An Analytical Model for Progressive Mesh Streaming. WEI TSANG OOI National University of Singapore

Size: px
Start display at page:

Download "An Analytical Model for Progressive Mesh Streaming. WEI TSANG OOI National University of Singapore"

Transcription

1 An Analytical Model for Progressive Mesh Streaming WEI TSANG OOI National University of Singapore 1

2 joint work with Cheng Wei National University of Singapore Sebastian Mondet Romulus Grigoras Geraldine Morin IRIT, University of Toulouse 2

3 3

4 4

5 5

6 6 10 MB

7 7 2 GB

8 Hoppe s Progressive Mesh Edge Collapse Vertex Split 8

9 At the sender = vk... v4 v3 v2 v1 + base model 9

10 Transmission TCP base model v1 v2 v3 v4... UDP vk 10

11 At the receiver base model v1 v2 v3 v4... vk

12 What happen if some data is lost? base model X v1 v2 v3 v ? 12

13 Vertex Split v v1 v2 v3 v 13

14 Dependency Graph 14

15 Error Propagation X 15

16 Retransmission upon detecting loss 16

17 Retransmission takes precedence over new vertex splits 17

18 Normally send multiple vertex splits per packet X 18

19 How serious is error propagation? What is the effect of dependencies? 19

20 Decoded Mesh Quality 20

21 Quality versus Time Quality Time 21

22 Importance of a vertex Quality Importance Time v1 22

23 Case 1: complete dependency Quality lost retransmitted Time 23

24 Case 2: no dependency Quality lost retransmitted Time 24

25 higher quality earlier is better Quality Time 25

26 Evaluation metric: area under the graph Larger area = better Quality 26 Time

27 Given a progressive mesh, what affects the area? 27

28 Dependency Pattern Given a progressive mesh, the dependencies among the vertex splits are fixed, but packetization can affect dependencies among the data packets. 28

29 Sending Order Given a set of packets, which one to send first? 29

30 Loss Rate Different loss pattern gives different area. We are interested in the expected area given a loss rate. 30

31 Available Bandwidth Faster sending rate means the quality increases quickly. 31

32 Round Trip Time Larger round trip time means longer time till realizing that a packet is lost and retransmit. Quality lost retransmitted Time 32

33 Network Properties Mesh Properties some formula Expected Area 33

34 Quality t Dv wv 34 Time

35 Quality Dv random variable t wv 35 Time

36 The Analytical Model 36

37 1 unit time X 37

38 Clock at sender starts when sending first packet Clock at receiver starts RTT/2 later. t = 0 X t = 0 38

39 Packet i is sent at time i if there is no retransmission X 39

40 Packet i is sent at time i+k if there are k retransmissions before i X 40

41 ???????????????? losses out of time slot when packet i is sent loss probability 41

42 Packet i is received at time X : X 42

43 approximate using E[Si] 43

44 A packet p is a parent packet of a vertex v if a vertex that v depends on belongs to p A B C D E F 44

45 P(v) = {A, B, C, E} A B C D E F v 45

46 A vertex v is decoded at time t, if 1. a parent packet of v is received at time t, and 2. all other parent packets are received before t. 46

47 47

48 Simulation with HORSE model with 10% Losses 48

49 Quality Dv random variable t wv 49 Time

50 50

51 50

52 50

53 Do dependencies matter? 51

54 best case worst case 52

55 best case worst case 53

56 best case worst case 54

57 55

58 Gap between the two extreme cases at t = Td - 1 RTT = 250 ms, Packet Size = 1500 bytes, Sending rate = 1.5 Mbps Td = 30, p = 5% 100 vertex splits per packet Gap = 1500 vertex splits 56

59 A Better Packetization Algorithm 57

60 FIFO strategy: send the most important vertex split first [Gu05] s strategy: minimize the dependencies among the vertex splits 58

61 Need to consider both importance and dependencies 59

62 put into curr packet, or next packet??? curr packet next packet 60

63 (only consider nodes whose parents are packed) maintain a max heap of all nodes using δi as key while heap is not empty and packet is not full pop a node i from heap and packed i for each child k of i insert k into heap 61

64 60 (b)happy Buddha, p = Time Slot FIFO greedy bf bsub 62

65 40 (e)happy Buddha, p = Confident Quality Time Slot FIFO greedy 63

66 Summary 64

67 Network Properties Mesh Properties some formula Expected Area 65

68 Dependencies matter only for a short time initially 66

69 67

A Model for Streaming 3D Meshes and Its Applications

A Model for Streaming 3D Meshes and Its Applications A Model for Streaming D Meshes and Its Applications ABSTRACT Ong Yuh Shin and Ooi Wei Tsang Department of Computer Science, School of Computing, National University of Singapore In this paper, we present

More information

CPE 548 Exam #1 (50 pts) February 17, 2016

CPE 548 Exam #1 (50 pts) February 17, 2016 Name Class: 548 All answers must have supporting work. Any answer without support will receive no credit 1) (4 pts) Answer the following short answer questions. a) Explain the stop and wait ARQ (automatic

More information

Exercises TCP/IP Networking With Solutions

Exercises TCP/IP Networking With Solutions Exercises TCP/IP Networking With Solutions Jean-Yves Le Boudec Fall 2009 3 Module 3: Congestion Control Exercise 3.2 1. Assume that a TCP sender, called S, does not implement fast retransmit, but does

More information

Congestion control in TCP

Congestion control in TCP Congestion control in TCP If the transport entities on many machines send too many packets into the network too quickly, the network will become congested, with performance degraded as packets are delayed

More information

The Transmission Control Protocol (TCP)

The Transmission Control Protocol (TCP) The Transmission Control Protocol (TCP) Application Services (Telnet, FTP, e-mail, WWW) Reliable Stream Transport (TCP) Unreliable Transport Service (UDP) Connectionless Packet Delivery Service (IP) Goals

More information

Network Management & Monitoring

Network Management & Monitoring Network Management & Monitoring Network Delay These materials are licensed under the Creative Commons Attribution-Noncommercial 3.0 Unported license (http://creativecommons.org/licenses/by-nc/3.0/) End-to-end

More information

Computer Networks. Homework #4: No Grading

Computer Networks. Homework #4: No Grading Computer Networks Homework #4: No Grading Problem #1. Assume you need to write and test a client-server application program on two hosts you have at home. a. What is the range of port numbers you would

More information

ETSF10 Internet Protocols Transport Layer Protocols

ETSF10 Internet Protocols Transport Layer Protocols ETSF10 Internet Protocols Transport Layer Protocols 2012, Part 2, Lecture 2.1 Kaan Bür, Jens Andersson Transport Layer Protocols Process-to-process delivery [ed.4 ch.23.1] [ed.5 ch.24.1] Transmission Control

More information

2.993: Principles of Internet Computing Quiz 1. Network

2.993: Principles of Internet Computing Quiz 1. Network 2.993: Principles of Internet Computing Quiz 1 2 3:30 pm, March 18 Spring 1999 Host A Host B Network 1. TCP Flow Control Hosts A, at MIT, and B, at Stanford are communicating to each other via links connected

More information

Mobile Transport Layer Lesson 10 Timeout Freezing, Selective Retransmission, Transaction Oriented TCP and Explicit Notification Methods

Mobile Transport Layer Lesson 10 Timeout Freezing, Selective Retransmission, Transaction Oriented TCP and Explicit Notification Methods Mobile Transport Layer Lesson 10 Timeout Freezing, Selective Retransmission, Transaction Oriented TCP and Explicit Notification Methods 1 Timeout freezing of transmission (TFT) Used in situations where

More information

CSE 123: Computer Networks

CSE 123: Computer Networks Student Name: PID: UCSD email: CSE 123: Computer Networks Homework 1 Solution (Due 10/12 in class) Total Points: 30 Instructions: Turn in a physical copy at the beginning of the class on 10/10. Problems:

More information

Measurement Study of Lowbitrate Internet Video Streaming

Measurement Study of Lowbitrate Internet Video Streaming Measurement Study of Lowbitrate Internet Video Streaming Dmitri Loguinov and Hayder Radha CS Dept at CUNY NY and EE/ECE at MSU. In Proceedings of ACM SIGCOMM Workshop on Internet Measurement November 2002

More information

ICS 451: Today's plan. Sliding Window Reliable Transmission Acknowledgements Windows and Bandwidth-Delay Product Retransmission Timers Connections

ICS 451: Today's plan. Sliding Window Reliable Transmission Acknowledgements Windows and Bandwidth-Delay Product Retransmission Timers Connections ICS 451: Today's plan Sliding Window Reliable Transmission Acknowledgements Windows and Bandwidth-Delay Product Retransmission Timers Connections Alternating Bit Protocol: throughput tied to latency with

More information

Lecture 4: Congestion Control

Lecture 4: Congestion Control Lecture 4: Congestion Control Overview Internet is a network of networks Narrow waist of IP: unreliable, best-effort datagram delivery Packet forwarding: input port to output port Routing protocols: computing

More information

Problem 7. Problem 8. Problem 9

Problem 7. Problem 8. Problem 9 Problem 7 To best answer this question, consider why we needed sequence numbers in the first place. We saw that the sender needs sequence numbers so that the receiver can tell if a data packet is a duplicate

More information

Chapter 3 Review Questions

Chapter 3 Review Questions Chapter 3 Review Questions. 2. 3. Source port number 6 and destination port number 37. 4. TCP s congestion control can throttle an application s sending rate at times of congestion. Designers of applications

More information

Mobile Transport Layer Lesson 02 TCP Data Stream and Data Delivery

Mobile Transport Layer Lesson 02 TCP Data Stream and Data Delivery Mobile Transport Layer Lesson 02 TCP Data Stream and Data Delivery 1 TCP Data Stream Consists of bytes Delivered using a virtual connection between sockets Each socket has the port number and IP address

More information

TRANSMISSION CONTROL PROTOCOL

TRANSMISSION CONTROL PROTOCOL COMP 635: WIRELESS NETWORKS TRANSMISSION CONTROL PROTOCOL Jasleen Kaur Fall 2015 1 Impact of Wireless on Protocol Layers Application layer Transport layer Network layer Data layer Physical layer service

More information

file:///c:/users/hpguo/dropbox/website/teaching/fall 2017/CS4470/H...

file:///c:/users/hpguo/dropbox/website/teaching/fall 2017/CS4470/H... 1 of 9 11/26/2017, 11:28 AM Homework 3 solutions 1. A window holds bytes 2001 to 5000. The next byte to be sent is 3001. Draw a figure to show the situation of the window after the following two events:

More information

Solutions for Chapter similar to 1 and 3

Solutions for Chapter similar to 1 and 3 Solutions for Chapter 2 1. 2. similar to 1 and 3 3. 4. In a 5-bit sequence with 32 codes, there are 8 codes that start with 00 and there are 8 codes that ends with 00. Between them 00100 and 00000 are

More information

Introduction to Protocols

Introduction to Protocols Chapter 6 Introduction to Protocols 1 Chapter 6 Introduction to Protocols What is a Network Protocol? A protocol is a set of rules that governs the communications between computers on a network. These

More information

Two approaches to Flow Control. Cranking up to speed. Sliding windows in action

Two approaches to Flow Control. Cranking up to speed. Sliding windows in action CS314-27 TCP: Transmission Control Protocol IP is an unreliable datagram protocol congestion or transmission errors cause lost packets multiple routes may lead to out-of-order delivery If senders send

More information

Advanced Computer Networks

Advanced Computer Networks Advanced Computer Networks Congestion control in TCP Contents Principles TCP congestion control states Congestion Fast Recovery TCP friendly applications Prof. Andrzej Duda duda@imag.fr http://duda.imag.fr

More information

CS 421: COMPUTER NETWORKS SPRING FINAL May 21, minutes

CS 421: COMPUTER NETWORKS SPRING FINAL May 21, minutes CS 421: COMPUTER NETWORKS SPRING 2015 FINAL May 21, 2015 150 minutes Name: Student No: Show all your work very clearly. Partial credits will only be given if you carefully state your answer with a reasonable

More information

TRANSMISSION CONTROL PROTOCOL

TRANSMISSION CONTROL PROTOCOL COMP 635: WIRELESS & MOBILE COMMUNICATIONS TRANSMISSION CONTROL PROTOCOL Jasleen Kaur Fall 2017 1 Impact of Wireless on Protocol Layers Application layer Transport layer Network layer Data link layer Physical

More information

Communication Networks

Communication Networks Communication Networks Prof. Laurent Vanbever Exercises week 4 Reliable Transport Reliable versus Unreliable Transport In the lecture, you have learned how a reliable transport protocol can be built on

More information

CS519: Computer Networks. Lecture 5, Part 1: Mar 3, 2004 Transport: UDP/TCP demux and flow control / sequencing

CS519: Computer Networks. Lecture 5, Part 1: Mar 3, 2004 Transport: UDP/TCP demux and flow control / sequencing : Computer Networks Lecture 5, Part 1: Mar 3, 2004 Transport: UDP/TCP demux and flow control / sequencing Recall our protocol layers... ... and our protocol graph IP gets the packet to the host Really

More information

Ultra high-speed transmission technology for wide area data movement

Ultra high-speed transmission technology for wide area data movement Ultra high-speed transmission technology for wide area data movement Michelle Munson, president & co-founder Aspera Outline Business motivation Moving ever larger file sets over commodity IP networks (public,

More information

Q23-5 In a network, the size of the receive window is 1 packet. Which of the follow-ing protocols is being used by the network?

Q23-5 In a network, the size of the receive window is 1 packet. Which of the follow-ing protocols is being used by the network? CS368: Exercise 5 Q23-5 In a network, the size of the receive window is 1 packet. Which of the follow-ing protocols is being used by the network? a) Stop_and_Wait b) Go-Back-N c) Selective-Repeat Q23-6.

More information

EE 122 Fall st Midterm. Professor: Lai Stoica

EE 122 Fall st Midterm. Professor: Lai Stoica EE 122 Fall 2001 1 st Midterm Professor: Lai Stoica Question 1 (15 pt) Layering is a key design principle in computer networks. Name two advantages, and one disadvantage to layering. Explain. Use no more

More information

Applied Networks & Security

Applied Networks & Security Applied Networks & Security TCP/IP Protocol Suite http://condor.depaul.edu/~jkristof/it263/ John Kristoff jtk@depaul.edu IT 263 Spring 2006/2007 John Kristoff - DePaul University 1 ARP overview datalink

More information

Fast Retransmit. Problem: coarsegrain. timeouts lead to idle periods Fast retransmit: use duplicate ACKs to trigger retransmission

Fast Retransmit. Problem: coarsegrain. timeouts lead to idle periods Fast retransmit: use duplicate ACKs to trigger retransmission Fast Retransmit Problem: coarsegrain TCP timeouts lead to idle periods Fast retransmit: use duplicate ACKs to trigger retransmission Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet 6 Sender Receiver

More information

estadium Project Lab 2: Iperf Command

estadium Project Lab 2: Iperf Command estadium Project Lab 2: Iperf Command Objectives Being familiar with the command iperf. In this Lab, we will set up two computers (PC1 and PC2) as an ad-hoc network and use the command iperf to measure

More information

CPE 448/548 Exam #1 (100 pts) February 14, Name Class: 448

CPE 448/548 Exam #1 (100 pts) February 14, Name Class: 448 Name Class: 448 1) (14 pts) A message M = 11001 is transmitted from node A to node B using the CRC code. The CRC generator polynomial is G(x) = x 3 + x 2 + 1 ( bit sequence 1101) a) What is the transmitted

More information

TCP: Flow and Error Control

TCP: Flow and Error Control 1 TCP: Flow and Error Control Required reading: Kurose 3.5.3, 3.5.4, 3.5.5 CSE 4213, Fall 2006 Instructor: N. Vlajic TCP Stream Delivery 2 TCP Stream Delivery unlike UDP, TCP is a stream-oriented protocol

More information

Transport layer. UDP: User Datagram Protocol [RFC 768] Review principles: Instantiation in the Internet UDP TCP

Transport layer. UDP: User Datagram Protocol [RFC 768] Review principles: Instantiation in the Internet UDP TCP Transport layer Review principles: Reliable data transfer Flow control Congestion control Instantiation in the Internet UDP TCP 1 UDP: User Datagram Protocol [RFC 768] No frills, bare bones Internet transport

More information

Transport layer. Review principles: Instantiation in the Internet UDP TCP. Reliable data transfer Flow control Congestion control

Transport layer. Review principles: Instantiation in the Internet UDP TCP. Reliable data transfer Flow control Congestion control Transport layer Review principles: Reliable data transfer Flow control Congestion control Instantiation in the Internet UDP TCP 1 UDP: User Datagram Protocol [RFC 768] No frills, bare bones Internet transport

More information

NET ID. CS519, Prelim (March 17, 2004) NAME: You have 50 minutes to complete the test. 1/17

NET ID. CS519, Prelim (March 17, 2004) NAME: You have 50 minutes to complete the test. 1/17 CS519, Prelim (March 17, 2004) NAME: You have 50 minutes to complete the test. 1/17 Q1. 2 points Write your NET ID at the top of every page of this test. Q2. X points Name 3 advantages of a circuit network

More information

Sirindhorn International Institute of Technology Thammasat University

Sirindhorn International Institute of Technology Thammasat University Name.............................. ID............... Section...... Seat No...... Thammasat University Final Exam: Semester, 205 Course Title: Introduction to Data Communications Instructor: Steven Gordon

More information

4. What is the sequence number of the SYNACK segment sent by spinlab.wpi.edu to the client computer in reply to the SYN? Also Seq=0 (relative

4. What is the sequence number of the SYNACK segment sent by spinlab.wpi.edu to the client computer in reply to the SYN? Also Seq=0 (relative 1. What is the IP address and TCP port number used by your client computer (source) to transfer the file to spinlab.wpi.edu? My computer is at 10.211.55.3. The source port is 49247. See screenshot below.

More information

SC250 Computer Networking I. Review Exercises. Prof. Matthias Grossglauser. School of Computer and Communication Sciences EPFL.

SC250 Computer Networking I. Review Exercises. Prof. Matthias Grossglauser. School of Computer and Communication Sciences EPFL. SC250 Computer Networking I Review Exercises Prof. Matthias Grossglauser School of Computer and Communication Sciences EPFL http://lcawww.epfl.ch 1 Reliable transport: rdt3.0 ACK packets receiver->sender

More information

CS 421: COMPUTER NETWORKS SPRING FINAL May 8, minutes

CS 421: COMPUTER NETWORKS SPRING FINAL May 8, minutes CS 421: COMPUTR NTWORKS SPRIN 2016 INL May 8, 2016 150 minutes Name: Student No: Q1 Q2 Q3 TOT 1) a) (6 pts) iven the following parameters for a datagram packet switching network: N: number of hops between

More information

Investigating the Use of Synchronized Clocks in TCP Congestion Control

Investigating the Use of Synchronized Clocks in TCP Congestion Control Investigating the Use of Synchronized Clocks in TCP Congestion Control Michele Weigle (UNC-CH) November 16-17, 2001 Univ. of Maryland Symposium The Problem TCP Reno congestion control reacts only to packet

More information

Lecture 15: TCP over wireless networks. Mythili Vutukuru CS 653 Spring 2014 March 13, Thursday

Lecture 15: TCP over wireless networks. Mythili Vutukuru CS 653 Spring 2014 March 13, Thursday Lecture 15: TCP over wireless networks Mythili Vutukuru CS 653 Spring 2014 March 13, Thursday TCP - recap Transport layer TCP is the dominant protocol TCP provides in-order reliable byte stream abstraction

More information

COP Operating Systems Design Principles (Spring 2012)

COP Operating Systems Design Principles (Spring 2012) Problem 1: COP 5611 - Operating Systems Design Principles (Spring 2012) Homework 2 1.1.a. Number of paths to reach the global state : Number of paths = Number of ways to reach the global state (sum of

More information

ETSN01 Exam Solutions

ETSN01 Exam Solutions ETSN01 Exam Solutions March 014 Question 1 (a) See p17 of the cellular systems slides for a diagram and the full procedure. The main points here were that the HLR needs to be queried to determine the location

More information

NWEN 243. Networked Applications. Layer 4 TCP and UDP

NWEN 243. Networked Applications. Layer 4 TCP and UDP NWEN 243 Networked Applications Layer 4 TCP and UDP 1 About the second lecturer Aaron Chen Office: AM405 Phone: 463 5114 Email: aaron.chen@ecs.vuw.ac.nz Transport layer and application layer protocols

More information

ECE 610: Homework 4 Problems are taken from Kurose and Ross.

ECE 610: Homework 4 Problems are taken from Kurose and Ross. ECE 610: Homework 4 Problems are taken from Kurose and Ross. Problem 1: Host A and B are communicating over a TCP connection, and Host B has already received from A all bytes up through byte 248. Suppose

More information

CSE 473 Introduction to Computer Networks. Final Exam. Your name here: 12/17/2012

CSE 473 Introduction to Computer Networks. Final Exam. Your name here: 12/17/2012 CSE 473 Introduction to Computer Networks Jon Turner Final Exam Your name here: 12/17/2012 1. (8 points). The figure below shows a network path connecting a server to a client. 200 km 2000 km 2 km X Y

More information

Just enough TCP/IP. Protocol Overview. Connection Types in TCP/IP. Control Mechanisms. Borrowed from my ITS475/575 class the ITL

Just enough TCP/IP. Protocol Overview. Connection Types in TCP/IP. Control Mechanisms. Borrowed from my ITS475/575 class the ITL Just enough TCP/IP Borrowed from my ITS475/575 class the ITL 1 Protocol Overview E-Mail HTTP (WWW) Remote Login File Transfer TCP UDP RTP RTCP SCTP IP ICMP ARP RARP (Auxiliary Services) Ethernet, X.25,

More information

Kent State University

Kent State University CS 4/54201 Computer Communication Network Kent State University Dept. of Computer Science www.mcs.kent.edu/~javed/class-net06f/ 1 A Course on Networking and Computer Communication LECT-10, S-2 IP- Internet

More information

TCP. CSU CS557, Spring 2018 Instructor: Lorenzo De Carli (Slides by Christos Papadopoulos, remixed by Lorenzo De Carli)

TCP. CSU CS557, Spring 2018 Instructor: Lorenzo De Carli (Slides by Christos Papadopoulos, remixed by Lorenzo De Carli) TCP CSU CS557, Spring 2018 Instructor: Lorenzo De Carli (Slides by Christos Papadopoulos, remixed by Lorenzo De Carli) 1 Sources Fall and Stevens, TCP/IP Illustrated Vol. 1, 2nd edition Congestion Avoidance

More information

PERFORMANCE COMPARISON OF THE DIFFERENT STREAMS IN A TCP BOTTLENECK LINK IN THE PRESENCE OF BACKGROUND TRAFFIC IN A DATA CENTER

PERFORMANCE COMPARISON OF THE DIFFERENT STREAMS IN A TCP BOTTLENECK LINK IN THE PRESENCE OF BACKGROUND TRAFFIC IN A DATA CENTER PERFORMANCE COMPARISON OF THE DIFFERENT STREAMS IN A TCP BOTTLENECK LINK IN THE PRESENCE OF BACKGROUND TRAFFIC IN A DATA CENTER Vilma Tomço, 1 Aleksandër Xhuvani 2 Abstract: The purpose of this work is

More information

Advanced Computer Networks

Advanced Computer Networks Advanced Computer Networks Congestion control in TCP Prof. Andrzej Duda duda@imag.fr http://duda.imag.fr 1 Contents Principles TCP congestion control states Slow Start Congestion Avoidance Fast Recovery

More information

The Transport Layer Reliability

The Transport Layer Reliability The Transport Layer Reliability CS 3, Lecture 7 http://www.cs.rutgers.edu/~sn4/3-s9 Srinivas Narayana (slides heavily adapted from text authors material) Quick recap: Transport Provide logical communication

More information

End-to-End Mechanisms for QoS Support in Wireless Networks

End-to-End Mechanisms for QoS Support in Wireless Networks End-to-End Mechanisms for QoS Support in Wireless Networks R VS Torsten Braun joint work with Matthias Scheidegger, Marco Studer, Ruy de Oliveira Computer Networks and Distributed Systems Institute of

More information

bitcoin allnet exam review: transport layer TCP basics congestion control project 2 Computer Networks ICS 651

bitcoin allnet exam review: transport layer TCP basics congestion control project 2 Computer Networks ICS 651 bitcoin allnet exam review: transport layer TCP basics congestion control project 2 Computer Networks ICS 651 Bitcoin distributed, reliable ("hard to falsify") time-stamping network each time-stamp record

More information

Lecture 14: Congestion Control"

Lecture 14: Congestion Control Lecture 14: Congestion Control" CSE 222A: Computer Communication Networks George Porter Thanks: Amin Vahdat, Dina Katabi and Alex C. Snoeren Lecture 14 Overview" TCP congestion control review Dukkipati

More information

Operating Omega ATS and Lynx ATS. QUOTE TRANSFER PROTOCOL (QTP) SPECIFICATION v 1.05

Operating Omega ATS and Lynx ATS. QUOTE TRANSFER PROTOCOL (QTP) SPECIFICATION v 1.05 Operating Omega ATS and Lynx ATS QUOTE TRANSFER PROTOCOL (QTP) SPECIFICATION v 1.05 Revision History Date Revision Description of Change April 15, 2016 1.00 Created April 27, 2016 1.01 Edits made to document.

More information

11/24/2009. Fundamentals of Computer Networks ECE 478/578. Flow Control in TCP

11/24/2009. Fundamentals of Computer Networks ECE 478/578. Flow Control in TCP Fundamentals of Computer Networks ECE 478/578 Lecture #21: TCP Window Mechanism Instructor: Loukas Lazos Dept of Electrical and Computer Engineering University of Arizona Sliding Window in TCP Goals of

More information

Homework 1. Question 1 - Layering. CSCI 1680 Computer Networks Fonseca

Homework 1. Question 1 - Layering. CSCI 1680 Computer Networks Fonseca CSCI 1680 Computer Networks Fonseca Homework 1 Due: 27 September 2012, 4pm Question 1 - Layering a. Why are networked systems layered? What are the advantages of layering? Are there any disadvantages?

More information

Tutorial 8 : Congestion Control

Tutorial 8 : Congestion Control Lund University ETSN01 Advanced Telecommunication Tutorial 8 : Congestion Control Author: Antonio Franco Emma Fitzgerald Tutor: Farnaz Moradi December 18, 2015 Contents I Before you start 3 II Exercises

More information

Hybrid Control and Switched Systems. Lecture #17 Hybrid Systems Modeling of Communication Networks

Hybrid Control and Switched Systems. Lecture #17 Hybrid Systems Modeling of Communication Networks Hybrid Control and Switched Systems Lecture #17 Hybrid Systems Modeling of Communication Networks João P. Hespanha University of California at Santa Barbara Motivation Why model network traffic? to validate

More information

Intro to LAN/WAN. Transport Layer

Intro to LAN/WAN. Transport Layer Intro to LAN/WAN Transport Layer Transport Layer Topics Introduction (6.1) Elements of Transport Protocols (6.2) Internet Transport Protocols: TDP (6.5) Internet Transport Protocols: UDP (6.4) socket interface

More information

CMPE 257: Wireless and Mobile Networking

CMPE 257: Wireless and Mobile Networking CMPE 257: Wireless and Mobile Networking Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 10 CMPE 257 Spring'15 1 Student Presentations Schedule May 21: Sam and Anuj May 26: Larissa

More information

ECE697AA Lecture 3. Today s lecture

ECE697AA Lecture 3. Today s lecture ECE697AA Lecture 3 Transport Layer: TCP and UDP Tilman Wolf Department of Electrical and Computer Engineering 09/09/08 Today s lecture Transport layer User datagram protocol (UDP) Reliable data transfer

More information

EC441 Midterm Two Fall 2017

EC441 Midterm Two Fall 2017 EC441 Midterm Two Fall 2017 This is an open-book, open-computer, open-notes exam. You may work with a partner, but you must submit one joint answer for each problem. You may not complete any exam with

More information

CS 349/449 Internet Protocols Final Exam Winter /15/2003. Name: Course:

CS 349/449 Internet Protocols Final Exam Winter /15/2003. Name: Course: CS 349/449 Internet Protocols Final Exam Winter 2003 12/15/2003 Name: Course: Instructions: 1. You have 2 hours to finish 2. Question 9 is only for 449 students 3. Closed books, closed notes. Write all

More information

CSE 473 Introduction to Computer Networks. Exam 2. Your name here: 11/7/2012

CSE 473 Introduction to Computer Networks. Exam 2. Your name here: 11/7/2012 CSE 473 Introduction to Computer Networks Jon Turner Exam 2 Your name here: 11/7/2012 1. (10 points). The diagram at right shows a DHT with 16 nodes. Each node is labeled with the first value in its range

More information

Student ID: CS457: Computer Networking Date: 3/20/2007 Name:

Student ID: CS457: Computer Networking Date: 3/20/2007 Name: CS457: Computer Networking Date: 3/20/2007 Name: Instructions: 1. Be sure that you have 9 questions 2. Be sure your answers are legible. 3. Write your Student ID at the top of every page 4. This is a closed

More information

Quality of Service (QoS) Whitepaper

Quality of Service (QoS) Whitepaper Quality of Service (QoS) Whitepaper PCS-Series Videoconferencing White Paper www.sonybiz.net/vc Introduction Currently, an estimated 5% of data packets sent over the Internet are lost. In a videoconferencing

More information

8. TCP Congestion Control

8. TCP Congestion Control 8. TCP Congestion Control 1 TCP Congestion Control Slow-start increase Multiplicative decrease Congestion avoidance Measurement of variation Exponential timer backoff 2002 Yanghee Choi 2 Congestion Control

More information

TCP Flavors Simulation Evaluations over Noisy Environment

TCP Flavors Simulation Evaluations over Noisy Environment International Journal of Information Engineering and Applications 2018; 1(1): 11-17 http://www.aascit.org/journal/information TCP Flavors Simulation Evaluations over Noisy Environment Elsadig Gamaleldeen

More information

Links Reading: Chapter 2. Goals of Todayʼs Lecture. Message, Segment, Packet, and Frame

Links Reading: Chapter 2. Goals of Todayʼs Lecture. Message, Segment, Packet, and Frame Links Reading: Chapter 2 CS 375: Computer Networks Thomas Bressoud 1 Goals of Todayʼs Lecture Link-layer services Encoding, framing, and error detection Error correction and flow control Sharing a shared

More information

TCP over Wireless PROF. MICHAEL TSAI 2016/6/3

TCP over Wireless PROF. MICHAEL TSAI 2016/6/3 TCP over Wireless PROF. MICHAEL TSAI 2016/6/3 2 TCP Congestion Control (TCP Tahoe) Only ACK correctly received packets Congestion Window Size: Maximum number of bytes that can be sent without receiving

More information

UNIT IV -- TRANSPORT LAYER

UNIT IV -- TRANSPORT LAYER UNIT IV -- TRANSPORT LAYER TABLE OF CONTENTS 4.1. Transport layer. 02 4.2. Reliable delivery service. 03 4.3. Congestion control. 05 4.4. Connection establishment.. 07 4.5. Flow control 09 4.6. Transmission

More information

ECE 435 Network Engineering Lecture 10

ECE 435 Network Engineering Lecture 10 ECE 435 Network Engineering Lecture 10 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 28 September 2017 Announcements HW#4 was due HW#5 will be posted. midterm/fall break You

More information

Links. CS125 - mylinks 1 1/22/14

Links. CS125 - mylinks 1 1/22/14 Links 1 Goals of Today s Lecture Link-layer services Encoding, framing, and error detection Error correction and flow control Sharing a shared media Channel partitioning Taking turns Random access Shared

More information

CMSC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala. October 30, 2018

CMSC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala. October 30, 2018 CMSC 417 Computer Networks Prof. Ashok K Agrawala 2018 Ashok Agrawala October 30, 2018 Message, Segment, Packet, and Frame host host HTTP HTTP message HTTP TCP TCP segment TCP router router IP IP packet

More information

CCNA 1 Chapter 7 v5.0 Exam Answers 2013

CCNA 1 Chapter 7 v5.0 Exam Answers 2013 CCNA 1 Chapter 7 v5.0 Exam Answers 2013 1 A PC is downloading a large file from a server. The TCP window is 1000 bytes. The server is sending the file using 100-byte segments. How many segments will the

More information

Transmission Control Protocol (TCP)

Transmission Control Protocol (TCP) Transmission Control Protocol (TCP) Antonio Carzaniga Faculty of Informatics University of Lugano May 3, 2005 Outline Intro to TCP Sequence numbers and acknowledgment numbers Timeouts and RTT estimation

More information

CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007

CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007 CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007 Question 344 Points 444 Points Score 1 10 10 2 10 10 3 20 20 4 20 10 5 20 20 6 20 10 7-20 Total: 100 100 Instructions: 1. Question

More information

Real-Time Course. Video Streaming Over network. June Peter van der TU/e Computer Science, System Architecture and Networking

Real-Time Course. Video Streaming Over network. June Peter van der TU/e Computer Science, System Architecture and Networking Real-Time Course Video Streaming Over network 1 Home network example Internet Internet Internet in Ethernet switch 2 QoS chains Quality of video Size of video bit/s network Quality of network Bandwidth,

More information

Layer 4 TCP Performance in carrier transport networks Throughput is not always equal to bandwidth

Layer 4 TCP Performance in carrier transport networks Throughput is not always equal to bandwidth Layer 4 TCP Performance in carrier transport networks Throughput is not always equal to bandwidth Roland Stooss JDSU Deutschland GmbH Senior Consultant Data/IP Analysis Solutions Mühleweg 5, D-72800 Eningen

More information

EE 122: Error detection and reliable transmission. Ion Stoica September 16, 2002

EE 122: Error detection and reliable transmission. Ion Stoica September 16, 2002 EE 22: Error detection and reliable transmission Ion Stoica September 6, 2002 High Level View Goal: transmit correct information Problem: bits can get corrupted - Electrical interference, thermal noise

More information

CS 421: COMPUTER NETWORKS SPRING FINAL May 24, minutes. Name: Student No: TOT

CS 421: COMPUTER NETWORKS SPRING FINAL May 24, minutes. Name: Student No: TOT CS 421: COMPUTER NETWORKS SPRING 2012 FINAL May 24, 2012 150 minutes Name: Student No: Show all your work very clearly. Partial credits will only be given if you carefully state your answer with a reasonable

More information

Chapter 11 Data Link Control 11.1

Chapter 11 Data Link Control 11.1 Chapter 11 Data Link Control 11.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 11-1 FRAMING The data link layer needs to pack bits into frames, so that each

More information

TCP Congestion Control

TCP Congestion Control TCP Congestion Control What is Congestion The number of packets transmitted on the network is greater than the capacity of the network Causes router buffers (finite size) to fill up packets start getting

More information

TCP Congestion Control

TCP Congestion Control What is Congestion TCP Congestion Control The number of packets transmitted on the network is greater than the capacity of the network Causes router buffers (finite size) to fill up packets start getting

More information

Basic Reliable Transport Protocols

Basic Reliable Transport Protocols Basic Reliable Transport Protocols Do not be alarmed by the length of this guide. There are a lot of pictures. You ve seen in lecture that most of the networks we re dealing with are best-effort : they

More information

Computer Networks Project 4. By Eric Wasserman and Ji Hoon Baik

Computer Networks Project 4. By Eric Wasserman and Ji Hoon Baik Computer Networks Project 4 By Eric Wasserman and Ji Hoon Baik Modifications to the Code, and the Flowcharts UDP transmission is different from TCP transmission in that: 1. UDP transmission is unidirectional;

More information

Preview Test: HW3. Test Information Description Due:Nov. 3

Preview Test: HW3. Test Information Description Due:Nov. 3 Preview Test: HW3 Test Information Description Due:Nov. 3 Instructions Multiple Attempts Not allowed. This test can only be taken once. Force Completion This test can be saved and resumed later. Question

More information

Lecture 14: Congestion Control"

Lecture 14: Congestion Control Lecture 14: Congestion Control" CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Amin Vahdat, Dina Katabi Lecture 14 Overview" TCP congestion control review XCP Overview 2 Congestion Control

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : BS_CS_A_Computer Network_040 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 0-45242 CLASS TEST 20-9 COMPUTER SCIENCE & IT Subject

More information

Good Ideas So Far Computer Networking. Outline. Sequence Numbers (reminder) TCP flow control. Congestion sources and collapse

Good Ideas So Far Computer Networking. Outline. Sequence Numbers (reminder) TCP flow control. Congestion sources and collapse Good Ideas So Far 15-441 Computer Networking Lecture 17 TCP & Congestion Control Flow control Stop & wait Parallel stop & wait Sliding window Loss recovery Timeouts Acknowledgement-driven recovery (selective

More information

FACULTY OF COMPUTING AND INFORMATICS

FACULTY OF COMPUTING AND INFORMATICS namibia UniVERSITY OF SCIEnCE AnD TECHnOLOGY FACULTY OF COMPUTING AND INFORMATICS DEPARTMENT OF COMPUTER SCIENCE QUALIFICATION: Bachelor of Computer Science {Honours) QUALIFICATION CODE: 08BCSH LEVEL:

More information

CS 428/528 Computer Networks Lecture 01. Yan Wang

CS 428/528 Computer Networks Lecture 01. Yan Wang 1 CS 428/528 Computer Lecture 01 Yan Wang 2 Motivation: Why bother? Explosive growth of networks 1989, 100,000 hosts on the Internet Distributed Applications and Systems E-mail, WWW, multimedia, distributed

More information

Fall 2012: FCM 708 Bridge Foundation I

Fall 2012: FCM 708 Bridge Foundation I Fall 2012: FCM 708 Bridge Foundation I Prof. Shamik Sengupta Instructor s Website: http://jjcweb.jjay.cuny.edu/ssengupta/ Blackboard Website: https://bbhosted.cuny.edu/ Intro to Computer Networking Transport

More information

Congestion Control 3/16/09

Congestion Control 3/16/09 Congestion Control Outline Resource Allocation Queuing TCP Congestion Control Spring 009 CSE3064 Issues Two sides of the same coin pre-allocate resources so at to avoid congestion control congestion if

More information

Transmission Control Protocol. ITS 413 Internet Technologies and Applications

Transmission Control Protocol. ITS 413 Internet Technologies and Applications Transmission Control Protocol ITS 413 Internet Technologies and Applications Contents Overview of TCP (Review) TCP and Congestion Control The Causes of Congestion Approaches to Congestion Control TCP Congestion

More information