Generative Adversarial Network

Size: px
Start display at page:

Download "Generative Adversarial Network"

Transcription

1 Generative Adversarial Network Many slides from NIPS 2014 Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio

2 Generative adversarial networks New method of training deep generative models Idea: pit a generator and a discriminator against each other Generator tries to draw samples from P(X) Discriminator tries to tell if sample came from the generator or t he real world Both discriminator and generator are deep networks (differentia ble functions) Can train with backprop: train discriminator for a while, then trai n generator, then discriminator, 2

3 Generative? Data: Discriminative model: p D x; θ D Generative model: p G x; θ G True data distribution: p data (x) Train p G x p data (x) p data (x) 3

4 Generative Adversarial Network Counterfeiters vs Police Game IT S FAKE MONEY! IT S REAL MONEY! 4

5 5

6 Generative Adversarial Network Discriminative Model D Generative Model G Sample x Random noise z p(z) 6

7 Generative Adversarial Network Discriminative Model D: tries to distinguish between samples from real data p(x) and generated ones q(x). 1 0 Try to classify the sample x D(x)=0 when x from Data D(x)=1 when x from G Differentiable function represented by a multilayer perceptron with parameters sample x from data sample x from G Generative Model G Try to generate sample x As similar as the real data random noise z p(z) 7

8 8

9 9

10 10

11 11

12 To learn the G s distribution p g over data x, we define a prior on input noise variables p z (z) Represent a mapping to data space as G(z; θ g ) whre G is a differ entiable function (MLP) A second multilayer perceptron D(x; θ d ) that outputs a single sc alar. D(x) represents the probability that x came from the data rather than p g We train D to maximize the probability of assigning the correct l abel to both training example and samples from G. We simultaneously train G to minimize log 1 D(G z ) D and G play the following 2-player minimax game with value fu nction V(G,D): 12

13 Generative Adversarial Network V D, G = E x~pdata(x) log D x min max V D, G G D + E z~pz(z) log(1 D(G(z))) Discriminative Model D 1 0 Generative Model G random noise z p(z) 13

14 Generative Adversarial Network V D, G = E x~pdata(x) log D x min max V D, G G D + E z~pz(z) log(1 D(G(z))) Discriminative Model D 1 0 Fixed G, maximize V: max D V G D = max D E x~pdata(x) log D x From sample x (i), z (i) max D m i=1 log D x i + E z~pz(z) log(1 D(G(z))) + log 1 D G z i Binary Classification (logistic loss): Sample from data: label=1 Sample from generator: label = 0 Generative Model G Stochastic Gradient random noise z p(z) 14

15 Generative Adversarial Network V D, G = E x~pdata(x) log D x min max V D, G G D + E z~pz(z) log(1 D(G(z))) Discriminative Model D 1 0 Fixed D, minimize V(G): min G V D G = min E z~pz(z) log(1 D(G(z))) Try to make D(G(z)) = 1 Generative Model G Stochastic Gradient random noise z p(z) 15

16 Generative Adversarial Network Update D Update G 16

17 GAN Results Nearest training example Generated Samples 17

18 Slide credit: Sangdoo (pil.snu.ac.kr) Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Network, ICLR Alec Radford, Luke Metz and Soumith Chintala 18

19 DCGAN Deep Convolutional Network + GAN Tricks for stable training Experimental Analysis Discriminative Model D 1 0 Generative Model G random noise z p(z) 19

20 Discriminative Model D DCGAN 1 0 Replace model s network to CNN Example of generator G (same as D) Generative Model G random noise z p(z) z: uniform dist. 20

21 Experiments LSUN bedroom dataset 3 million training examples Epoch #1 Epoch #5 21

22 Experiments Input noise z Interpolation form z i to z j z i z j 22

23 Experiments Which activations(feature map) in CNN has representation of window? At feature activations, assign neuron in the window region is 1, otherwise 0. Logistic regression to find window-representative feature map. Window feature map removal 23

24 Experiments Faces scraped human face image from web 3 million images from 10,000 people. Vector arithmetic 24

25 Experiments 25

26 Slide credit: Sangdoo (pil.snu.ac.kr) Generative Adversarial Text to Image Synthesis, ICML Scott Reed*, Zeynep Akata**, Xinchen Yan*, Lajanugen Logeswaran*, Bernt Schiele**, Honglak Lee* * University of Michigan, Ann Arbor, MI, USA (UMICH.EDU) ** Max Planck Institute for Informatics, Saarbrucken, Germany (MPI- INF.MPG.DE) 26

27 Generative Adversarial Text to Image Synthesis 27

28 Generative model What I cannot create, I do not understand Richard Feynman Generating images Image data (e.g. ImageNet): samples from the true data distribution. Generative model (e.g. deep neural network): outputs images, which means samples from the model. 28

29 Review of GAN Counterfeiters vs Police Game IT S FAKE MONEY! IT S REAL MONEY! 29

30 Review of GAN Discriminator Model D Generator Model G Sample x Random noise z p(z) 30

31 Review of GAN Discriminator Model D 1 0 Try to classify the sample x D(x)=0 when x from Data D(x)=1 when x from G (generator) Differentiable function represented by a multilayer perceptron with parameters sample x from data sample x from G Generator Model G Try to generate sample x As similar as the real data random noise z p(z) 31

32 Generative Adversarial Network V D, G = E x~pdata(x) log D x min max V D, G G D + E z~pz(z) log(1 D(G(z))) Discriminator Model D 1 0 Generator Model G random noise z p(z) 32

33 Review of DCGAN Discriminative Model D 1 0 Replace model s network to CNN Example of generator G (same as D) Generative Model G random noise z p(z) z: uniform dist. 33

34 GAN text to image synthesis ψ t : text embedding function (map to 1024 dim) -> Fully-connected layer -> 128 dim Used pre-trained text encoder (can be done end-to-end manner) z~n 0,1 : 100 dim noise vector Text-Conditional GAN 34

35 Conditional GAN 35 Mirza, Mehdi, and Simon Osindero. "Conditional generative adversarial nets."arxiv preprint arxiv: (2014).

36 Text-conditional GAN (naïve) 128 dim 4*4*16 h = ψ t Real image & matched text Fake image & arbitrary text min G max D E x~p data log D x, h + E z~pz log 1 D G z, h, h 36

37 Matching-aware discriminator 128 dim 4*4*16 h = ψ(t) min G max D Real image & matched text E x~pdata log D x, h + E x~pdata log 1 D x, h +E z~pz log 1 D G z, h, h Real image & mismatched text 37 Fake image & matched text

38 Matching-aware Discriminator h = ψ(t) min G max D Real image & matched text E x~pdata log D x, h + E x~pdata log 1 D x, h +E z~pz log 1 D G z, h, h Real image & mismatched text Fake image & matched text 38

39 Learning with Manifold Interpolation h = ψ(t) Real image & matched text Real image & mis-matched text min G max D E x~pdata log D x, h + E x~pdata log 1 D x, h +E z~pz log 1 D G z, h, h Fake image & matched text Additional term to generator to minimize: E t1,t 2 ~p textdata log 1 D G z, h), h, h = βh β h 2 h 1 = ψ t 1, h 2 = ψ t 2 39

40 Experiments

41 Experiments

42 Style Transfer 128 dim 4*4*16 L style = E t,z~n 0,1 z S G z, h S x z 2 2 Finding an inverse mapping from an image to vector 42

43 Style Transfer L style = E t,z~n 0,1 z S G z, h S x z 2 2 Input image: x Style: z = S(x) Generated image: G(z, h) Image Style vector Text description Style transferred image

44 Sentence Interpolation 44

45 Pixel Level Domain Transfer, ECCV

46 Domain transfer 46

47 Whole architecture Converter: deconvnet Discriminator: Real vs. Fake Discriminator : Associated or not 47

48 Dataset 48

49 Results 49

50 Results varying input conditions 50

51 Results inverse setting 51

52 Image to Image Translation 52 Image-to-Image Translation with Conditional Adversarial Networks

53 Image to Image Translation + L1 loss function Low-freq correctness + PatchGAN High-freq correctness 53

54 Image to Image Translation 54

55 Image to Image Translation 55

56 Plug & Play Generative Networks ArXiv

57 Plug & Play Generative Networks 57

58 Plug & Play Generative Networks 58

59 Noiseless joint PPGN-h Update Rule for a feature vector h Training G Training D 59

60 Noiseless joint PPGN-h Encoder network is pre-trained. G and D are trained with standard GAN learning technique. G is not directly used to generate image, but used as a guiding function combined with DAE. 60

61 PPGN results 61

62 PPGN results 62

63 Learning What and Where to Draw NIPS

64 Motivation Generative adversarial what-where nets (GAWWN) Give a bbox Give part locations Give a part location 64

65 Bounding Box Control Generator input: z, text, bbox location 65

66 Bounding Box Control Discriminator input: real/fake image, text, bbox location 66

67 Bounding Box Control Overall structure 67

68 Keypoint-Conditional Control Generator input: z, text, keypoint location (e.g., head in channel 1, left foot in channel 2, 68

69 Keypoint-Conditional Control Discriminator input: real/fake image, text, keypoint location 69

70 Keypoint-Conditional Control Overall structure 70

71 Keypoint Generation There are too much efforts to enter all keypoints (e.g., 15 parts for a bird). Given a subset of keypoints, let s find the remaining keypoints location. Among many ways, they chose to use GAN. Keypoints: k i = x i, y i, v i, i = 1,, K v i = 1 if visible else 0 k 0,1 K 3 User input: s 0,1 K s i = 1 if given else 0 Given probability: 0.1 is use Generated Keypoints: f: R Z+T+3K R 3K MLP (3-layer fully connected network is used) Kepoints Discriminator: Distinguish (k real, t real ) from synthetic (Dind t say what is used. Maybe MLP.) 71

72 Experiments Bbox control (fix text and z / varying bbox) 72

73 Experiments Keypoint control (fix text / use gt keypoints / varying z) Keypoint control (fix text and z / varying beak and tail keypoint positions and generate other keypoints conditionally) 73

74 Experiments Keypoint control (fix text and z / generate all keypoints conditioned on text) 74

75

Introduction to Generative Adversarial Networks

Introduction to Generative Adversarial Networks Introduction to Generative Adversarial Networks Luke de Oliveira Vai Technologies Lawrence Berkeley National Laboratory @lukede0 @lukedeo lukedeo@vaitech.io https://ldo.io 1 Outline Why Generative Modeling?

More information

GENERATIVE ADVERSARIAL NETWORKS FOR IMAGE STEGANOGRAPHY

GENERATIVE ADVERSARIAL NETWORKS FOR IMAGE STEGANOGRAPHY GENERATIVE ADVERSARIAL NETWORKS FOR IMAGE STEGANOGRAPHY Denis Volkhonskiy 2,3, Boris Borisenko 3 and Evgeny Burnaev 1,2,3 1 Skolkovo Institute of Science and Technology 2 The Institute for Information

More information

Learning to generate with adversarial networks

Learning to generate with adversarial networks Learning to generate with adversarial networks Gilles Louppe June 27, 2016 Problem statement Assume training samples D = {x x p data, x X } ; We want a generative model p model that can draw new samples

More information

Generative Adversarial Text to Image Synthesis

Generative Adversarial Text to Image Synthesis Generative Adversarial Text to Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee Presented by: Jingyao Zhan Contents Introduction Related Work Method

More information

arxiv: v1 [cs.mm] 16 Mar 2017

arxiv: v1 [cs.mm] 16 Mar 2017 Steganographic Generative Adversarial Networks arxiv:1703.05502v1 [cs.mm] 16 Mar 2017 Denis Volkhonskiy 1,2,3, Ivan Nazarov 1,2, Boris Borisenko 3 and Evgeny Burnaev 1,2,3 1 Skolkovo Institute of Science

More information

Deep generative models of natural images

Deep generative models of natural images Spring 2016 1 Motivation 2 3 Variational autoencoders Generative adversarial networks Generative moment matching networks Evaluating generative models 4 Outline 1 Motivation 2 3 Variational autoencoders

More information

GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin

GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin GENERATIVE MODEL Given a training dataset, x, try to estimate the distribution, Pdata(x) Explicitly or Implicitly (GAN) Explicitly

More information

Deep Fakes using Generative Adversarial Networks (GAN)

Deep Fakes using Generative Adversarial Networks (GAN) Deep Fakes using Generative Adversarial Networks (GAN) Tianxiang Shen UCSD La Jolla, USA tis038@eng.ucsd.edu Ruixian Liu UCSD La Jolla, USA rul188@eng.ucsd.edu Ju Bai UCSD La Jolla, USA jub010@eng.ucsd.edu

More information

An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks

An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks Report for Undergraduate Project - CS396A Vinayak Tantia (Roll No: 14805) Guide: Prof Gaurav Sharma CSE, IIT Kanpur, India

More information

Introduction to Generative Adversarial Networks

Introduction to Generative Adversarial Networks Introduction to Generative Adversarial Networks Ian Goodfellow, OpenAI Research Scientist NIPS 2016 Workshop on Adversarial Training Barcelona, 2016-12-9 Adversarial Training A phrase whose usage is in

More information

arxiv: v1 [eess.sp] 23 Oct 2018

arxiv: v1 [eess.sp] 23 Oct 2018 Reproducing AmbientGAN: Generative models from lossy measurements arxiv:1810.10108v1 [eess.sp] 23 Oct 2018 Mehdi Ahmadi Polytechnique Montreal mehdi.ahmadi@polymtl.ca Mostafa Abdelnaim University de Montreal

More information

Generative Networks. James Hays Computer Vision

Generative Networks. James Hays Computer Vision Generative Networks James Hays Computer Vision Interesting Illusion: Ames Window https://www.youtube.com/watch?v=ahjqe8eukhc https://en.wikipedia.org/wiki/ames_trapezoid Recap Unsupervised Learning Style

More information

arxiv: v1 [cs.cv] 5 Jul 2017

arxiv: v1 [cs.cv] 5 Jul 2017 AlignGAN: Learning to Align Cross- Images with Conditional Generative Adversarial Networks Xudong Mao Department of Computer Science City University of Hong Kong xudonmao@gmail.com Qing Li Department of

More information

Progressive Generative Hashing for Image Retrieval

Progressive Generative Hashing for Image Retrieval Progressive Generative Hashing for Image Retrieval Yuqing Ma, Yue He, Fan Ding, Sheng Hu, Jun Li, Xianglong Liu 2018.7.16 01 BACKGROUND the NNS problem in big data 02 RELATED WORK Generative adversarial

More information

SYNTHESIS OF IMAGES BY TWO-STAGE GENERATIVE ADVERSARIAL NETWORKS. Qiang Huang, Philip J.B. Jackson, Mark D. Plumbley, Wenwu Wang

SYNTHESIS OF IMAGES BY TWO-STAGE GENERATIVE ADVERSARIAL NETWORKS. Qiang Huang, Philip J.B. Jackson, Mark D. Plumbley, Wenwu Wang SYNTHESIS OF IMAGES BY TWO-STAGE GENERATIVE ADVERSARIAL NETWORKS Qiang Huang, Philip J.B. Jackson, Mark D. Plumbley, Wenwu Wang Centre for Vision, Speech and Signal Processing University of Surrey, Guildford,

More information

arxiv: v1 [cs.ne] 11 Jun 2018

arxiv: v1 [cs.ne] 11 Jun 2018 Generative Adversarial Network Architectures For Image Synthesis Using Capsule Networks arxiv:1806.03796v1 [cs.ne] 11 Jun 2018 Yash Upadhyay University of Minnesota, Twin Cities Minneapolis, MN, 55414

More information

(University Improving of Montreal) Generative Adversarial Networks with Denoising Feature Matching / 17

(University Improving of Montreal) Generative Adversarial Networks with Denoising Feature Matching / 17 Improving Generative Adversarial Networks with Denoising Feature Matching David Warde-Farley 1 Yoshua Bengio 1 1 University of Montreal, ICLR,2017 Presenter: Bargav Jayaraman Outline 1 Introduction 2 Background

More information

arxiv: v1 [cs.cv] 16 Jul 2017

arxiv: v1 [cs.cv] 16 Jul 2017 enerative adversarial network based on resnet for conditional image restoration Paper: jc*-**-**-****: enerative Adversarial Network based on Resnet for Conditional Image Restoration Meng Wang, Huafeng

More information

arxiv: v1 [cs.cv] 20 Mar 2017

arxiv: v1 [cs.cv] 20 Mar 2017 I2T2I: LEARNING TEXT TO IMAGE SYNTHESIS WITH TEXTUAL DATA AUGMENTATION Hao Dong, Jingqing Zhang, Douglas McIlwraith, Yike Guo arxiv:1703.06676v1 [cs.cv] 20 Mar 2017 Data Science Institute, Imperial College

More information

Alternatives to Direct Supervision

Alternatives to Direct Supervision CreativeAI: Deep Learning for Graphics Alternatives to Direct Supervision Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel UCL UCL UCL TUM UCL Timetable Theory and Basics State of

More information

Progress on Generative Adversarial Networks

Progress on Generative Adversarial Networks Progress on Generative Adversarial Networks Wangmeng Zuo Vision Perception and Cognition Centre Harbin Institute of Technology Content Image generation: problem formulation Three issues about GAN Discriminate

More information

Sequential Line Search for Generative Adversarial Networks

Sequential Line Search for Generative Adversarial Networks Seuential Line Search for Generative Adversarial Networks Masahiro Kazama Recruit Technologies Co.,Ltd. Tokyo, Japan masahiro_kazama@r.recruit.co.jp Viviane Takahashi Recruit Technologies Co.,Ltd. Tokyo,

More information

Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) Generative Adversarial Networks (GANs) Hossein Azizpour Most of the slides are courtesy of Dr. Ian Goodfellow (Research Scientist at OpenAI) and from his presentation at NIPS 2016 tutorial Note. I am generally

More information

arxiv: v1 [cs.cv] 7 Mar 2018

arxiv: v1 [cs.cv] 7 Mar 2018 Accepted as a conference paper at the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) 2018 Inferencing Based on Unsupervised Learning of Disentangled

More information

Adversarially Learned Inference

Adversarially Learned Inference Institut des algorithmes d apprentissage de Montréal Adversarially Learned Inference Aaron Courville CIFAR Fellow Université de Montréal Joint work with: Vincent Dumoulin, Ishmael Belghazi, Olivier Mastropietro,

More information

arxiv: v2 [cs.lg] 17 Dec 2018

arxiv: v2 [cs.lg] 17 Dec 2018 Lu Mi 1 * Macheng Shen 2 * Jingzhao Zhang 2 * 1 MIT CSAIL, 2 MIT LIDS {lumi, macshen, jzhzhang}@mit.edu The authors equally contributed to this work. This report was a part of the class project for 6.867

More information

GENERATIVE ADVERSARIAL NETWORK-BASED VIR-

GENERATIVE ADVERSARIAL NETWORK-BASED VIR- GENERATIVE ADVERSARIAL NETWORK-BASED VIR- TUAL TRY-ON WITH CLOTHING REGION Shizuma Kubo, Yusuke Iwasawa, and Yutaka Matsuo The University of Tokyo Bunkyo-ku, Japan {kubo, iwasawa, matsuo}@weblab.t.u-tokyo.ac.jp

More information

Class-Splitting Generative Adversarial Networks

Class-Splitting Generative Adversarial Networks Class-Splitting Generative Adversarial Networks Guillermo L. Grinblat 1, Lucas C. Uzal 1, and Pablo M. Granitto 1 arxiv:1709.07359v2 [stat.ml] 17 May 2018 1 CIFASIS, French Argentine International Center

More information

arxiv: v1 [stat.ml] 19 Aug 2017

arxiv: v1 [stat.ml] 19 Aug 2017 Semi-supervised Conditional GANs Kumar Sricharan 1, Raja Bala 1, Matthew Shreve 1, Hui Ding 1, Kumar Saketh 2, and Jin Sun 1 1 Interactive and Analytics Lab, Palo Alto Research Center, Palo Alto, CA 2

More information

Unsupervised Learning

Unsupervised Learning Deep Learning for Graphics Unsupervised Learning Niloy Mitra Iasonas Kokkinos Paul Guerrero Vladimir Kim Kostas Rematas Tobias Ritschel UCL UCL/Facebook UCL Adobe Research U Washington UCL Timetable Niloy

More information

arxiv: v1 [cs.cv] 8 Jan 2019

arxiv: v1 [cs.cv] 8 Jan 2019 GILT: Generating Images from Long Text Ori Bar El, Ori Licht, Netanel Yosephian Tel-Aviv University {oribarel, oril, yosephian}@mail.tau.ac.il arxiv:1901.02404v1 [cs.cv] 8 Jan 2019 Abstract Creating an

More information

Structured GANs. Irad Peleg 1 and Lior Wolf 1,2. Abstract. 1. Introduction. 2. Symmetric GANs Related Work

Structured GANs. Irad Peleg 1 and Lior Wolf 1,2. Abstract. 1. Introduction. 2. Symmetric GANs Related Work Structured GANs Irad Peleg 1 and Lior Wolf 1,2 1 Tel Aviv University 2 Facebook AI Research Abstract We present Generative Adversarial Networks (GANs), in which the symmetric property of the generated

More information

Inverting The Generator Of A Generative Adversarial Network

Inverting The Generator Of A Generative Adversarial Network 1 Inverting The Generator Of A Generative Adversarial Network Antonia Creswell and Anil A Bharath, Imperial College London arxiv:1802.05701v1 [cs.cv] 15 Feb 2018 Abstract Generative adversarial networks

More information

Visual Recommender System with Adversarial Generator-Encoder Networks

Visual Recommender System with Adversarial Generator-Encoder Networks Visual Recommender System with Adversarial Generator-Encoder Networks Bowen Yao Stanford University 450 Serra Mall, Stanford, CA 94305 boweny@stanford.edu Yilin Chen Stanford University 450 Serra Mall

More information

Conditional DCGAN For Anime Avatar Generation

Conditional DCGAN For Anime Avatar Generation Conditional DCGAN For Anime Avatar Generation Wang Hang School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240, China Email: wang hang@sjtu.edu.cn Abstract

More information

Lecture 19: Generative Adversarial Networks

Lecture 19: Generative Adversarial Networks Lecture 19: Generative Adversarial Networks Roger Grosse 1 Introduction Generative modeling is a type of machine learning where the aim is to model the distribution that a given set of data (e.g. images,

More information

Ways of Conditioning Generative Adversarial Networks

Ways of Conditioning Generative Adversarial Networks Ways of Conditioning Generative Adversarial Networks Hanock Kwak and Byoung-Tak Zhang School of Computer Science and Engineering Seoul National University Seoul 151-744, Korea {hnkwak, btzhang}@bi.snu.ac.kr

More information

Generative Adversarial Text to Image Synthesis

Generative Adversarial Text to Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran REEDSCOT 1, AKATA 2, XCYAN 1, LLAJAN 1 Bernt Schiele, Honglak Lee SCHIELE 2,HONGLAK 1 1 University of Michigan, Ann Arbor, MI, USA (UMICH.EDU)

More information

A GENERATIVE ADVERSARIAL NETWORK BASED FRAMEWORK FOR UNSUPERVISED VISUAL SURFACE INSPECTION. Wei Zhai Jiang Zhu Yang Cao Zengfu Wang

A GENERATIVE ADVERSARIAL NETWORK BASED FRAMEWORK FOR UNSUPERVISED VISUAL SURFACE INSPECTION. Wei Zhai Jiang Zhu Yang Cao Zengfu Wang A GENERATIVE ADVERSARIAL NETWORK BASED FRAMEWORK FOR UNSUPERVISED VISUAL SURFACE INSPECTION Wei Zhai Jiang Zhu Yang Cao Zengfu Wang Department of Automation, University of Science and Technology of China

More information

arxiv: v1 [cs.cv] 17 Nov 2016

arxiv: v1 [cs.cv] 17 Nov 2016 Inverting The Generator Of A Generative Adversarial Network arxiv:1611.05644v1 [cs.cv] 17 Nov 2016 Antonia Creswell BICV Group Bioengineering Imperial College London ac2211@ic.ac.uk Abstract Anil Anthony

More information

Generative Adversarial Networks (GANs) Ian Goodfellow, Research Scientist MLSLP Keynote, San Francisco

Generative Adversarial Networks (GANs) Ian Goodfellow, Research Scientist MLSLP Keynote, San Francisco Generative Adversarial Networks (GANs) Ian Goodfellow, Research Scientist MLSLP Keynote, San Francisco 2016-09-13 Generative Modeling Density estimation Sample generation Training examples Model samples

More information

arxiv: v1 [cs.cv] 6 Sep 2018

arxiv: v1 [cs.cv] 6 Sep 2018 arxiv:1809.01890v1 [cs.cv] 6 Sep 2018 Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto

More information

Generative Adversarial Networks (GANs) Based on slides from Ian Goodfellow s NIPS 2016 tutorial

Generative Adversarial Networks (GANs) Based on slides from Ian Goodfellow s NIPS 2016 tutorial Generative Adversarial Networks (GANs) Based on slides from Ian Goodfellow s NIPS 2016 tutorial Generative Modeling Density estimation Sample generation Training examples Model samples Next Video Frame

More information

IVE-GAN: INVARIANT ENCODING GENERATIVE AD-

IVE-GAN: INVARIANT ENCODING GENERATIVE AD- IVE-GAN: INVARIANT ENCODING GENERATIVE AD- VERSARIAL NETWORKS Anonymous authors Paper under double-blind review ABSTRACT Generative adversarial networks (GANs) are a powerful framework for generative tasks.

More information

The Amortized Bootstrap

The Amortized Bootstrap Eric Nalisnick 1 Padhraic Smyth 1 Abstract We use amortized inference in conjunction with implicit models to approximate the bootstrap distribution over model parameters. We call this the amortized bootstrap,

More information

Introduction to GAN. Generative Adversarial Networks. Junheng(Jeff) Hao

Introduction to GAN. Generative Adversarial Networks. Junheng(Jeff) Hao Introduction to GAN Generative Adversarial Networks Junheng(Jeff) Hao Adversarial Training is the coolest thing since sliced bread. -- Yann LeCun Roadmap 1. Generative Modeling 2. GAN 101: What is GAN?

More information

Paired 3D Model Generation with Conditional Generative Adversarial Networks

Paired 3D Model Generation with Conditional Generative Adversarial Networks Accepted to 3D Reconstruction in the Wild Workshop European Conference on Computer Vision (ECCV) 2018 Paired 3D Model Generation with Conditional Generative Adversarial Networks Cihan Öngün Alptekin Temizel

More information

Deep Learning for Visual Manipulation and Synthesis

Deep Learning for Visual Manipulation and Synthesis Deep Learning for Visual Manipulation and Synthesis Jun-Yan Zhu 朱俊彦 UC Berkeley 2017/01/11 @ VALSE What is visual manipulation? Image Editing Program input photo User Input result Desired output: stay

More information

A New CGAN Technique for Constrained Topology Design Optimization. Abstract

A New CGAN Technique for Constrained Topology Design Optimization. Abstract A New CGAN Technique for Constrained Topology Design Optimization M.-H. Herman Shen 1 and Liang Chen Department of Mechanical and Aerospace Engineering The Ohio State University Abstract This paper presents

More information

GAN Frontiers/Related Methods

GAN Frontiers/Related Methods GAN Frontiers/Related Methods Improving GAN Training Improved Techniques for Training GANs (Salimans, et. al 2016) CSC 2541 (07/10/2016) Robin Swanson (robin@cs.toronto.edu) Training GANs is Difficult

More information

arxiv: v1 [cs.cv] 8 Oct 2016

arxiv: v1 [cs.cv] 8 Oct 2016 Learning What and Where to Draw Scott Reed, reedscot@google.com Zeynep Akata 2 akata@mpi-inf.mpg.de Santosh Mohan santoshm@umich.edu arxiv:0.02454v [cs.cv] 8 Oct 20 Samuel Tenka samtenka@umich.edu Bernt

More information

Generative Modeling with Convolutional Neural Networks. Denis Dus Data Scientist at InData Labs

Generative Modeling with Convolutional Neural Networks. Denis Dus Data Scientist at InData Labs Generative Modeling with Convolutional Neural Networks Denis Dus Data Scientist at InData Labs What we will discuss 1. 2. 3. 4. Discriminative vs Generative modeling Convolutional Neural Networks How to

More information

Implicit generative models: dual vs. primal approaches

Implicit generative models: dual vs. primal approaches Implicit generative models: dual vs. primal approaches Ilya Tolstikhin MPI for Intelligent Systems ilya@tue.mpg.de Machine Learning Summer School 2017 Tübingen, Germany Contents 1. Unsupervised generative

More information

Building an Automatic Sprite Generator with Deep Convolutional Generative Adversarial Networks

Building an Automatic Sprite Generator with Deep Convolutional Generative Adversarial Networks Building an Automatic Sprite Generator with Deep Convolutional Generative Adversarial Networks Lewis Horsley School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK lhorsl@essex.ac.uk

More information

Autoencoders. Stephen Scott. Introduction. Basic Idea. Stacked AE. Denoising AE. Sparse AE. Contractive AE. Variational AE GAN.

Autoencoders. Stephen Scott. Introduction. Basic Idea. Stacked AE. Denoising AE. Sparse AE. Contractive AE. Variational AE GAN. Stacked Denoising Sparse Variational (Adapted from Paul Quint and Ian Goodfellow) Stacked Denoising Sparse Variational Autoencoding is training a network to replicate its input to its output Applications:

More information

Autoencoder. Representation learning (related to dictionary learning) Both the input and the output are x

Autoencoder. Representation learning (related to dictionary learning) Both the input and the output are x Deep Learning 4 Autoencoder, Attention (spatial transformer), Multi-modal learning, Neural Turing Machine, Memory Networks, Generative Adversarial Net Jian Li IIIS, Tsinghua Autoencoder Autoencoder Unsupervised

More information

Lab meeting (Paper review session) Stacked Generative Adversarial Networks

Lab meeting (Paper review session) Stacked Generative Adversarial Networks Lab meeting (Paper review session) Stacked Generative Adversarial Networks 2017. 02. 01. Saehoon Kim (Ph. D. candidate) Machine Learning Group Papers to be covered Stacked Generative Adversarial Networks

More information

Image Restoration with Deep Generative Models

Image Restoration with Deep Generative Models Image Restoration with Deep Generative Models Raymond A. Yeh *, Teck-Yian Lim *, Chen Chen, Alexander G. Schwing, Mark Hasegawa-Johnson, Minh N. Do Department of Electrical and Computer Engineering, University

More information

arxiv: v4 [cs.lg] 1 May 2018

arxiv: v4 [cs.lg] 1 May 2018 Controllable Generative Adversarial Network arxiv:1708.00598v4 [cs.lg] 1 May 2018 Minhyeok Lee School of Electrical Engineering Korea University Seoul, Korea 02841 suam6409@korea.ac.kr Abstract Junhee

More information

arxiv: v2 [cs.lg] 7 Jun 2017

arxiv: v2 [cs.lg] 7 Jun 2017 Pixel Deconvolutional Networks Hongyang Gao Washington State University Pullman, WA 99164 hongyang.gao@wsu.edu Hao Yuan Washington State University Pullman, WA 99164 hao.yuan@wsu.edu arxiv:1705.06820v2

More information

ANY image data set only covers a fixed domain. This

ANY image data set only covers a fixed domain. This Extra Domain Data Generation with Generative Adversarial Nets Luuk Boulogne Bernoulli Institute Department of Artificial Intelligence University of Groningen Groningen, The Netherlands lhboulogne@gmail.com

More information

Lip Movement Synthesis from Text

Lip Movement Synthesis from Text Lip Movement Synthesis from Text 1 1 Department of Computer Science and Engineering Indian Institute of Technology, Kanpur July 20, 2017 (1Department of Computer Science Lipand Movement Engineering Synthesis

More information

arxiv: v5 [cs.cv] 16 May 2018

arxiv: v5 [cs.cv] 16 May 2018 Image Colorization using Generative Adversarial Networks Kamyar Nazeri, Eric Ng, and Mehran Ebrahimi Faculty of Science, University of Ontario Institute of Technology 2000 Simcoe Street North, Oshawa,

More information

arxiv: v2 [cs.cv] 26 Mar 2017

arxiv: v2 [cs.cv] 26 Mar 2017 TAC-GAN Text Conditioned Auxiliary Classifier Generative Adversarial Network arxiv:1703.06412v2 [cs.cv] 26 ar 2017 Ayushman Dash 1 John Gamboa 1 Sheraz Ahmed 3 arcus Liwicki 14 uhammad Zeshan Afzal 12

More information

Conditional Generative Adversarial Networks for Particle Physics

Conditional Generative Adversarial Networks for Particle Physics Conditional Generative Adversarial Networks for Particle Physics Capstone 2016 Charles Guthrie ( cdg356@nyu.edu ) Israel Malkin ( im965@nyu.edu ) Alex Pine ( akp258@nyu.edu ) Advisor: Kyle Cranmer ( kyle.cranmer@nyu.edu

More information

Generative Adversarial Nets. Priyanka Mehta Sudhanshu Srivastava

Generative Adversarial Nets. Priyanka Mehta Sudhanshu Srivastava Generative Adversarial Nets Priyanka Mehta Sudhanshu Srivastava Outline What is a GAN? How does GAN work? Newer Architectures Applications of GAN Future possible applications Generative Adversarial Networks

More information

When Variational Auto-encoders meet Generative Adversarial Networks

When Variational Auto-encoders meet Generative Adversarial Networks When Variational Auto-encoders meet Generative Adversarial Networks Jianbo Chen Billy Fang Cheng Ju 14 December 2016 Abstract Variational auto-encoders are a promising class of generative models. In this

More information

Deep Generative Models and a Probabilistic Programming Library

Deep Generative Models and a Probabilistic Programming Library Deep Generative Models and a Probabilistic Programming Library Discriminative (Deep) Learning Learn a (differentiable) function mapping from input to output x f(x; θ) y Gradient back-propagation Generative

More information

Learning Social Graph Topologies using Generative Adversarial Neural Networks

Learning Social Graph Topologies using Generative Adversarial Neural Networks Learning Social Graph Topologies using Generative Adversarial Neural Networks Sahar Tavakoli 1, Alireza Hajibagheri 1, and Gita Sukthankar 1 1 University of Central Florida, Orlando, Florida sahar@knights.ucf.edu,alireza@eecs.ucf.edu,gitars@eecs.ucf.edu

More information

Semantic Image Synthesis via Adversarial Learning

Semantic Image Synthesis via Adversarial Learning Semantic Image Synthesis via Adversarial Learning Hao Dong, Simiao Yu, Chao Wu, Yike Guo Imperial College London {hao.dong11, simiao.yu13, chao.wu, y.guo}@imperial.ac.uk Abstract In this paper, we propose

More information

Introduction to GAN. Generative Adversarial Networks. Junheng(Jeff) Hao

Introduction to GAN. Generative Adversarial Networks. Junheng(Jeff) Hao Introduction to GAN Generative Adversarial Networks Junheng(Jeff) Hao Adversarial Training is the coolest thing since sliced bread. -- Yann LeCun Roadmap 1. Generative Modeling 2. GAN 101: What is GAN?

More information

arxiv: v4 [cs.lg] 29 May 2016

arxiv: v4 [cs.lg] 29 May 2016 Generating images with recurrent adversarial networks arxiv:1602.05110v4 [cs.lg] 29 May 2016 Daniel Jiwoong Im Montreal Institute for Learning Algorithm University of Montreal imdaniel@iro.umontreal.ca

More information

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION Yen-Cheng Liu 1, Wei-Chen Chiu 2, Sheng-De Wang 1, and Yu-Chiang Frank Wang 1 1 Graduate Institute of Electrical Engineering,

More information

Tag Disentangled Generative Adversarial Networks for Object Image Re-rendering

Tag Disentangled Generative Adversarial Networks for Object Image Re-rendering Tag Disentangled Generative Adversarial Networks for Object Image Re-rendering Chaoyue Wang, Chaohui Wang, Chang Xu, Dacheng Tao Centre for Artificial Intelligence, School of Software, University of Technology

More information

Generative Adversarial Text to Image Synthesis

Generative Adversarial Text to Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran REEDSCOT 1, AKATA 2, XCYAN 1, LLAJAN 1 Honglak Lee, Bernt Schiele HONGLAK 1, SCHIELE 2 1 University of Michigan, Ann Arbor, MI, USA (UMICH.EDU)

More information

Generative Models II. Phillip Isola, MIT, OpenAI DLSS 7/27/18

Generative Models II. Phillip Isola, MIT, OpenAI DLSS 7/27/18 Generative Models II Phillip Isola, MIT, OpenAI DLSS 7/27/18 What s a generative model? For this talk: models that output high-dimensional data (Or, anything involving a GAN, VAE, PixelCNN, etc) Useful

More information

Fine-grained Multi-attribute Adversarial Learning for Face Generation of Age, Gender and Ethnicity

Fine-grained Multi-attribute Adversarial Learning for Face Generation of Age, Gender and Ethnicity Fine-grained Multi-attribute Adversarial Learning for Face Generation of Age, Gender and Ethnicity Lipeng Wan 1+, Jun Wan 2+, Yi Jin 1, Zichang Tan 2, Stan Z. Li 2 1 School of Computer and Information

More information

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION 2017 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 25 28, 2017, TOKYO, JAPAN DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION Yen-Cheng Liu 1,

More information

Stacking VAE and GAN for Context-aware Text-to-Image Generation

Stacking VAE and GAN for Context-aware Text-to-Image Generation 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM) Stacking VAE and GAN for Context-aware Text-to-Image Generation Chenrui Zhang and Yuxin Peng* Institute of Computer Science and

More information

Deep Generative Models Variational Autoencoders

Deep Generative Models Variational Autoencoders Deep Generative Models Variational Autoencoders Sudeshna Sarkar 5 April 2017 Generative Nets Generative models that represent probability distributions over multiple variables in some way. Directed Generative

More information

arxiv: v1 [cs.cv] 1 Aug 2017

arxiv: v1 [cs.cv] 1 Aug 2017 Deep Generative Adversarial Neural Networks for Realistic Prostate Lesion MRI Synthesis Andy Kitchen a, Jarrel Seah b a,* Independent Researcher b STAT Innovations Pty. Ltd., PO Box 274, Ashburton VIC

More information

song2vec: Determining Song Similarity using Deep Unsupervised Learning

song2vec: Determining Song Similarity using Deep Unsupervised Learning song2vec: Determining Song Similarity using Deep Unsupervised Learning CS229 Final Project Report (category: Music & Audio) Brad Ross (bross35), Prasanna Ramakrishnan (pras1712) 1 Introduction Humans are

More information

arxiv: v1 [stat.ml] 15 Feb 2018

arxiv: v1 [stat.ml] 15 Feb 2018 Conditioning of three-dimensional generative adversarial networks for pore and reservoir-scale models arxiv:1802.05622v1 [stat.ml] 15 Feb 2018 Lukas J. Mosser lukas.mosser15@imperial.ac.uk Martin J. Blunt

More information

Feature Super-Resolution: Make Machine See More Clearly

Feature Super-Resolution: Make Machine See More Clearly Feature Super-Resolution: Make Machine See More Clearly Weimin Tan, Bo Yan, Bahetiyaer Bare School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University {wmtan14,

More information

Variational Autoencoders. Sargur N. Srihari

Variational Autoencoders. Sargur N. Srihari Variational Autoencoders Sargur N. srihari@cedar.buffalo.edu Topics 1. Generative Model 2. Standard Autoencoder 3. Variational autoencoders (VAE) 2 Generative Model A variational autoencoder (VAE) is a

More information

GANosaic: Mosaic Creation with Generative Texture Manifolds

GANosaic: Mosaic Creation with Generative Texture Manifolds GANosaic: Mosaic Creation with Generative Texture Manifolds Nikolay Jetchev nikolay.jetchev@zalando.de Zalando Research Urs Bergmann urs.bergmann@zalando.de Zalando Research Abstract Calvin Seward calvin.seward@zalando.de

More information

Deep Learning Approaches to 3D Shape Completion

Deep Learning Approaches to 3D Shape Completion Deep Learning Approaches to 3D Shape Completion Prafull Sharma Stanford University prafull7@stanford.edu Jarrod Cingel Stanford University jcingel@stanford.edu Abstract This project explores various methods

More information

arxiv: v1 [stat.ml] 14 Sep 2017

arxiv: v1 [stat.ml] 14 Sep 2017 The Conditional Analogy GAN: Swapping Fashion Articles on People Images Nikolay Jetchev Zalando Research nikolay.jetchev@zalando.de Urs Bergmann Zalando Research urs.bergmann@zalando.de arxiv:1709.04695v1

More information

Infrared Image Colorization based on a Triplet DCGAN Architecture

Infrared Image Colorization based on a Triplet DCGAN Architecture Infrared Image Colorization based on a Triplet DCGAN Architecture Patricia L. Suárez plsuarez@espol.edu.ec Angel D. Sappa,2 sappa@ieee.org Boris X. Vintimilla boris.vintimilla@espol.edu.ec Escuela Superior

More information

arxiv: v1 [cs.gr] 22 Jan 2019

arxiv: v1 [cs.gr] 22 Jan 2019 Generation High resolution 3D model from natural language by Generative Adversarial Network Kentaro Fukamizu, Masaaki Kondo, Ryuichi Sakamoto arxiv:1901.07165v1 [cs.gr] 22 Jan 2019 Abstract Since creating

More information

arxiv: v3 [cs.lg] 10 Apr 2016

arxiv: v3 [cs.lg] 10 Apr 2016 arxiv:1602.05110v3 [cs.lg] 10 Apr 2016 Daniel Jiwoong Im 1 Chris Dongjoo Kim 2 Hui Jiang 2 Roland Memisevic 1 1 Montreal Institute for Learning Algorithms, University of Montreal 2 Department of Engineering

More information

Stochastic Simulation with Generative Adversarial Networks

Stochastic Simulation with Generative Adversarial Networks Stochastic Simulation with Generative Adversarial Networks Lukas Mosser, Olivier Dubrule, Martin J. Blunt lukas.mosser15@imperial.ac.uk, o.dubrule@imperial.ac.uk, m.blunt@imperial.ac.uk (Deep) Generative

More information

Semi Supervised Semantic Segmentation Using Generative Adversarial Network

Semi Supervised Semantic Segmentation Using Generative Adversarial Network Semi Supervised Semantic Segmentation Using Generative Adversarial Network Nasim Souly Concetto Spampinato Mubarak Shah nsouly@eecs.ucf.edu cspampin@dieei.unict.it shah@crcv.ucf.edu Abstract Unlabeled

More information

Bidirectional GAN. Adversarially Learned Inference (ICLR 2017) Adversarial Feature Learning (ICLR 2017)

Bidirectional GAN. Adversarially Learned Inference (ICLR 2017) Adversarial Feature Learning (ICLR 2017) Bidirectional GAN Adversarially Learned Inference (ICLR 2017) V. Dumoulin 1, I. Belghazi 1, B. Poole 2, O. Mastropietro 1, A. Lamb 1, M. Arjovsky 3 and A. Courville 1 1 Universite de Montreal & 2 Stanford

More information

DCGANs for image super-resolution, denoising and debluring

DCGANs for image super-resolution, denoising and debluring DCGANs for image super-resolution, denoising and debluring Qiaojing Yan Stanford University Electrical Engineering qiaojing@stanford.edu Wei Wang Stanford University Electrical Engineering wwang23@stanford.edu

More information

Generating Image Sequence from Description with LSTM Conditional GAN

Generating Image Sequence from Description with LSTM Conditional GAN Generating Image Sequence from escription with LSTM Conditional GAN Xu Ouyang, Xi Zhang, i Ma, Gady Agam Illinois Institute of Technology Chicago, IL 60616 {xouyang3, xzhang22, dma2}@hawk.iit.edu, agam@iit.edu

More information

Automatic Colorization with Deep Convolutional Generative Adversarial Networks

Automatic Colorization with Deep Convolutional Generative Adversarial Networks Automatic Colorization with Deep Convolutional Generative Adversarial Networks Stephen Koo Stanford University Stanford, CA sckoo@cs.stanford.edu Abstract We attempt to use DCGANs (deep convolutional generative

More information

GANs for Exploiting Unlabeled Data. Presented by: Uriya Pesso Nimrod Gilboa Markevich

GANs for Exploiting Unlabeled Data. Presented by: Uriya Pesso Nimrod Gilboa Markevich GANs for Exploiting Unlabeled Data Improved Techniques for Training GANs Learning from Simulated and Unsupervised Images through Adversarial Training Presented by: Uriya Pesso Nimrod Gilboa Markevich [

More information

arxiv: v1 [cs.cv] 26 Jul 2016

arxiv: v1 [cs.cv] 26 Jul 2016 Semantic Image Inpainting with Perceptual and Contextual Losses arxiv:1607.07539v1 [cs.cv] 26 Jul 2016 Raymond Yeh Chen Chen Teck Yian Lim, Mark Hasegawa-Johnson Minh N. Do Dept. of Electrical and Computer

More information

arxiv: v1 [cs.lg] 19 Jul 2017

arxiv: v1 [cs.lg] 19 Jul 2017 Weiyi Liu 2 Pin-Yu Chen 2 Hal Cooper 3 Min Hwan Oh 3 Sailung Yeung 4 Toyotaro Suzumura 2 arxiv:707.0697v [cs.lg] 9 Jul 207 Abstract This paper is first-line research expanding GANs into graph topology

More information