherwise

More information

Fast Algorithms for Octagon Abstract Domain

Fast Algorithms for Octagon Abstract Domain Research Collection Master Thesis Fast Algorithms for Octagon Abstract Domain Author(s): Singh, Gagandeep Publication Date: 2014 Permanent Link: https://doi.org/10.3929/ethz-a-010154448 Rights / License:

More information

SMT-Style Program Analysis with Value-based Refinements

SMT-Style Program Analysis with Value-based Refinements SMT-Style Program Analysis with Value-based Refinements Vijay D Silva Leopold Haller Daniel Kröning NSV-3 July 15, 2010 Outline Imprecision and Refinement in Abstract Interpretation SAT Style Abstract

More information

Tuning the Layers of Neural Networks for Robust Generalization

Tuning the Layers of Neural Networks for Robust Generalization 208 Int'l Conf. Data Science ICDATA'18 Tuning the Layers of Neural Networks for Robust Generalization C. P. Chiu, and K. Y. Michael Wong Department of Physics Hong Kong University of Science and Technology

More information

Paper Motivation. Fixed geometric structures of CNN models. CNNs are inherently limited to model geometric transformations

Paper Motivation. Fixed geometric structures of CNN models. CNNs are inherently limited to model geometric transformations Paper Motivation Fixed geometric structures of CNN models CNNs are inherently limited to model geometric transformations Higher-level features combine lower-level features at fixed positions as a weighted

More information

ADAPTIVE DATA AUGMENTATION FOR IMAGE CLASSIFICATION

ADAPTIVE DATA AUGMENTATION FOR IMAGE CLASSIFICATION ADAPTIVE DATA AUGMENTATION FOR IMAGE CLASSIFICATION Alhussein Fawzi, Horst Samulowitz, Deepak Turaga, Pascal Frossard EPFL, Switzerland & IBM Watson Research Center, USA ABSTRACT Data augmentation is the

More information

A New Abstraction Framework for Affine Transformers

A New Abstraction Framework for Affine Transformers A New Abstraction Framework for Affine Transformers Tushar Sharma and Thomas Reps SAS 17 Motivations Prove Program Assertions Function and loop summaries Sound with respect to bitvectors A NEW ABSTRACTION

More information

Deep Learning. Deep Learning provided breakthrough results in speech recognition and image classification. Why?

Deep Learning. Deep Learning provided breakthrough results in speech recognition and image classification. Why? Data Mining Deep Learning Deep Learning provided breakthrough results in speech recognition and image classification. Why? Because Speech recognition and image classification are two basic examples of

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Computer Vision Lecture 16 Deep Learning for Object Categorization 14.01.2016 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar registration period

More information

Deep Learning on Graphs

Deep Learning on Graphs Deep Learning on Graphs with Graph Convolutional Networks Hidden layer Hidden layer Input Output ReLU ReLU, 22 March 2017 joint work with Max Welling (University of Amsterdam) BDL Workshop @ NIPS 2016

More information

CS489/698: Intro to ML

CS489/698: Intro to ML CS489/698: Intro to ML Lecture 14: Training of Deep NNs Instructor: Sun Sun 1 Outline Activation functions Regularization Gradient-based optimization 2 Examples of activation functions 3 5/28/18 Sun Sun

More information

Learning to Match. Jun Xu, Zhengdong Lu, Tianqi Chen, Hang Li

Learning to Match. Jun Xu, Zhengdong Lu, Tianqi Chen, Hang Li Learning to Match Jun Xu, Zhengdong Lu, Tianqi Chen, Hang Li 1. Introduction The main tasks in many applications can be formalized as matching between heterogeneous objects, including search, recommendation,

More information

Dropout. Sargur N. Srihari This is part of lecture slides on Deep Learning:

Dropout. Sargur N. Srihari This is part of lecture slides on Deep Learning: Dropout Sargur N. srihari@buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Regularization Strategies 1. Parameter Norm Penalties 2. Norm Penalties

More information

Support Vector Machines

Support Vector Machines Support Vector Machines RBF-networks Support Vector Machines Good Decision Boundary Optimization Problem Soft margin Hyperplane Non-linear Decision Boundary Kernel-Trick Approximation Accurancy Overtraining

More information

Parallelization and optimization of the neuromorphic simulation code. Application on the MNIST problem

Parallelization and optimization of the neuromorphic simulation code. Application on the MNIST problem Parallelization and optimization of the neuromorphic simulation code. Application on the MNIST problem Raphaël Couturier, Michel Salomon FEMTO-ST - DISC Department - AND Team November 2 & 3, 2015 / Besançon

More information

Weighted Convolutional Neural Network. Ensemble.

Weighted Convolutional Neural Network. Ensemble. Weighted Convolutional Neural Network Ensemble Xavier Frazão and Luís A. Alexandre Dept. of Informatics, Univ. Beira Interior and Instituto de Telecomunicações Covilhã, Portugal xavierfrazao@gmail.com

More information

Keras: Handwritten Digit Recognition using MNIST Dataset

Keras: Handwritten Digit Recognition using MNIST Dataset Keras: Handwritten Digit Recognition using MNIST Dataset IIT PATNA February 9, 2017 1 / 24 OUTLINE 1 Introduction Keras: Deep Learning library for Theano and TensorFlow 2 Installing Keras Installation

More information

Deep Learning for Computer Vision II

Deep Learning for Computer Vision II IIIT Hyderabad Deep Learning for Computer Vision II C. V. Jawahar Paradigm Shift Feature Extraction (SIFT, HoG, ) Part Models / Encoding Classifier Sparrow Feature Learning Classifier Sparrow L 1 L 2 L

More information

DEEP LEARNING REVIEW. Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature Presented by Divya Chitimalla

DEEP LEARNING REVIEW. Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature Presented by Divya Chitimalla DEEP LEARNING REVIEW Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature 2015 -Presented by Divya Chitimalla What is deep learning Deep learning allows computational models that are composed of multiple

More information

SEMANTIC COMPUTING. Lecture 8: Introduction to Deep Learning. TU Dresden, 7 December Dagmar Gromann International Center For Computational Logic

SEMANTIC COMPUTING. Lecture 8: Introduction to Deep Learning. TU Dresden, 7 December Dagmar Gromann International Center For Computational Logic SEMANTIC COMPUTING Lecture 8: Introduction to Deep Learning Dagmar Gromann International Center For Computational Logic TU Dresden, 7 December 2018 Overview Introduction Deep Learning General Neural Networks

More information

CS 2750: Machine Learning. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh April 13, 2016

CS 2750: Machine Learning. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh April 13, 2016 CS 2750: Machine Learning Neural Networks Prof. Adriana Kovashka University of Pittsburgh April 13, 2016 Plan for today Neural network definition and examples Training neural networks (backprop) Convolutional

More information

An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation

An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio Université de Montréal 13/06/2007

More information

Lab meeting (Paper review session) Stacked Generative Adversarial Networks

Lab meeting (Paper review session) Stacked Generative Adversarial Networks Lab meeting (Paper review session) Stacked Generative Adversarial Networks 2017. 02. 01. Saehoon Kim (Ph. D. candidate) Machine Learning Group Papers to be covered Stacked Generative Adversarial Networks

More information

CS 1674: Intro to Computer Vision. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh November 16, 2016

CS 1674: Intro to Computer Vision. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh November 16, 2016 CS 1674: Intro to Computer Vision Neural Networks Prof. Adriana Kovashka University of Pittsburgh November 16, 2016 Announcements Please watch the videos I sent you, if you haven t yet (that s your reading)

More information

Vulnerability of machine learning models to adversarial examples

Vulnerability of machine learning models to adversarial examples ITAT 216 Proceedings, CEUR Workshop Proceedings Vol. 1649, pp. 187 194 http://ceur-ws.org/vol-1649, Series ISSN 1613-73, c 216 P. Vidnerová, R. Neruda Vulnerability of machine learning models to adversarial

More information

The Apron Library. Bertrand Jeannet and Antoine Miné. CAV 09 conference 02/07/2009 INRIA, CNRS/ENS

The Apron Library. Bertrand Jeannet and Antoine Miné. CAV 09 conference 02/07/2009 INRIA, CNRS/ENS The Apron Library Bertrand Jeannet and Antoine Miné INRIA, CNRS/ENS CAV 09 conference 02/07/2009 Context : Static Analysis What is it about? Discover properties of a program statically and automatically.

More information

Global Optimality in Neural Network Training

Global Optimality in Neural Network Training Global Optimality in Neural Network Training Benjamin D. Haeffele and René Vidal Johns Hopkins University, Center for Imaging Science. Baltimore, USA Questions in Deep Learning Architecture Design Optimization

More information

All You Want To Know About CNNs. Yukun Zhu

All You Want To Know About CNNs. Yukun Zhu All You Want To Know About CNNs Yukun Zhu Deep Learning Deep Learning Image from http://imgur.com/ Deep Learning Image from http://imgur.com/ Deep Learning Image from http://imgur.com/ Deep Learning Image

More information

Convolutional Neural Networks: Applications and a short timeline. 7th Deep Learning Meetup Kornel Kis Vienna,

Convolutional Neural Networks: Applications and a short timeline. 7th Deep Learning Meetup Kornel Kis Vienna, Convolutional Neural Networks: Applications and a short timeline 7th Deep Learning Meetup Kornel Kis Vienna, 1.12.2016. Introduction Currently a master student Master thesis at BME SmartLab Started deep

More information

Index. Umberto Michelucci 2018 U. Michelucci, Applied Deep Learning,

Index. Umberto Michelucci 2018 U. Michelucci, Applied Deep Learning, A Acquisition function, 298, 301 Adam optimizer, 175 178 Anaconda navigator conda command, 3 Create button, 5 download and install, 1 installing packages, 8 Jupyter Notebook, 11 13 left navigation pane,

More information

Autoencoders, denoising autoencoders, and learning deep networks

Autoencoders, denoising autoencoders, and learning deep networks 4 th CiFAR Summer School on Learning and Vision in Biology and Engineering Toronto, August 5-9 2008 Autoencoders, denoising autoencoders, and learning deep networks Part II joint work with Hugo Larochelle,

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks Machine Learning and Object Recognition 2016-2017 Course website: http://thoth.inrialpes.fr/~verbeek/mlor.16.17.php Biological motivation Neuron is basic computational unit

More information

ETALON IMAGES: UNDERSTANDING THE CONVOLUTION NEURAL NETWORKS

ETALON IMAGES: UNDERSTANDING THE CONVOLUTION NEURAL NETWORKS ETALON IMAGES: UNDERSTANDING THE CONVOLUTION NEURAL WORKS Vladimir V. Molchanov 1, Boris V. Vishnyakov 1, Vladimir S. Gorbatsevich 1, Yury V. Vizilter 1 1 FGUP «State Research Institute of Aviation Systems»,

More information

Learning Transferable Features with Deep Adaptation Networks

Learning Transferable Features with Deep Adaptation Networks Learning Transferable Features with Deep Adaptation Networks Mingsheng Long, Yue Cao, Jianmin Wang, Michael I. Jordan Presented by Changyou Chen October 30, 2015 1 Changyou Chen Learning Transferable Features

More information

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Charles R. Qi* Hao Su* Kaichun Mo Leonidas J. Guibas

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Charles R. Qi* Hao Su* Kaichun Mo Leonidas J. Guibas PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Charles R. Qi* Hao Su* Kaichun Mo Leonidas J. Guibas Big Data + Deep Representation Learning Robot Perception Augmented Reality

More information

Face Recognition A Deep Learning Approach

Face Recognition A Deep Learning Approach Face Recognition A Deep Learning Approach Lihi Shiloh Tal Perl Deep Learning Seminar 2 Outline What about Cat recognition? Classical face recognition Modern face recognition DeepFace FaceNet Comparison

More information

Reachability of Hybrid Systems using Support Functions over Continuous Time

Reachability of Hybrid Systems using Support Functions over Continuous Time Reachability of Hybrid Systems using Support Functions over Continuous Time Goran Frehse, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebeltel, Rajat Kateja, Manish Goyal, Rodolfo Ripado, Thao

More information

NVIDIA FOR DEEP LEARNING. Bill Veenhuis

NVIDIA FOR DEEP LEARNING. Bill Veenhuis NVIDIA FOR DEEP LEARNING Bill Veenhuis bveenhuis@nvidia.com Nvidia is the world s leading ai platform ONE ARCHITECTURE CUDA 2 GPU: Perfect Companion for Accelerating Apps & A.I. CPU GPU 3 Intro to AI AGENDA

More information

CMU Lecture 18: Deep learning and Vision: Convolutional neural networks. Teacher: Gianni A. Di Caro

CMU Lecture 18: Deep learning and Vision: Convolutional neural networks. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 18: Deep learning and Vision: Convolutional neural networks Teacher: Gianni A. Di Caro DEEP, SHALLOW, CONNECTED, SPARSE? Fully connected multi-layer feed-forward perceptrons: More powerful

More information

Deep Neural Networks:

Deep Neural Networks: Deep Neural Networks: Part II Convolutional Neural Network (CNN) Yuan-Kai Wang, 2016 Web site of this course: http://pattern-recognition.weebly.com source: CNN for ImageClassification, by S. Lazebnik,

More information

Overall Description. Goal: to improve spatial invariance to the input data. Translation, Rotation, Scale, Clutter, Elastic

Overall Description. Goal: to improve spatial invariance to the input data. Translation, Rotation, Scale, Clutter, Elastic Philippe Giguère Overall Description Goal: to improve spatial invariance to the input data Translation, Rotation, Scale, Clutter, Elastic How: add a learnable module which explicitly manipulate spatially

More information

CS 6501: Deep Learning for Computer Graphics. Training Neural Networks II. Connelly Barnes

CS 6501: Deep Learning for Computer Graphics. Training Neural Networks II. Connelly Barnes CS 6501: Deep Learning for Computer Graphics Training Neural Networks II Connelly Barnes Overview Preprocessing Initialization Vanishing/exploding gradients problem Batch normalization Dropout Additional

More information

Regularization. EE807: Recent Advances in Deep Learning Lecture 3. Slide made by Jongheon Jeong and Insu Han KAIST EE

Regularization. EE807: Recent Advances in Deep Learning Lecture 3. Slide made by Jongheon Jeong and Insu Han KAIST EE Regularization EE807: Recent Advances in Deep Learning Lecture 3 Slide made by Jongheon Jeong and Insu Han KAIST EE What is regularization? Any modification we make to a learning algorithm that is intended

More information

Dynamic Routing Using Inter Capsule Routing Protocol Between Capsules

Dynamic Routing Using Inter Capsule Routing Protocol Between Capsules 2018 UKSim-AMSS 20th International Conference on Modelling & Simulation Dynamic Routing Using Inter Capsule Routing Protocol Between Capsules Sanjib Kumar Sahu GGS Indraprastha University Delhi, India,

More information

On the Importance of Normalisation Layers in Deep Learning with Piecewise Linear Activation Units

On the Importance of Normalisation Layers in Deep Learning with Piecewise Linear Activation Units On the Importance of Normalisation Layers in Deep Learning with Piecewise Linear Activation Units Zhibin Liao Gustavo Carneiro ARC Centre of Excellence for Robotic Vision University of Adelaide, Australia

More information

Image Classification using Fast Learning Convolutional Neural Networks

Image Classification using Fast Learning Convolutional Neural Networks , pp.50-55 http://dx.doi.org/10.14257/astl.2015.113.11 Image Classification using Fast Learning Convolutional Neural Networks Keonhee Lee 1 and Dong-Chul Park 2 1 Software Device Research Center Korea

More information

6. Convolutional Neural Networks

6. Convolutional Neural Networks 6. Convolutional Neural Networks CS 519 Deep Learning, Winter 2017 Fuxin Li With materials from Zsolt Kira Quiz coming up Next Thursday (2/2) 20 minutes Topics: Optimization Basic neural networks No Convolutional

More information

CS468: 3D Deep Learning on Point Cloud Data. class label part label. Hao Su. image. May 10, 2017

CS468: 3D Deep Learning on Point Cloud Data. class label part label. Hao Su. image. May 10, 2017 CS468: 3D Deep Learning on Point Cloud Data class label part label Hao Su image. May 10, 2017 Agenda Point cloud generation Point cloud analysis CVPR 17, Point Set Generation Pipeline render CVPR 17, Point

More information

Automated Website Fingerprinting through Deep Learning

Automated Website Fingerprinting through Deep Learning Automated Website Fingerprinting through Deep Learning Vera Rimmer 1, Davy Preuveneers 1, Marc Juarez 2, Tom Van Goethem 1 and Wouter Joosen 1 NDSS 2018 Feb 19th (San Diego, USA) 1 2 Website Fingerprinting

More information

Generative Adversarial Network

Generative Adversarial Network Generative Adversarial Network Many slides from NIPS 2014 Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio Generative adversarial

More information

Improving the way neural networks learn Srikumar Ramalingam School of Computing University of Utah

Improving the way neural networks learn Srikumar Ramalingam School of Computing University of Utah Improving the way neural networks learn Srikumar Ramalingam School of Computing University of Utah Reference Most of the slides are taken from the third chapter of the online book by Michael Nielson: neuralnetworksanddeeplearning.com

More information

Provable Defenses against Adversarial Examples via the Convex Outer Adversarial Polytope

Provable Defenses against Adversarial Examples via the Convex Outer Adversarial Polytope Provable Defenses against Adversarial Examples via the Convex Outer Adversarial Polytope Eric Wong 1 J. Zico Kolter 2 Abstract We propose a method to learn deep ReLU-based classifiers that are provably

More information

LEARNING TO GENERATE CHAIRS WITH CONVOLUTIONAL NEURAL NETWORKS

LEARNING TO GENERATE CHAIRS WITH CONVOLUTIONAL NEURAL NETWORKS LEARNING TO GENERATE CHAIRS WITH CONVOLUTIONAL NEURAL NETWORKS Alexey Dosovitskiy, Jost Tobias Springenberg and Thomas Brox University of Freiburg Presented by: Shreyansh Daftry Visual Learning and Recognition

More information

Deep Learning with R. Francesca Lazzeri Data Scientist II - Microsoft, AI Research

Deep Learning with R. Francesca Lazzeri Data Scientist II - Microsoft, AI Research with R Francesca Lazzeri - @frlazzeri Data Scientist II - Microsoft, AI Research Agenda with R What is Demo Better understanding of R DL tools Fundamental concepts in Forward Propagation Algorithm Activation

More information

Classification of objects from Video Data (Group 30)

Classification of objects from Video Data (Group 30) Classification of objects from Video Data (Group 30) Sheallika Singh 12665 Vibhuti Mahajan 12792 Aahitagni Mukherjee 12001 M Arvind 12385 1 Motivation Video surveillance has been employed for a long time

More information

ECE 6504: Deep Learning for Perception

ECE 6504: Deep Learning for Perception ECE 6504: Deep Learning for Perception Topics: (Finish) Backprop Convolutional Neural Nets Dhruv Batra Virginia Tech Administrativia Presentation Assignments https://docs.google.com/spreadsheets/d/ 1m76E4mC0wfRjc4HRBWFdAlXKPIzlEwfw1-u7rBw9TJ8/

More information

Keras: Handwritten Digit Recognition using MNIST Dataset

Keras: Handwritten Digit Recognition using MNIST Dataset Keras: Handwritten Digit Recognition using MNIST Dataset IIT PATNA January 31, 2018 1 / 30 OUTLINE 1 Keras: Introduction 2 Installing Keras 3 Keras: Building, Testing, Improving A Simple Network 2 / 30

More information

Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs

Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs Ritchie Zhao 1, Weinan Song 2, Wentao Zhang 2, Tianwei Xing 3, Jeng-Hau Lin 4, Mani Srivastava 3, Rajesh Gupta 4, Zhiru

More information

Translation Symmetry Detection: A Repetitive Pattern Analysis Approach

Translation Symmetry Detection: A Repetitive Pattern Analysis Approach 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops Translation Symmetry Detection: A Repetitive Pattern Analysis Approach Yunliang Cai and George Baciu GAMA Lab, Department of Computing

More information

Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network. Nathan Sun CIS601

Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network. Nathan Sun CIS601 Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network Nathan Sun CIS601 Introduction Face ID is complicated by alterations to an individual s appearance Beard,

More information

A Deep Learning Framework for Authorship Classification of Paintings

A Deep Learning Framework for Authorship Classification of Paintings A Deep Learning Framework for Authorship Classification of Paintings Kai-Lung Hua ( 花凱龍 ) Dept. of Computer Science and Information Engineering National Taiwan University of Science and Technology Taipei,

More information

Visual object classification by sparse convolutional neural networks

Visual object classification by sparse convolutional neural networks Visual object classification by sparse convolutional neural networks Alexander Gepperth 1 1- Ruhr-Universität Bochum - Institute for Neural Dynamics Universitätsstraße 150, 44801 Bochum - Germany Abstract.

More information

Embedded Software Verification Challenges and Solutions. Static Program Analysis

Embedded Software Verification Challenges and Solutions. Static Program Analysis Embedded Software Verification Challenges and Solutions Static Program Analysis Chao Wang chaowang@nec-labs.com NEC Labs America Princeton, NJ ICCAD Tutorial November 11, 2008 www.nec-labs.com 1 Outline

More information

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech Convolutional Neural Networks Computer Vision Jia-Bin Huang, Virginia Tech Today s class Overview Convolutional Neural Network (CNN) Training CNN Understanding and Visualizing CNN Image Categorization:

More information

Deep Learning for Robust Normal Estimation in Unstructured Point Clouds. Alexandre Boulch. Renaud Marlet

Deep Learning for Robust Normal Estimation in Unstructured Point Clouds. Alexandre Boulch. Renaud Marlet Deep Learning for Robust Normal Estimation in Unstructured Point Clouds Alexandre Boulch Renaud Marlet Normal estimation in point clouds Normal: 3D normalized vector At each point: local orientation of

More information

Neural Network and Deep Learning. Donglin Zeng, Department of Biostatistics, University of North Carolina

Neural Network and Deep Learning. Donglin Zeng, Department of Biostatistics, University of North Carolina Neural Network and Deep Learning Early history of deep learning Deep learning dates back to 1940s: known as cybernetics in the 1940s-60s, connectionism in the 1980s-90s, and under the current name starting

More information

Exploring Capsules. Binghui Peng Runzhou Tao Shunyu Yao IIIS, Tsinghua University {pbh15, trz15,

Exploring Capsules. Binghui Peng Runzhou Tao Shunyu Yao IIIS, Tsinghua University {pbh15, trz15, Exploring Capsules Binghui Peng Runzhou Tao Shunyu Yao IIIS, Tsinghua University {pbh15, trz15, yao-sy15}@mails.tsinghua.edu.cn 1 Introduction Nowadays, convolutional neural networks (CNNs) have received

More information

Supplementary Material for Ensemble Diffusion for Retrieval

Supplementary Material for Ensemble Diffusion for Retrieval Supplementary Material for Ensemble Diffusion for Retrieval Song Bai 1, Zhichao Zhou 1, Jingdong Wang, Xiang Bai 1, Longin Jan Latecki 3, Qi Tian 4 1 Huazhong University of Science and Technology, Microsoft

More information

Application of Convolutional Neural Network for Image Classification on Pascal VOC Challenge 2012 dataset

Application of Convolutional Neural Network for Image Classification on Pascal VOC Challenge 2012 dataset Application of Convolutional Neural Network for Image Classification on Pascal VOC Challenge 2012 dataset Suyash Shetty Manipal Institute of Technology suyash.shashikant@learner.manipal.edu Abstract In

More information

Probabilistic Siamese Network for Learning Representations. Chen Liu

Probabilistic Siamese Network for Learning Representations. Chen Liu Probabilistic Siamese Network for Learning Representations by Chen Liu A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate Department of Electrical

More information

DEEP LEARNING OF COMPRESSED SENSING OPERATORS WITH STRUCTURAL SIMILARITY (SSIM) LOSS

DEEP LEARNING OF COMPRESSED SENSING OPERATORS WITH STRUCTURAL SIMILARITY (SSIM) LOSS DEEP LEARNING OF COMPRESSED SENSING OPERATORS WITH STRUCTURAL SIMILARITY (SSIM) LOSS ABSTRACT Compressed sensing (CS) is a signal processing framework for efficiently reconstructing a signal from a small

More information