Deep Learning on Graphs

Size: px
Start display at page:

Download "Deep Learning on Graphs"

Transcription

1 Deep Learning on Graphs with Graph Convolutional Networks Hidden layer Hidden layer Input Output ReLU ReLU, 22 March 2017 joint work with Max Welling (University of Amsterdam) BDL NIPS 2016 Conference ICLR 2017 (+ new paper on arxiv)

2 The success story of deep learning Speech data Natural language processing (NLP) 2

3 The success story of deep learning Speech data Natural language processing (NLP) Deep neural nets that exploit: - translation invariance (weight sharing) - hierarchical compositionality 2

4 Recap: Deep learning on Euclidean data Euclidean data: grids, sequences 2D grid 3

5 Recap: Deep learning on Euclidean data Euclidean data: grids, sequences 2D grid 1D grid 3

6 Recap: Deep learning on Euclidean data We know how to deal with this: Convolutional neural networks (CNNs) (Animation by Vincent Dumoulin) (Source: Wikipedia) 4

7 Recap: Deep learning on Euclidean data We know how to deal with this: Convolutional neural networks (CNNs) (Animation by Vincent Dumoulin) (Source: Wikipedia) 4

8 Recap: Deep learning on Euclidean data We know how to deal with this: Convolutional neural networks (CNNs) (Animation by Vincent Dumoulin) (Source: Wikipedia) or recurrent neural networks (RNNs) (Source: Christopher Olah s blog) 4

9 Convolutional neural networks (on grids) Single CNN layer with 3x3 filter: (Animation by Vincent Dumoulin) 5

10 Convolutional neural networks (on grids) Single CNN layer with 3x3 filter: (Animation by Vincent Dumoulin) 5

11 Convolutional neural networks (on grids) Single CNN layer with 3x3 filter: (Animation by Vincent Dumoulin) 5

12 Convolutional neural networks (on grids) Single CNN layer with 3x3 filter: (Animation by Vincent Dumoulin) Update for a single pixel: Transform neighbors individually Add everything up 5

13 Convolutional neural networks (on grids) Single CNN layer with 3x3 filter: (Animation by Vincent Dumoulin) Update for a single pixel: Transform neighbors individually Add everything up Full update: 5

14 Graph-structured data What if our data looks like this? 6

15 Graph-structured data What if our data looks like this? or this: 6

16 Graph-structured data What if our data looks like this? or this: Real-world examples: Social networks World-wide-web Protein-interaction networks Telecommunication networks Knowledge graphs 6

17 Graphs: Definitions Graph: : Set of nodes, : Set of edges We can define: (adjacency matrix): (can also be weighted) 7

18 Graphs: Definitions Graph: : Set of nodes, : Set of edges We can define: (adjacency matrix): (can also be weighted) Model wish list: Set of trainable parameters Trainable in time Applicable even if the input graph changes 7

19 A naive approach Take adjacency matrix and feature matrix Concatenate them Feed them into deep (fully connected) neural net Done?? 8

20 A naive approach Take adjacency matrix and feature matrix Concatenate them Feed them into deep (fully connected) neural net Done?? Problems: Huge number of parameters Needs to be re-trained if number of nodes changes Does not generalize across graphs 8

21 A naive approach Take adjacency matrix and feature matrix Concatenate them Feed them into deep (fully connected) neural net Done?? Problems: Huge number of parameters Needs to be re-trained if number of nodes changes Does not generalize across graphs 8

22 A naive approach Take adjacency matrix and feature matrix Concatenate them Feed them into deep (fully connected) neural net Done? We need weight sharing! => CNNs on graphs or Graph Convolutional Networks (GCNs)? Problems: Huge number of parameters Needs to be re-trained if number of nodes changes Does not generalize across graphs 8

23 CNNs on graphs with spatial filters Consider this undirected graph: (related idea was first proposed in Scarselli et al. 2009) 9

24 CNNs on graphs with spatial filters (related idea was first proposed in Scarselli et al. 2009) Consider this undirected graph: Calculate update for node in red: 9

25 CNNs on graphs with spatial filters (related idea was first proposed in Scarselli et al. 2009) Consider this undirected graph: Calculate update for node in red: 9

26 CNNs on graphs with spatial filters (related idea was first proposed in Scarselli et al. 2009) Consider this undirected graph: Calculate update for node in red: Update rule: : neighbor indices : norm. constant (per edge) 9

27 CNNs on graphs with spatial filters (related idea was first proposed in Scarselli et al. 2009) Consider this undirected graph: Calculate update for node in red: Update rule: : neighbor indices : norm. constant (per edge) How is this related to spectral CNNs on graphs? Localized 1st-order approximation of spectral filters [Kipf & Welling, ICLR 2017] 9

28 Vectorized form with 10

29 Vectorized form with Or treat self-connection in the same way: with 10

30 Vectorized form with Or treat self-connection in the same way: with is typically sparse We can use sparse matrix multiplications! Efficient implementation in Theano or TensorFlow 10

31 Model architecture (with spatial filters) Input: Feature matrix, preprocessed adjacency matrix Hidden layer Hidden layer Input Output ReLU ReLU (or more sophisticated filters / basis functions) [Kipf & Welling, ICLR 2017] 11

32 What does it do? An example. Forward pass through untrained 3-layer GCN model Parameters initialized randomly 2-dim output per node f( ) = [Karate Club Network] Produces (useful?) random embeddings! 12

33 Connection to Weisfeiler-Lehman algorithm A classical approach for node feature assignment 13

34 Connection to Weisfeiler-Lehman algorithm A classical approach for node feature assignment 13

35 Connection to Weisfeiler-Lehman algorithm A classical approach for node feature assignment Useful as graph isomorphism check for most graphs (exception: highly regular graphs) 13

36 Connection to Weisfeiler-Lehman algorithm A classical approach for node feature assignment Useful as graph isomorphism check for most graphs (exception: highly regular graphs) 13

37 Connection to Weisfeiler-Lehman algorithm A classical approach for node feature assignment GCN: Useful as graph isomorphism check for most graphs (exception: highly regular graphs) 13

38 Semi-supervised classification on graphs Setting: Some nodes are labeled (black circle) All other nodes are unlabeled Task: Predict node label of unlabeled nodes 14

39 Semi-supervised classification on graphs Setting: Some nodes are labeled (black circle) All other nodes are unlabeled Task: Predict node label of unlabeled nodes Standard approach: graph-based regularization ( smoothness constraints ) [Zhu et al., 2003] with assumes: connected nodes likely to share same label 14

40 Semi-supervised classification on graphs Embedding-based approaches Two-step pipeline: 1) Get embedding for every node 2) Train classifier on node embedding Examples: DeepWalk [Perozzi et al., 2014], node2vec [Grover & Leskovec, 2016] 15

41 Semi-supervised classification on graphs Embedding-based approaches Two-step pipeline: 1) Get embedding for every node 2) Train classifier on node embedding Examples: DeepWalk [Perozzi et al., 2014], node2vec [Grover & Leskovec, 2016] Problem: Embeddings are not optimized for classification! 15

42 Semi-supervised classification on graphs Embedding-based approaches Two-step pipeline: 1) Get embedding for every node 2) Train classifier on node embedding Examples: DeepWalk [Perozzi et al., 2014], node2vec [Grover & Leskovec, 2016] Problem: Embeddings are not optimized for classification! Idea: Train graph-based classifier end-to-end using GCN Evaluate loss on labeled nodes only: set of labeled node indices label matrix GCN output (after softmax) 15

43 Toy example (semi-supervised learning) Video also available here: 16

44 Toy example (semi-supervised learning) Video also available here: 16

45 Classification on citation networks Input: Citation networks (nodes are papers, edges are citation links, optionally bag-of-words features on nodes) Target: Paper category (e.g. stat.ml, cs.lg, ) (Figure from: Bronstein, Bruna, LeCun, Szlam, Vandergheynst, 2016) 17

46 Experiments and results Model: 2-layer GCN Dataset statistics (Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017) 18

47 Experiments and results Model: 2-layer GCN Dataset statistics Classification results (accuracy) no input features (Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017) 18

48 Experiments and results Model: 2-layer GCN Dataset statistics no input features Classification results (accuracy) Learned representations (t-sne embedding of hidden layer activations) (Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017) 18

49 Other recent work Global filters (hard to generalize) Spectral domain Local filters (limited field of view) Spatial domain SyncSpecCNN (Spectral Transformer Nets) [Yi et al., 2016] Mixture model CNN (learned basis functions) [Monti et al., 2016] Chebyshev CNN (approximate spectral filters in spatial domain) [Defferrard et al., 2016] 19

50 Conclusions and open questions Results from past 1-2 years have shown: Deep learning paradigm can be extended to graphs State-of-the-art results in a number of domains Use end-to-end training instead of multi-stage approaches (graph kernels, DeepWalk, node2vec etc.) Open problems: Learn basis functions from scratch - First step: [Monti et al., 2016] Robustness of filters to change of graph structure Learn representations of graphs - First step: [Duvenaud et al., 2015] Theoretical understanding of what is learned Common benchmark datasets 20

51 Further reading Blog post Graph Convolutional Networks: Code on Github: Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017: Kipf & Welling, Variational Graph Auto-Encoders, NIPS BDL Workshop, 2016: You can get in touch with me via: Web: Project funded by SAP 21

52 How deep is deep enough? Residual connection 22

Deep Learning on Graphs

Deep Learning on Graphs Deep Learning on Graphs with Graph Convolutional Networks Hidden layer Hidden layer Input Output ReLU ReLU, 6 April 2017 joint work with Max Welling (University of Amsterdam) The success story of deep

More information

Semi-supervised Methods for Graph Representation

Semi-supervised Methods for Graph Representation Semi-supervised Methods for Graph Representation Modeling Data With Networks + Network Embedding: Problems, Methodologies and Frontiers Ivan Brugere (University of Illinois at Chicago) Peng Cui (Tsinghua

More information

Graphite: Iterative Generative Modeling of Graphs

Graphite: Iterative Generative Modeling of Graphs Graphite: Iterative Generative Modeling of Graphs Aditya Grover* adityag@cs.stanford.edu Aaron Zweig* azweig@cs.stanford.edu Stefano Ermon ermon@cs.stanford.edu Abstract Graphs are a fundamental abstraction

More information

This Talk. 1) Node embeddings. Map nodes to low-dimensional embeddings. 2) Graph neural networks. Deep learning architectures for graphstructured

This Talk. 1) Node embeddings. Map nodes to low-dimensional embeddings. 2) Graph neural networks. Deep learning architectures for graphstructured Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 1 This Talk 1) Node embeddings Map nodes to low-dimensional embeddings. 2) Graph neural networks Deep learning architectures

More information

arxiv: v1 [cs.lg] 20 Apr 2017

arxiv: v1 [cs.lg] 20 Apr 2017 Dynamic Graph Convolutional Networks Franco Manessi 1, Alessandro Rozza 1, and Mario Manzo 2 arxiv:1704.06199v1 [cs.lg] 20 Apr 2017 1 Research Team - Waynaut {name.surname}@waynaut.com 2 Servizi IT - Università

More information

arxiv: v4 [cs.lg] 22 Feb 2017

arxiv: v4 [cs.lg] 22 Feb 2017 SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS Thomas N. Kipf University of Amsterdam T.N.Kipf@uva.nl Max Welling University of Amsterdam Canadian Institute for Advanced Research (CIFAR)

More information

A Higher-Order Graph Convolutional Layer

A Higher-Order Graph Convolutional Layer A Higher-Order Graph Convolutional Layer Sami Abu-El-Haija 1, Nazanin Alipourfard 1, Hrayr Harutyunyan 1, Amol Kapoor 2, Bryan Perozzi 2 1 Information Sciences Institute University of Southern California

More information

GraphNet: Recommendation system based on language and network structure

GraphNet: Recommendation system based on language and network structure GraphNet: Recommendation system based on language and network structure Rex Ying Stanford University rexying@stanford.edu Yuanfang Li Stanford University yli03@stanford.edu Xin Li Stanford University xinli16@stanford.edu

More information

Object Detection Lecture Introduction to deep learning (CNN) Idar Dyrdal

Object Detection Lecture Introduction to deep learning (CNN) Idar Dyrdal Object Detection Lecture 10.3 - Introduction to deep learning (CNN) Idar Dyrdal Deep Learning Labels Computational models composed of multiple processing layers (non-linear transformations) Used to learn

More information

Machine Learning 13. week

Machine Learning 13. week Machine Learning 13. week Deep Learning Convolutional Neural Network Recurrent Neural Network 1 Why Deep Learning is so Popular? 1. Increase in the amount of data Thanks to the Internet, huge amount of

More information

From processing to learning on graphs

From processing to learning on graphs From processing to learning on graphs Patrick Pérez Maths and Images in Paris IHP, 2 March 2017 Signals on graphs Natural graph: mesh, network, etc., related to a real structure, various signals can live

More information

DeepWalk: Online Learning of Social Representations

DeepWalk: Online Learning of Social Representations DeepWalk: Online Learning of Social Representations ACM SIG-KDD August 26, 2014, Rami Al-Rfou, Steven Skiena Stony Brook University Outline Introduction: Graphs as Features Language Modeling DeepWalk Evaluation:

More information

FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis Supplementary Material

FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis Supplementary Material FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis Supplementary Material Nitika Verma Edmond Boyer Jakob Verbeek Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France

More information

Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting

Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting Yaguang Li Joint work with Rose Yu, Cyrus Shahabi, Yan Liu Page 1 Introduction Traffic congesting is wasteful of time,

More information

COMP 551 Applied Machine Learning Lecture 16: Deep Learning

COMP 551 Applied Machine Learning Lecture 16: Deep Learning COMP 551 Applied Machine Learning Lecture 16: Deep Learning Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless otherwise noted, all

More information

Multi-Task Self-Supervised Visual Learning

Multi-Task Self-Supervised Visual Learning Multi-Task Self-Supervised Visual Learning Sikai Zhong March 4, 2018 COMPUTER SCIENCE Table of contents 1. Introduction 2. Self-supervised Tasks 3. Architectures 4. Experiments 1 Introduction Self-supervised

More information

Network embedding. Cheng Zheng

Network embedding. Cheng Zheng Network embedding Cheng Zheng Outline Problem definition Factorization based algorithms --- Laplacian Eigenmaps(NIPS, 2001) Random walk based algorithms ---DeepWalk(KDD, 2014), node2vec(kdd, 2016) Deep

More information

LSTM: An Image Classification Model Based on Fashion-MNIST Dataset

LSTM: An Image Classification Model Based on Fashion-MNIST Dataset LSTM: An Image Classification Model Based on Fashion-MNIST Dataset Kexin Zhang, Research School of Computer Science, Australian National University Kexin Zhang, U6342657@anu.edu.au Abstract. The application

More information

arxiv: v1 [cs.lg] 10 Dec 2017

arxiv: v1 [cs.lg] 10 Dec 2017 DGCNN: Disordered Graph Convolutional Neural Network Based on the Gaussian Mixture Model arxiv:1712.03563v1 [cs.lg] 10 Dec 2017 Bo Wu, Yang Liu, Bo Lang, Lei Huang State Key Laboratory of Software Development

More information

arxiv: v1 [stat.ml] 10 Mar 2018

arxiv: v1 [stat.ml] 10 Mar 2018 Attention-based Graph Neural Network for Semi-supervised Learning Kiran K. Thekumparampil, Chong Wang, Sewoong Oh, and Li-Jia Li, March 13, 2018 arxiv:1803.03735v1 [stat.ml] 10 Mar 2018 Abstract Recently

More information

Deep Learning. Deep Learning provided breakthrough results in speech recognition and image classification. Why?

Deep Learning. Deep Learning provided breakthrough results in speech recognition and image classification. Why? Data Mining Deep Learning Deep Learning provided breakthrough results in speech recognition and image classification. Why? Because Speech recognition and image classification are two basic examples of

More information

Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning

Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning Qimai Li, Zhichao Han 2, Xiao-Ming Wu The Hong Kong Polytechnic University 2 ETH Zurich csqmli@comp.polyu.edu.hk, zhhan@student.ethz.ch,

More information

Deep Graph Infomax. Petar Velic kovic 1,2, William Fedus2,3,5, William L. Hamilton2,4, Pietro Lio 1, Yoshua Bengio2,3 and R Devon Hjelm6,2,3

Deep Graph Infomax. Petar Velic kovic 1,2, William Fedus2,3,5, William L. Hamilton2,4, Pietro Lio 1, Yoshua Bengio2,3 and R Devon Hjelm6,2,3 Deep Graph Infomax Petar Velic kovic 1,2, William Fedus2,3,5, William L. Hamilton2,4, Pietro Lio 1, Yoshua Bengio2,3 and R Devon Hjelm6,2,3 1 University 4 McGill of Cambridge 2 Mila University 5 Google

More information

Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning

Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18) Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning Qimai Li, 1 Zhichao Han, 1,2 Xiao-Ming Wu 1 1 The Hong

More information

DAGCN: Dual Attention Graph Convolutional Networks

DAGCN: Dual Attention Graph Convolutional Networks DAGCN: Dual Attention Graph Convolutional Networks Fengwen Chen, Shirui Pan, Jing Jiang, Huan Huo Guodong Long Centre for Artificial Intelligence, FEIT, University of Technology Sydney, Australia Faculty

More information

Facial Expression Classification with Random Filters Feature Extraction

Facial Expression Classification with Random Filters Feature Extraction Facial Expression Classification with Random Filters Feature Extraction Mengye Ren Facial Monkey mren@cs.toronto.edu Zhi Hao Luo It s Me lzh@cs.toronto.edu I. ABSTRACT In our work, we attempted to tackle

More information

arxiv: v4 [cs.si] 26 Apr 2018

arxiv: v4 [cs.si] 26 Apr 2018 Semi-supervised Embedding in Attributed Networks with Outliers Jiongqian Liang Peter Jacobs Jiankai Sun Srinivasan Parthasarathy arxiv:1703.08100v4 [cs.si] 26 Apr 2018 Abstract In this paper, we propose

More information

Convolutional-Recursive Deep Learning for 3D Object Classification

Convolutional-Recursive Deep Learning for 3D Object Classification Convolutional-Recursive Deep Learning for 3D Object Classification Richard Socher, Brody Huval, Bharath Bhat, Christopher D. Manning, Andrew Y. Ng NIPS 2012 Iro Armeni, Manik Dhar Motivation Hand-designed

More information

Graph Convolutional Networks: Algorithms, Applications and Open Challenges

Graph Convolutional Networks: Algorithms, Applications and Open Challenges Graph Convolutional Networks: Algorithms, Applications and Open Challenges Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski Arizona State University, {szhan172, hanghang.tong, rmacieje}@asu.edu;

More information

Deep Learning Applications

Deep Learning Applications October 20, 2017 Overview Supervised Learning Feedforward neural network Convolution neural network Recurrent neural network Recursive neural network (Recursive neural tensor network) Unsupervised Learning

More information

Capsule Networks. Eric Mintun

Capsule Networks. Eric Mintun Capsule Networks Eric Mintun Motivation An improvement* to regular Convolutional Neural Networks. Two goals: Replace max-pooling operation with something more intuitive. Keep more info about an activated

More information

LSTM and its variants for visual recognition. Xiaodan Liang Sun Yat-sen University

LSTM and its variants for visual recognition. Xiaodan Liang Sun Yat-sen University LSTM and its variants for visual recognition Xiaodan Liang xdliang328@gmail.com Sun Yat-sen University Outline Context Modelling with CNN LSTM and its Variants LSTM Architecture Variants Application in

More information

Lecture 10 CNNs on Graphs

Lecture 10 CNNs on Graphs Lecture 10 CNNs on Graphs CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago April 26, 2017 Two Scenarios For CNNs on graphs, we have two distinct scenarios: Scenario 1: Each

More information

Tutorial on Machine Learning Tools

Tutorial on Machine Learning Tools Tutorial on Machine Learning Tools Yanbing Xue Milos Hauskrecht Why do we need these tools? Widely deployed classical models No need to code from scratch Easy-to-use GUI Outline Matlab Apps Weka 3 UI TensorFlow

More information

Keras: Handwritten Digit Recognition using MNIST Dataset

Keras: Handwritten Digit Recognition using MNIST Dataset Keras: Handwritten Digit Recognition using MNIST Dataset IIT PATNA January 31, 2018 1 / 30 OUTLINE 1 Keras: Introduction 2 Installing Keras 3 Keras: Building, Testing, Improving A Simple Network 2 / 30

More information

Deep Learning for Computer Vision II

Deep Learning for Computer Vision II IIIT Hyderabad Deep Learning for Computer Vision II C. V. Jawahar Paradigm Shift Feature Extraction (SIFT, HoG, ) Part Models / Encoding Classifier Sparrow Feature Learning Classifier Sparrow L 1 L 2 L

More information

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides Deep Learning in Visual Recognition Thanks Da Zhang for the slides Deep Learning is Everywhere 2 Roadmap Introduction Convolutional Neural Network Application Image Classification Object Detection Object

More information

PTE : Predictive Text Embedding through Large-scale Heterogeneous Text Networks

PTE : Predictive Text Embedding through Large-scale Heterogeneous Text Networks PTE : Predictive Text Embedding through Large-scale Heterogeneous Text Networks Pramod Srinivasan CS591txt - Text Mining Seminar University of Illinois, Urbana-Champaign April 8, 2016 Pramod Srinivasan

More information

Convolutional Neural Networks: Applications and a short timeline. 7th Deep Learning Meetup Kornel Kis Vienna,

Convolutional Neural Networks: Applications and a short timeline. 7th Deep Learning Meetup Kornel Kis Vienna, Convolutional Neural Networks: Applications and a short timeline 7th Deep Learning Meetup Kornel Kis Vienna, 1.12.2016. Introduction Currently a master student Master thesis at BME SmartLab Started deep

More information

CS224W: Analysis of Networks Jure Leskovec, Stanford University

CS224W: Analysis of Networks Jure Leskovec, Stanford University CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 2????? Machine Learning Node

More information

CIS680: Vision & Learning Assignment 2.b: RPN, Faster R-CNN and Mask R-CNN Due: Nov. 21, 2018 at 11:59 pm

CIS680: Vision & Learning Assignment 2.b: RPN, Faster R-CNN and Mask R-CNN Due: Nov. 21, 2018 at 11:59 pm CIS680: Vision & Learning Assignment 2.b: RPN, Faster R-CNN and Mask R-CNN Due: Nov. 21, 2018 at 11:59 pm Instructions This is an individual assignment. Individual means each student must hand in their

More information

Particle Track Reconstruction with Deep Learning

Particle Track Reconstruction with Deep Learning Particle Track Reconstruction with Deep Learning Steven Farrell, Paolo Calafiura, Mayur Mudigonda, Prabhat Lawrence Berkeley National Laboratory {SFarrell,PCalafiura,Mudigonda,Prabhat}@lbl.gov Dustin Anderson,

More information

Hello Edge: Keyword Spotting on Microcontrollers

Hello Edge: Keyword Spotting on Microcontrollers Hello Edge: Keyword Spotting on Microcontrollers Yundong Zhang, Naveen Suda, Liangzhen Lai and Vikas Chandra ARM Research, Stanford University arxiv.org, 2017 Presented by Mohammad Mofrad University of

More information

CMU Lecture 18: Deep learning and Vision: Convolutional neural networks. Teacher: Gianni A. Di Caro

CMU Lecture 18: Deep learning and Vision: Convolutional neural networks. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 18: Deep learning and Vision: Convolutional neural networks Teacher: Gianni A. Di Caro DEEP, SHALLOW, CONNECTED, SPARSE? Fully connected multi-layer feed-forward perceptrons: More powerful

More information

Dynamic Routing Between Capsules

Dynamic Routing Between Capsules Report Explainable Machine Learning Dynamic Routing Between Capsules Author: Michael Dorkenwald Supervisor: Dr. Ullrich Köthe 28. Juni 2018 Inhaltsverzeichnis 1 Introduction 2 2 Motivation 2 3 CapusleNet

More information

Code Mania Artificial Intelligence: a. Module - 1: Introduction to Artificial intelligence and Python:

Code Mania Artificial Intelligence: a. Module - 1: Introduction to Artificial intelligence and Python: Code Mania 2019 Artificial Intelligence: a. Module - 1: Introduction to Artificial intelligence and Python: 1. Introduction to Artificial Intelligence 2. Introduction to python programming and Environment

More information

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU,

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU, Machine Learning 10-701, Fall 2015 Deep Learning Eric Xing (and Pengtao Xie) Lecture 8, October 6, 2015 Eric Xing @ CMU, 2015 1 A perennial challenge in computer vision: feature engineering SIFT Spin image

More information

Deep Learning and Its Applications

Deep Learning and Its Applications Convolutional Neural Network and Its Application in Image Recognition Oct 28, 2016 Outline 1 A Motivating Example 2 The Convolutional Neural Network (CNN) Model 3 Training the CNN Model 4 Issues and Recent

More information

arxiv: v1 [cs.si] 14 Mar 2017

arxiv: v1 [cs.si] 14 Mar 2017 SNE: Signed Network Embedding Shuhan Yuan 1, Xintao Wu 2, and Yang Xiang 1 1 Tongji University, Shanghai, China, Email:{4e66,shxiangyang}@tongji.edu.cn 2 University of Arkansas, Fayetteville, AR, USA,

More information

Know your data - many types of networks

Know your data - many types of networks Architectures Know your data - many types of networks Fixed length representation Variable length representation Online video sequences, or samples of different sizes Images Specific architectures for

More information

End-To-End Spam Classification With Neural Networks

End-To-End Spam Classification With Neural Networks End-To-End Spam Classification With Neural Networks Christopher Lennan, Bastian Naber, Jan Reher, Leon Weber 1 Introduction A few years ago, the majority of the internet s network traffic was due to spam

More information

Inductive Representation Learning on Large Graphs

Inductive Representation Learning on Large Graphs Inductive Representation Learning on Large Graphs William L. Hamilton wleif@stanford.edu Rex Ying rexying@stanford.edu Jure Leskovec jure@cs.stanford.edu Department of Computer Science Stanford University

More information

JOINT INTENT DETECTION AND SLOT FILLING USING CONVOLUTIONAL NEURAL NETWORKS. Puyang Xu, Ruhi Sarikaya. Microsoft Corporation

JOINT INTENT DETECTION AND SLOT FILLING USING CONVOLUTIONAL NEURAL NETWORKS. Puyang Xu, Ruhi Sarikaya. Microsoft Corporation JOINT INTENT DETECTION AND SLOT FILLING USING CONVOLUTIONAL NEURAL NETWORKS Puyang Xu, Ruhi Sarikaya Microsoft Corporation ABSTRACT We describe a joint model for intent detection and slot filling based

More information

Hand Written Digit Recognition Using Tensorflow and Python

Hand Written Digit Recognition Using Tensorflow and Python Hand Written Digit Recognition Using Tensorflow and Python Shekhar Shiroor Department of Computer Science College of Engineering and Computer Science California State University-Sacramento Sacramento,

More information

3 Object Detection. BVM 2018 Tutorial: Advanced Deep Learning Methods. Paul F. Jaeger, Division of Medical Image Computing

3 Object Detection. BVM 2018 Tutorial: Advanced Deep Learning Methods. Paul F. Jaeger, Division of Medical Image Computing 3 Object Detection BVM 2018 Tutorial: Advanced Deep Learning Methods Paul F. Jaeger, of Medical Image Computing What is object detection? classification segmentation obj. detection (1 label per pixel)

More information

Face Recognition A Deep Learning Approach

Face Recognition A Deep Learning Approach Face Recognition A Deep Learning Approach Lihi Shiloh Tal Perl Deep Learning Seminar 2 Outline What about Cat recognition? Classical face recognition Modern face recognition DeepFace FaceNet Comparison

More information

DEEP LEARNING REVIEW. Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature Presented by Divya Chitimalla

DEEP LEARNING REVIEW. Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature Presented by Divya Chitimalla DEEP LEARNING REVIEW Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature 2015 -Presented by Divya Chitimalla What is deep learning Deep learning allows computational models that are composed of multiple

More information

arxiv: v1 [cs.lg] 11 Nov 2018

arxiv: v1 [cs.lg] 11 Nov 2018 Graph Convolutional Neural Networks via Motif-based Attention Hao Peng Jianxin Li Qiran Gong Yuanxin Ning Lihong Wang Department of Computer Science & Engineering, Beihang University, Beijing, China National

More information

Deep Learning. Visualizing and Understanding Convolutional Networks. Christopher Funk. Pennsylvania State University.

Deep Learning. Visualizing and Understanding Convolutional Networks. Christopher Funk. Pennsylvania State University. Visualizing and Understanding Convolutional Networks Christopher Pennsylvania State University February 23, 2015 Some Slide Information taken from Pierre Sermanet (Google) presentation on and Computer

More information

Learning Low-rank Transformations: Algorithms and Applications. Qiang Qiu Guillermo Sapiro

Learning Low-rank Transformations: Algorithms and Applications. Qiang Qiu Guillermo Sapiro Learning Low-rank Transformations: Algorithms and Applications Qiang Qiu Guillermo Sapiro Motivation Outline Low-rank transform - algorithms and theories Applications Subspace clustering Classification

More information

Feature Visualization

Feature Visualization CreativeAI: Deep Learning for Graphics Feature Visualization Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel UCL UCL UCL TU Munich UCL Timetable Theory and Basics State of the Art

More information

A Deep Learning Approach to Vehicle Speed Estimation

A Deep Learning Approach to Vehicle Speed Estimation A Deep Learning Approach to Vehicle Speed Estimation Benjamin Penchas bpenchas@stanford.edu Tobin Bell tbell@stanford.edu Marco Monteiro marcorm@stanford.edu ABSTRACT Given car dashboard video footage,

More information

Advanced Introduction to Machine Learning, CMU-10715

Advanced Introduction to Machine Learning, CMU-10715 Advanced Introduction to Machine Learning, CMU-10715 Deep Learning Barnabás Póczos, Sept 17 Credits Many of the pictures, results, and other materials are taken from: Ruslan Salakhutdinov Joshua Bengio

More information

Deep Learning Basic Lecture - Complex Systems & Artificial Intelligence 2017/18 (VO) Asan Agibetov, PhD.

Deep Learning Basic Lecture - Complex Systems & Artificial Intelligence 2017/18 (VO) Asan Agibetov, PhD. Deep Learning 861.061 Basic Lecture - Complex Systems & Artificial Intelligence 2017/18 (VO) Asan Agibetov, PhD asan.agibetov@meduniwien.ac.at Medical University of Vienna Center for Medical Statistics,

More information

Graph neural networks February Visin Francesco

Graph neural networks February Visin Francesco Graph neural networks February 2018 Visin Francesco Who I am Outline Motivation and examples Graph nets (Semi)-formal definition Interaction network Relation network Gated graph sequence neural network

More information

Deep Learning Cook Book

Deep Learning Cook Book Deep Learning Cook Book Robert Haschke (CITEC) Overview Input Representation Output Layer + Cost Function Hidden Layer Units Initialization Regularization Input representation Choose an input representation

More information

Accelerating Convolutional Neural Nets. Yunming Zhang

Accelerating Convolutional Neural Nets. Yunming Zhang Accelerating Convolutional Neural Nets Yunming Zhang Focus Convolutional Neural Nets is the state of the art in classifying the images The models take days to train Difficult for the programmers to tune

More information

Next Steps in Data Mining. Sistemas de Apoio à Decisão Cláudia Antunes

Next Steps in Data Mining. Sistemas de Apoio à Decisão Cláudia Antunes Next Steps in Data Mining Sistemas de Apoio à Decisão Cláudia Antunes Temporal Data Mining Cláudia Antunes Data Mining Knowledge Discovery is the nontrivial extraction of implicit, previously unknown,

More information

Unsupervised Learning of Spatiotemporally Coherent Metrics

Unsupervised Learning of Spatiotemporally Coherent Metrics Unsupervised Learning of Spatiotemporally Coherent Metrics Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, Yann LeCun arxiv 2015. Presented by Jackie Chu Contributions Insight between slow feature

More information

Convolutional Networks for Text

Convolutional Networks for Text CS11-747 Neural Networks for NLP Convolutional Networks for Text Graham Neubig Site https://phontron.com/class/nn4nlp2017/ An Example Prediction Problem: Sentence Classification I hate this movie very

More information

Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL)

Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL) Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL) http://chrischoy.org Stanford CS231A 1 Understanding a Scene Objects Chairs, Cups, Tables,

More information

Keras: Handwritten Digit Recognition using MNIST Dataset

Keras: Handwritten Digit Recognition using MNIST Dataset Keras: Handwritten Digit Recognition using MNIST Dataset IIT PATNA February 9, 2017 1 / 24 OUTLINE 1 Introduction Keras: Deep Learning library for Theano and TensorFlow 2 Installing Keras Installation

More information

Deep Learning For Video Classification. Presented by Natalie Carlebach & Gil Sharon

Deep Learning For Video Classification. Presented by Natalie Carlebach & Gil Sharon Deep Learning For Video Classification Presented by Natalie Carlebach & Gil Sharon Overview Of Presentation Motivation Challenges of video classification Common datasets 4 different methods presented in

More information

arxiv: v1 [cs.si] 7 Sep 2018

arxiv: v1 [cs.si] 7 Sep 2018 dyngraph2vec: Capturing Network Dynamics using Dynamic Graph Representation Learning Palash Goyal USC Information Sciences Institute palashgo@usc.edu Sujit Rokka Chhetri * University of California-Irvine

More information

ConvolutionalNN's... ConvNet's... deep learnig

ConvolutionalNN's... ConvNet's... deep learnig Deep Learning ConvolutionalNN's... ConvNet's... deep learnig Markus Thaler, TG208 tham@zhaw.ch www.zhaw.ch/~tham Martin Weisenhorn, TB427 weie@zhaw.ch 20.08.2018 1 Neural Networks Classification: up to

More information

A Deep Learning primer

A Deep Learning primer A Deep Learning primer Riccardo Zanella r.zanella@cineca.it SuperComputing Applications and Innovation Department 1/21 Table of Contents Deep Learning: a review Representation Learning methods DL Applications

More information

Representation Learning on Graphs: Methods and Applications

Representation Learning on Graphs: Methods and Applications Representation Learning on Graphs: Methods and Applications William L. Hamilton wleif@stanford.edu Rex Ying rexying@stanford.edu Department of Computer Science Stanford University Stanford, CA, 94305 Jure

More information

Recurrent Neural Networks and Transfer Learning for Action Recognition

Recurrent Neural Networks and Transfer Learning for Action Recognition Recurrent Neural Networks and Transfer Learning for Action Recognition Andrew Giel Stanford University agiel@stanford.edu Ryan Diaz Stanford University ryandiaz@stanford.edu Abstract We have taken on the

More information

Adversarial Network Embedding

Adversarial Network Embedding Adversarial Network Embedding Quanyu Dai 1, Qiang Li 1,2, Jian Tang 3,4, Dan Wang 1 1 Department of Computing, The Hong Kong Polytechnic University, Hong Kong 2 School of Software, FEIT, The University

More information

Lecture 20: Neural Networks for NLP. Zubin Pahuja

Lecture 20: Neural Networks for NLP. Zubin Pahuja Lecture 20: Neural Networks for NLP Zubin Pahuja zpahuja2@illinois.edu courses.engr.illinois.edu/cs447 CS447: Natural Language Processing 1 Today s Lecture Feed-forward neural networks as classifiers simple

More information

Deep neural networks II

Deep neural networks II Deep neural networks II May 31 st, 2018 Yong Jae Lee UC Davis Many slides from Rob Fergus, Svetlana Lazebnik, Jia-Bin Huang, Derek Hoiem, Adriana Kovashka, Why (convolutional) neural networks? State of

More information

Adversarial Network Embedding

Adversarial Network Embedding Adversarial Network Embedding Quanyu Dai 1, Qiang Li 1,2, Jian Tang 3,4, Dan Wang 1 1 Department of Computing, The Hong Kong Polytechnic University, Hong Kong 2 School of Software, FEIT, The University

More information

DECISION TREES & RANDOM FORESTS X CONVOLUTIONAL NEURAL NETWORKS

DECISION TREES & RANDOM FORESTS X CONVOLUTIONAL NEURAL NETWORKS DECISION TREES & RANDOM FORESTS X CONVOLUTIONAL NEURAL NETWORKS Deep Neural Decision Forests Microsoft Research Cambridge UK, ICCV 2015 Decision Forests, Convolutional Networks and the Models in-between

More information

This Talk. Map nodes to low-dimensional embeddings. 2) Graph neural networks. Deep learning architectures for graphstructured

This Talk. Map nodes to low-dimensional embeddings. 2) Graph neural networks. Deep learning architectures for graphstructured Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 1 This Talk 1) Node embeddings Map nodes to low-dimensional embeddings. 2) Graph neural networks Deep learning architectures

More information

Perceptron: This is convolution!

Perceptron: This is convolution! Perceptron: This is convolution! v v v Shared weights v Filter = local perceptron. Also called kernel. By pooling responses at different locations, we gain robustness to the exact spatial location of image

More information

ATTENTION-BASED GRAPH NEURAL NETWORK FOR SEMI-SUPERVISED LEARNING

ATTENTION-BASED GRAPH NEURAL NETWORK FOR SEMI-SUPERVISED LEARNING ATTENTION-BASED GRAPH NEURAL NETWORK FOR SEMI-SUPERVISED LEARNING Anonymous authors Paper under double-blind review ABSTRACT Recently popularized graph neural networks achieve the state-of-the-art accuracy

More information

Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering May 12 2017 2 Content 1. Introduction 2. Proposed Technique 2.1 Learning Fast Localized Spectral Filters 2.2 Graph Coarsening

More information

Deep Learning with Tensorflow AlexNet

Deep Learning with Tensorflow   AlexNet Machine Learning and Computer Vision Group Deep Learning with Tensorflow http://cvml.ist.ac.at/courses/dlwt_w17/ AlexNet Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton, "Imagenet classification

More information

GeniePath: Graph Neural Networks with Adaptive Receptive Paths

GeniePath: Graph Neural Networks with Adaptive Receptive Paths GeniePath: Graph Neural Networks with Adaptive Receptive Paths Ziqi Liu Hangzhou, China ziqilau@gmail.com Jun Zhou Beijing, China ABSTRACT We present, GeniePath, a scalable approach for learning adaptive

More information

Semantic Segmentation

Semantic Segmentation Semantic Segmentation UCLA:https://goo.gl/images/I0VTi2 OUTLINE Semantic Segmentation Why? Paper to talk about: Fully Convolutional Networks for Semantic Segmentation. J. Long, E. Shelhamer, and T. Darrell,

More information

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Si Chen The George Washington University sichen@gwmail.gwu.edu Meera Hahn Emory University mhahn7@emory.edu Mentor: Afshin

More information

Detecting and Parsing of Visual Objects: Humans and Animals. Alan Yuille (UCLA)

Detecting and Parsing of Visual Objects: Humans and Animals. Alan Yuille (UCLA) Detecting and Parsing of Visual Objects: Humans and Animals Alan Yuille (UCLA) Summary This talk describes recent work on detection and parsing visual objects. The methods represent objects in terms of

More information

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech Convolutional Neural Networks Computer Vision Jia-Bin Huang, Virginia Tech Today s class Overview Convolutional Neural Network (CNN) Training CNN Understanding and Visualizing CNN Image Categorization:

More information

Learning Visual Semantics: Models, Massive Computation, and Innovative Applications

Learning Visual Semantics: Models, Massive Computation, and Innovative Applications Learning Visual Semantics: Models, Massive Computation, and Innovative Applications Part II: Visual Features and Representations Liangliang Cao, IBM Watson Research Center Evolvement of Visual Features

More information

SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels

SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Mu ller Department of Computer Graphics TU Dortmund University {matthiasfey,janericlenssen}@udoedu

More information

ABC-CNN: Attention Based CNN for Visual Question Answering

ABC-CNN: Attention Based CNN for Visual Question Answering ABC-CNN: Attention Based CNN for Visual Question Answering CIS 601 PRESENTED BY: MAYUR RUMALWALA GUIDED BY: DR. SUNNIE CHUNG AGENDA Ø Introduction Ø Understanding CNN Ø Framework of ABC-CNN Ø Datasets

More information

CS 2750: Machine Learning. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh April 13, 2016

CS 2750: Machine Learning. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh April 13, 2016 CS 2750: Machine Learning Neural Networks Prof. Adriana Kovashka University of Pittsburgh April 13, 2016 Plan for today Neural network definition and examples Training neural networks (backprop) Convolutional

More information

arxiv: v2 [cs.lg] 12 Sep 2018

arxiv: v2 [cs.lg] 12 Sep 2018 Watch Your Step: Learning Node Embeddings via Graph Attention arxiv:1710.09599v2 [cs.lg] 12 Sep 2018 Sami Abu-El-Haija Information Sciences Institute, University of Southern alifornia haija@isi.edu Rami

More information

A Taxonomy of Semi-Supervised Learning Algorithms

A Taxonomy of Semi-Supervised Learning Algorithms A Taxonomy of Semi-Supervised Learning Algorithms Olivier Chapelle Max Planck Institute for Biological Cybernetics December 2005 Outline 1 Introduction 2 Generative models 3 Low density separation 4 Graph

More information

CENTER FOR EMBEDDED & CYBER-PHYSICAL SYSTEMS. System Level CPS design using Non-Euclidean Training method. Jiang Wan.

CENTER FOR EMBEDDED & CYBER-PHYSICAL SYSTEMS. System Level CPS design using Non-Euclidean Training method. Jiang Wan. CECS CENTER FOR EMBEDDED & CYBER-PHYSICAL SYSTEMS System Level CPS design using Non-Euclidean Training method Jiang Wan Arquimedes Canedo Mohammad Abdullah Al Faruque Center for Embedded and Cyber-Physical

More information