Geometric Optimisation of a Jet Pump

Size: px
Start display at page:

Download "Geometric Optimisation of a Jet Pump"

Transcription

1 Geometric Optimisation of a Jet Pump ASSIA HELALI, JEAN-LOUIS KUENY Laboratoire des Ecoulements Géophysiques et Industrielles Ecole Nationale Supérieure d Hydraulique et de Mécanique de Grenoble Institut National polytechnique de Grenoble BP 53 Grenoble 380 Cedex 9 France assia.helali@hmg.inpg.fr and Jean-Louis.Kueny@hmg.inpg.fr Abstract: The study presented in this paper deals with optimal design of swimming pool filtering system, namely jet pump. For this purpose, an optimisation tool EASY based on evolutionary algorithm is coupled with computational fluid dynamics software Fine/Turbo in order to evaluate the jet pump performances. The flow motion is governed by steady incompressible time averaged Navier-Stokes equations in the Cartesian coordinate system and the turbulence is parameterized by using K-ε model with wall functions. The optimization cycle is performed using flow solver for flow characteristics evaluation coupled with EAs and artificial neural networks (ANNs) in order to sought the minimum of the objective function This procedure is fully automatic (coupling geometry generation, NS, EAs and ANNs). The process ends when the number of generations predefined is reached. Our objective is to reduce pumping costs in term of electric energy by making some changes to the initial geometry shape. Key-words : Jet pump, Computational fluid dynamics, Optimal design, Evolutionary algorithms. 1 Introduction Jet pump has been widely used in various engineering and industrial applications. Examples include marine industry, oil energy and filtration system. Among of these practical applications, we refer to the faltering system of swimming pools. The process consists of pumping water from the pool through the filter system and returning it to the pool. This system is suitable for clean the dirty water with suspended solids. The recirculation system must operate hours a day to assure filtration and disinfection of the pool water. The source of the power used to re-circulate the water through the system is the jet-pump. Improving the jet-pump design is of crucial importance to reducing the amount of energy spent on pump operations and to save the money. Therefore, jet-pump optimization use to be a practical and highly effective method to reduce pumping costs by making some changes to the initial geometry. Depending on the number of variables and objectives considered, optimizing such jetpump problem may be very difficult, especially for large objectives and constraints. In the present investigation only one global objective is considered in which various targets and constraints are grouped in one function. The complete optimization of the jet pump has required the interaction between two kinds of numerical tools: the first concerns the flow computation based on CFD calculations which are assured by FINE/Turbo software already developed by Numeca International [1,,3]. The second tool consists of optimization software called EASY based on evolutionary algorithms and artificial neural networks. This later has been developed by NTUA (National Technical University of Athens), [, 5]). We have also developed various C++ programs in order to generate geometry, compute objective function and for results storage. The optimal jet-pump can be defined as a pump that optimizes particular objectives, while fulfilling system constraints. ISSN: Page 33 ISBN:

2 Problem configuration and motivations The fig. 1 presents the general jet pump geometry [6]. In this configuration, the water is aspired from the high pressure (HP) inlet using a propeller entrained by electric motor. The flow passes through the injector and entrains the water from the low pressure (LP) inlet via mixing process between both fluids. Further downstream a filtering process occurs when the global flow water containing possible suspended solids and impurities passes through a mesh bag located at the nozzle exit. To avoid pressure losses around the engine and in the injector, the flow is orientated by mean of several guide vanes. In such configuration, the both inlets HP and BP permit a deeper and a superficial cleaning respectively. The ultimate aim of the present work is to search geometry that, under specific operating conditions, provides the best performances in term of the jet pump efficiency. In order to achieve this goal, we first describe the objective to be reached and then we can decide which geometry part can be optimised. As mentioned above, the studied jet pump has two entries HP and LP. The first one is immersed in the water as well as the whole electrical device. That s why in this case of application we are limited to relatively small electrical power. This information is considered as first optimization constraint. Filtering the highest water quantity in shortest possible time constitute also our target. This represents a new objective which consists of sucking the most possible quantity of fluid from the two entries (HP and LP). Since, the fluid flow from HP inlet is driven by the motor; we aim to benefit from the HP kinetic energy to entrain at least the same quantity of fluid from the LP entry. The last constraint is then linked to the height of the LP free surface which must be around the value of m for the most favorable filtering operation. This value provides an equilibrium condition between the two circuits high and lower pressure. We have now an overview on the various targets and constraints linked to the optimization process. In the next section we present the geometry parameterization and the objective function formalism. Fig. 1: Jet pump system [6]. 3 Geometric parameterization The geometry of the jet pump is simple and almost axisymmetric, except of the low pressure LP inlet (Fig 1). In order to simplify the optimization study and to reduce the computational time cost, the LP inlet geometry has been adapted to be axisymmetric (Fig. ). The problem configuration can be then simplified to be two-dimensional axisymmetric instead of three-dimensional which minimizes the computational grid size. With this consideration, the computational time cost can be reduced significantly, since the optimization procedure requires several CFD calculations. Fig. : Simplification of the jet pump geometry [6]. ISSN: Page 3 ISBN:

3 Fig. 3: control points on jet pump geometry. Before initiating the optimal design process on the fully D axisymmetric jet pump geometry, we need to define the geometrical shape variations by specifying a series of parametric variables. Fig. 3, shows the control (parameterization) points on the jet pump geometry. These points can vary in streamwise and radial directions. Here the points determine the LP inlet are considered as fixes. Previous experimental studies carried out on the same jet pump geometry indicated that the global performances are insensitive to the modifications on the LP section [6]. The jet pump geometry definition and its corresponding mesh are generated automatically using the optimization variables provided stochastically by EASY. These variables data are first read by a script, once is executed by grid generator software IGG[], permits to create both the geometry and its corresponding mesh. Note that, optimization variables considered here include geometrical constraints and the mass flow rates on both inlets (HP and LP). These variables vary in only limited intervals of minimum and maximum values which are obtained by considering the grid feasibility as well as the flow physical mechanism in the jet pump. Fig. shows two types of geometry meshing: the first (Fig -a) is obtained when optimization variables are substituted by their maximum values and the second mesh is obtained using their minimum values. In this process the grid quality control is carried out simultaneously for each optimization variables. The generated is structured with 6 blocks and about 936 nodes. Fig. : Jet pump mesh.. Optimization procedure The optimization method used in this study based on coupling several numerical tools. For CFD calculations we used Fine/Turbo suite including grid generator (IGG), flow solver (EURANUS) and post processing software (CFVIEW) [3]. This package is coupled with the optimization code EASY. C++ program has been developed in order to impose correct initial conditions for each CFD simulation as well as the objective function evaluation. The optimization process can be described by the following steps (see also Fig. 5): Population: represents the geometry parameters, high pressure and low pressure flow rate. Whereby constraints can be imposed so that x [ x min,x max ]. The first population is chosen stochastically regarding to constraints imposed for each variable. Geometry: In this phase, the geometry definition program has used the optimisation variables to create a script. CFD: As first step, the script is executed by IGG in order to generate the grid mesh. After checking the grid quality, the flow solver is run and finally the results are treated in order to evaluate the objective function. Steady incompressible simulations are performed by mean of Euranus solver [1] using K-ε model with wall functions for turbulence modelling. 3 ISSN: Page 35 ISBN:

4 Optimization: the optimization is carried out using an Evolutionary Algorithm tool, namely Easy. Stopping criterion: The procedure ends when the number of generations predefined is reached. Fig. 5: Optimization process. Easy 1.3 optimization software, is considered as a generalization of the most frequently used EA variants (Genetic algorithms [7,8] and Evolution Strategies [9]). Moreover, Easy 1.3 offers the possibility of using ANNs as built-in surrogate evaluation models, in order to reduce the number of exact (CFD-based) evaluations required for the same solution quality [,5 ]. The notation symbols used for description of the optimization method are the standard ones used in Evolution Strategies. So ( μ, κ, λ ) denotes an EA with μ parents and λ offspring, where the maximum allowed life span for parent individuals is equal to κ generation. In this study the three numbers characterizing the Evolutionary Algorithms (EA) are selected such as ( μ = 7, κ =, λ = 1) and in order to accelerate the process of convergences, we used the artificial neural networks (ANNs), which reduce the number of evaluation tool calls. 5. Objective function In the present study only one objective function have been used, in which the whole of the objectives are integrated. This choice is mainly due to the availability of the computational means in multi-objectives. Below, we define each objective separately and the final objective function which we sought to minimize is just the algebraic sum of the following functions: Function 1 : F 1 = Qobj ( QHP + QLP ) / Qobj the minimum of this function can be obtained by maximizing the total flow rate; Function : F = QHP QLP / Qobj this function minimizes the difference between the HP and LP flow rates; Function 3: F3 = PElec Pellim / Pellim this function minimizes the difference between the electric power of the motor (P ellim ) and the hydraulic power (P Elec ) of the jet pump. This function is evaluated by considering the HP hydraulic power: Phyd = P HP Elec ηmoteur ηhp. The pump efficiency depends on both the flow rate and the specific speed: η HP = η HP (n q, Q HP ) With specific speed: QHP n q = n (n and nq [RPM] Q [m 3 /s].) 3 H The pump efficiency can be approximated by (more details can be found in [10]) : ηhp = [ ln( nq ) ln( 50) ] [ ln( Q ) ln( 0) ] HP Therefore the hydraulic power available at HP inlet can be written as: P hyd HP = P Elec [ ln( Q ) ln( 0) ] } HP η Motor { [ ln( n ) ln( 50) ] Function : F = Z / 0.03 the minimum of this function is reached when the height of the free LP surface (Z) equals to m. In previous studies this value was found to lead to the best skimming of the swimming pool surface and provides an equilibrium condition between the two circuits HP and LP [6]. q ISSN: Page 36 ISBN:

5 Finally, the global objective function consist of sub-functions summation and can be written as : Fobj = α i F i in which α i represent weighting factors Results and discussions In this section we present the main results obtained by the optimization process of the jet pump geometry. The flow motion is governed by steady incompressible time averaged Navier-Stokes equations in the Cartesian coordinate system. The turbulence has been parameterized by using K-ε model with wall functions. On the solid surface, the no-slip wall boundary conditions where used and static pressure at the domain exit. At both domain inlets a velocity value, corresponding to the desired flow rate, is specified. Fig.6 shows the convergence of the optimization process. This later has been stopped before achieving total convergence criterion since the minimized objective function value is achieved. The obtained results met very well with our objectives. Indeed, by performing some modifications on the jet pump geometry the filtered flow rate is considerably increased compared to what obtained with the initial geometry. The flow rate from LP inlet is found to be similar to that of HP inlet. Nevertheless, the visualization of velocity vectors in Fig. 7 highlighted the presence of small and large recirculation zones far and near the nozzle exit respectively. This is confirmed by the simulated streamlines on the same figure. The large recirculation at the exit of the nozzle is found to generate an important kinetic energy loss (not shown here). In order to solve this problem of recirculation and energy loss, we have decided to cut the nozzle before the recirculation zone and new optimization procedure have been conducted on this new geometry. Fig. 8 presents the new geometry to be optimized. Note that, only part colored in red is concerned by the optimization process. As expected, visualizations based on velocity vectors as well as simulated streamlines in Fig 9 show that the recirculation zone near the nozzle is considerably reduced with respect to the previous long geometry case. This can improve the jet pump performances in term of kinetic energy loss. The obtained results are very important and led to the maximum filtered water flow rate with a predefined electrical power by performing some low-cost modifications on the jet pump geometry design. OBJ_function_ Evaluations Fig. 6: Convergence of the optimization. Fig 7: Visualization of velocity vectors. 5 ISSN: Page 37 ISBN:

6 Fig 8: Geometry and grid of jet pump. Fig. 9: Visualization of velocity vectors on the short geometry. 7 Conclusions The present study deals with an optimal design process of jet pomp geometry. Our objective is to reduce pumping costs in term of electric energy by making some changes to the initial geometry shape. For this purpose, an optimisation tool EASY based on evolutionary algorithm is coupled with computational fluid dynamics software Fine/Turbo in order to evaluate the jet pump performances. The first obtained results met very well with our objectives. Indeed, by performing some modifications on the jet pump geometry the filtered flow rate is considerably increased compared to what obtained with the initial geometry at same operating conditions. Nevertheless, the flow analysis inside the device (nozzle) revealed the presence of large recirculation zone near the nozzle exit which can, under certain operating conditions, reduce considerably the jet pump performances. In order to solve this problem, we have decided to reduce the nozzle length by cutting it just before the zone of recirculation, and new optimization process has been conducted considering this new geometry. As expected, our results show that with this geometry of short nozzle, the recirculation zone is reduced in maximum. Despite this solution, the kinetic energy loss seems to persist in this system. Our suggestion in the future is to add a trumpet duct to the nozzle exit which may lead to a good homogenization of the flow. It is worth noting that in the present study we minimized only one objective function, which mainly includes four sub-functions. It is then crucial to carry out an optimization study with multi objectives function. Acknowledgements The authors wish to knowledge R. CALARD, F. DEBOOS, M. L. DEPAUX, M. FRINGANT and S. KOCH-MATHIAN for their kind collaboration. References: [1] Fine Turbo, User manual, Numeca international 003, Belgique. [] NUMECA, Igg-autogrid, 003. [3] NUMECA, Cfview, 003. [] K. C. Giannakoglou, A. P. Giotis and M. K. Karakasis. Low Cost Genetic Optimization Based on Inexact Pre Evaluations and the Sensitivity Analysis of Design Parameters, Journal of Inverse Problems in Engineering, Vol. 9, 389 1, 001. [5] K. C. Giannakoglou. Design of Optimal Aerodynamic Shapes using Stochastic Optimization Methods and Computational Intelligence, Progress in Aerospace Sciences, Vol. 38, 3 76, 00. [6] A. Helali, "Optimisation d'une turbine de type Kaplan", thèse de doctorat, INPG Grenoble, 006. [7] D.E. Goldberg. Genetic Algorithms in search, optimization & machine learning, Addison-Wesley, [8] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs, nd edition, Springer-Verlag, 199. [9] Th. Bäck. Evolutionary Algorithms in Theory and Practice. Evolution Strategies, Evolutionary Programming, Genetic Algorithms, Oxford University Press, [10] W. Bohl, "Strömungs-Maschinen, Aufbau und Wirkunggsweise", Vogel Fachbuch- Kamprath-Reihe, Würzburg, ISSN: Page 38 ISBN:

Tools & Applications 1. Introduction 2. Design of Matrix Turbines

Tools & Applications 1. Introduction 2. Design of Matrix Turbines NATIONAL TECHNICAL UNIVERSITY of ATHENS Lab. Thermal Turbomachines Parallel CFD & Optimization Unit Design Optimization Tools & Applications 1. Introduction 2. Design of Matrix Turbines Kyriakos C. Giannakoglou

More information

34% 41% 25% Europe America Asia. Grants 11% Training 1% R&D Industrial Funded Projects 4% Consulting 11% License & Maintenance 73%

34% 41% 25% Europe America Asia. Grants 11% Training 1% R&D Industrial Funded Projects 4% Consulting 11% License & Maintenance 73% NUMECA as a Company Pioneer Software Developper in the area of Computational Fluid Dynamics (CFD) 15 years market presence with worldwide customer base A team of 60 highly qualified engineers and PhD worldwide

More information

Simulation of Turbulent Axisymmetric Waterjet Using Computational Fluid Dynamics (CFD)

Simulation of Turbulent Axisymmetric Waterjet Using Computational Fluid Dynamics (CFD) Simulation of Turbulent Axisymmetric Waterjet Using Computational Fluid Dynamics (CFD) PhD. Eng. Nicolae MEDAN 1 1 Technical University Cluj-Napoca, North University Center Baia Mare, Nicolae.Medan@cunbm.utcluj.ro

More information

Enhancement of a large injection system for steam turbines

Enhancement of a large injection system for steam turbines GE Oil & Gas Leonardo Nettis, GE Oil & Gas Enzo Imparato, GE Oil & Gas Lorenzo Cosi, GE Oil & Gas DOWNSTREAM TECHNOLOGY SOLUTIONS PRODUCTS & SERVICES Enhancement of a large injection system for steam turbines

More information

I. Introduction. Optimization Algorithm Components. Abstract for the 5 th OpenFOAM User Conference 2017, Wiesbaden - Germany

I. Introduction. Optimization Algorithm Components. Abstract for the 5 th OpenFOAM User Conference 2017, Wiesbaden - Germany An Aerodynamic Optimization Framework for the Automotive Industry, based on Continuous Adjoint and OpenFOAM E. Papoutsis-Kiachagias 1, V. Asouti 1, K. Giannakoglou 1, K. Gkagkas 2 1) National Technical

More information

CFD Topological Optimization of a Car Water-Pump Inlet using TOSCA Fluid and STAR- CCM+

CFD Topological Optimization of a Car Water-Pump Inlet using TOSCA Fluid and STAR- CCM+ CFD Topological Optimization of a Car Water-Pump Inlet using TOSCA Fluid and STAR- CCM+ Dr. Anselm Hopf Dr. Andrew Hitchings Les Routledge Ford Motor Company CONTENTS Introduction/Motivation Optimization

More information

Strömningslära Fluid Dynamics. Computer laboratories using COMSOL v4.4

Strömningslära Fluid Dynamics. Computer laboratories using COMSOL v4.4 UMEÅ UNIVERSITY Department of Physics Claude Dion Olexii Iukhymenko May 15, 2015 Strömningslära Fluid Dynamics (5FY144) Computer laboratories using COMSOL v4.4!! Report requirements Computer labs must

More information

CFD Analysis of a Fully Developed Turbulent Flow in a Pipe with a Constriction and an Obstacle

CFD Analysis of a Fully Developed Turbulent Flow in a Pipe with a Constriction and an Obstacle CFD Analysis of a Fully Developed Turbulent Flow in a Pipe with a Constriction and an Obstacle C, Diyoke Mechanical Engineering Department Enugu State University of Science & Tech. Enugu, Nigeria U, Ngwaka

More information

Design Optimization of a Subsonic Diffuser. for a Supersonic Aircraft

Design Optimization of a Subsonic Diffuser. for a Supersonic Aircraft Chapter 5 Design Optimization of a Subsonic Diffuser for a Supersonic Aircraft 5. Introduction The subsonic diffuser is part of the engine nacelle leading the subsonic flow from the intake to the turbo-fan

More information

LS-DYNA 980 : Recent Developments, Application Areas and Validation Process of the Incompressible fluid solver (ICFD) in LS-DYNA.

LS-DYNA 980 : Recent Developments, Application Areas and Validation Process of the Incompressible fluid solver (ICFD) in LS-DYNA. 12 th International LS-DYNA Users Conference FSI/ALE(1) LS-DYNA 980 : Recent Developments, Application Areas and Validation Process of the Incompressible fluid solver (ICFD) in LS-DYNA Part 1 Facundo Del

More information

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Vol. 12, Issue 1/2016, 63-68 DOI: 10.1515/cee-2016-0009 MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Juraj MUŽÍK 1,* 1 Department of Geotechnics, Faculty of Civil Engineering, University

More information

Shape optimisation using breakthrough technologies

Shape optimisation using breakthrough technologies Shape optimisation using breakthrough technologies Compiled by Mike Slack Ansys Technical Services 2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Introduction Shape optimisation technologies

More information

Driven Cavity Example

Driven Cavity Example BMAppendixI.qxd 11/14/12 6:55 PM Page I-1 I CFD Driven Cavity Example I.1 Problem One of the classic benchmarks in CFD is the driven cavity problem. Consider steady, incompressible, viscous flow in a square

More information

Experimental Data Confirms CFD Models of Mixer Performance

Experimental Data Confirms CFD Models of Mixer Performance The Problem Over the years, manufacturers of mixing systems have presented computational fluid dynamics (CFD) calculations to claim that their technology can achieve adequate mixing in water storage tanks

More information

Influence of mesh quality and density on numerical calculation of heat exchanger with undulation in herringbone pattern

Influence of mesh quality and density on numerical calculation of heat exchanger with undulation in herringbone pattern Influence of mesh quality and density on numerical calculation of heat exchanger with undulation in herringbone pattern Václav Dvořák, Jan Novosád Abstract Research of devices for heat recovery is currently

More information

CFD design tool for industrial applications

CFD design tool for industrial applications Sixth LACCEI International Latin American and Caribbean Conference for Engineering and Technology (LACCEI 2008) Partnering to Success: Engineering, Education, Research and Development June 4 June 6 2008,

More information

Advanced Computation in the design and development of aircraft engines. Serge Eury SNECMA

Advanced Computation in the design and development of aircraft engines. Serge Eury SNECMA Advanced Computation in the design and development of aircraft engines 1 Serge Eury SNECMA Advanced Computation in the design and development of aircraft engines Introduction Some examples Conclusions

More information

McNair Scholars Research Journal

McNair Scholars Research Journal McNair Scholars Research Journal Volume 2 Article 1 2015 Benchmarking of Computational Models against Experimental Data for Velocity Profile Effects on CFD Analysis of Adiabatic Film-Cooling Effectiveness

More information

Effects of bell mouth geometries on the flow rate of centrifugal blowers

Effects of bell mouth geometries on the flow rate of centrifugal blowers Journal of Mechanical Science and Technology 25 (9) (2011) 2267~2276 www.springerlink.com/content/1738-494x DOI 10.1007/s12206-011-0609-3 Effects of bell mouth geometries on the flow rate of centrifugal

More information

CFD MODELING FOR PNEUMATIC CONVEYING

CFD MODELING FOR PNEUMATIC CONVEYING CFD MODELING FOR PNEUMATIC CONVEYING Arvind Kumar 1, D.R. Kaushal 2, Navneet Kumar 3 1 Associate Professor YMCAUST, Faridabad 2 Associate Professor, IIT, Delhi 3 Research Scholar IIT, Delhi e-mail: arvindeem@yahoo.co.in

More information

Design optimization method for Francis turbine

Design optimization method for Francis turbine IOP Conference Series: Earth and Environmental Science OPEN ACCESS Design optimization method for Francis turbine To cite this article: H Kawajiri et al 2014 IOP Conf. Ser.: Earth Environ. Sci. 22 012026

More information

A NURBS-BASED APPROACH FOR SHAPE AND TOPOLOGY OPTIMIZATION OF FLOW DOMAINS

A NURBS-BASED APPROACH FOR SHAPE AND TOPOLOGY OPTIMIZATION OF FLOW DOMAINS 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 11 15 June 2018, Glasgow, UK A NURBS-BASED APPROACH FOR SHAPE AND TOPOLOGY OPTIMIZATION

More information

Computational Modeling of the Three-Dimensional Flow in a Metallic Stator Progressing Cavity Pump

Computational Modeling of the Three-Dimensional Flow in a Metallic Stator Progressing Cavity Pump Computational Modeling of the Three-Dimensional Flow in a Metallic Stator Progressing Cavity Pump Emilio E. Paladino; João A. Lima and Rairam F. Almeida UFRN / DEM / PPGEM, Brazil Benno W. Assmann PETROBRAS

More information

Study on the Design Method of Impeller on Low Specific Speed Centrifugal Pump

Study on the Design Method of Impeller on Low Specific Speed Centrifugal Pump Send Orders for Reprints to reprints@benthamscience.ae 594 The Open Mechanical Engineering Journal, 2015, 9, 594-600 Open Access Study on the Design Method of Impeller on Low Specific Speed Centrifugal

More information

NUMERICAL INVESTIGATION OF THE FLOW BEHAVIOR INTO THE INLET GUIDE VANE SYSTEM (IGV)

NUMERICAL INVESTIGATION OF THE FLOW BEHAVIOR INTO THE INLET GUIDE VANE SYSTEM (IGV) University of West Bohemia» Department of Power System Engineering NUMERICAL INVESTIGATION OF THE FLOW BEHAVIOR INTO THE INLET GUIDE VANE SYSTEM (IGV) Publication was supported by project: Budování excelentního

More information

Backward facing step Homework. Department of Fluid Mechanics. For Personal Use. Budapest University of Technology and Economics. Budapest, 2010 autumn

Backward facing step Homework. Department of Fluid Mechanics. For Personal Use. Budapest University of Technology and Economics. Budapest, 2010 autumn Backward facing step Homework Department of Fluid Mechanics Budapest University of Technology and Economics Budapest, 2010 autumn Updated: October 26, 2010 CONTENTS i Contents 1 Introduction 1 2 The problem

More information

Calculate a solution using the pressure-based coupled solver.

Calculate a solution using the pressure-based coupled solver. Tutorial 19. Modeling Cavitation Introduction This tutorial examines the pressure-driven cavitating flow of water through a sharpedged orifice. This is a typical configuration in fuel injectors, and brings

More information

INVESTIGATION OF HYDRAULIC PERFORMANCE OF A FLAP TYPE CHECK VALVE USING CFD AND EXPERIMENTAL TECHNIQUE

INVESTIGATION OF HYDRAULIC PERFORMANCE OF A FLAP TYPE CHECK VALVE USING CFD AND EXPERIMENTAL TECHNIQUE International Journal of Mechanical Engineering and Technology (IJMET) Volume 10, Issue 1, January 2019, pp. 409 413, Article ID: IJMET_10_01_042 Available online at http://www.ia aeme.com/ijmet/issues.asp?jtype=ijmet&vtype=

More information

Flow and Heat Transfer in a Mixing Elbow

Flow and Heat Transfer in a Mixing Elbow Flow and Heat Transfer in a Mixing Elbow Objectives The main objectives of the project are to learn (i) how to set up and perform flow simulations with heat transfer and mixing, (ii) post-processing and

More information

NUMERICAL MODELING STUDY FOR FLOW PATTERN CHANGES INDUCED BY SINGLE GROYNE

NUMERICAL MODELING STUDY FOR FLOW PATTERN CHANGES INDUCED BY SINGLE GROYNE NUMERICAL MODELING STUDY FOR FLOW PATTERN CHANGES INDUCED BY SINGLE GROYNE Jungseok Ho 1, Hong Koo Yeo 2, Julie Coonrod 3, and Won-Sik Ahn 4 1 Research Assistant Professor, Dept. of Civil Engineering,

More information

Simulation of Turbulent Flow in an Asymmetric Diffuser

Simulation of Turbulent Flow in an Asymmetric Diffuser Simulation of Turbulent Flow in an Asymmetric Diffuser 1. Purpose 58:160 Intermediate Mechanics of Fluids CFD LAB 3 By Tao Xing and Fred Stern IIHR-Hydroscience & Engineering The University of Iowa C.

More information

PARAMETRIC STUDY AND OPTIMIZATION OF CENTRIFUGAL PUMP IMPELLER BY VARYING THE DESIGN PARAMETER USING COMPUTATIONAL FLUID DYNAMICS: PART I

PARAMETRIC STUDY AND OPTIMIZATION OF CENTRIFUGAL PUMP IMPELLER BY VARYING THE DESIGN PARAMETER USING COMPUTATIONAL FLUID DYNAMICS: PART I Journal of Mechanical and Production Engineering (JMPE) ISSN 2278-3512 Vol.2, Issue 2, Sep 2012 87-97 TJPRC Pvt. Ltd., PARAMETRIC STUDY AND OPTIMIZATION OF CENTRIFUGAL PUMP IMPELLER BY VARYING THE DESIGN

More information

MOMENTUM AND HEAT TRANSPORT INSIDE AND AROUND

MOMENTUM AND HEAT TRANSPORT INSIDE AND AROUND MOMENTUM AND HEAT TRANSPORT INSIDE AND AROUND A CYLINDRICAL CAVITY IN CROSS FLOW G. LYDON 1 & H. STAPOUNTZIS 2 1 Informatics Research Unit for Sustainable Engrg., Dept. of Civil Engrg., Univ. College Cork,

More information

Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization

Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization Siva Nadarajah Antony Jameson Stanford University 15th AIAA Computational Fluid Dynamics Conference

More information

ENERGY-224 Reservoir Simulation Project Report. Ala Alzayer

ENERGY-224 Reservoir Simulation Project Report. Ala Alzayer ENERGY-224 Reservoir Simulation Project Report Ala Alzayer Autumn Quarter December 3, 2014 Contents 1 Objective 2 2 Governing Equations 2 3 Methodolgy 3 3.1 BlockMesh.........................................

More information

NUMERICAL SIMULATIONS OF FLOW THROUGH AN S-DUCT

NUMERICAL SIMULATIONS OF FLOW THROUGH AN S-DUCT NUMERICAL SIMULATIONS OF FLOW THROUGH AN S-DUCT 1 Pravin Peddiraju, 1 Arthur Papadopoulos, 2 Vangelis Skaperdas, 3 Linda Hedges 1 BETA CAE Systems USA, Inc., USA, 2 BETA CAE Systems SA, Greece, 3 CFD Consultant,

More information

COMPUTATIONAL FLUID DYNAMICS USED IN THE DESIGN OF WATERBLAST TOOLING

COMPUTATIONAL FLUID DYNAMICS USED IN THE DESIGN OF WATERBLAST TOOLING 2015 WJTA-IMCA Conference and Expo November 2-4 New Orleans, Louisiana Paper COMPUTATIONAL FLUID DYNAMICS USED IN THE DESIGN OF WATERBLAST TOOLING J. Schneider StoneAge, Inc. Durango, Colorado, U.S.A.

More information

Aerodynamic Design Optimization of UAV Rotor Blades using a Genetic Algorithm

Aerodynamic Design Optimization of UAV Rotor Blades using a Genetic Algorithm Aerodynamic Design Optimization of UAV Rotor Blades using a Genetic Algorithm Hak-Min Lee 1), Nahm-Keon Hur 2) and *Oh-Joon Kwon 3) 1), 3) Department of Aerospace Engineering, KAIST, Daejeon 305-600, Korea

More information

Scuola Politecnica DIME

Scuola Politecnica DIME Scuola Politecnica DIME Ingegneria Meccanica - Energia e Aeronautica Anno scolastico 2017-2018 Fluidodinamica Avanzata Aircraft S-shaped duct geometry optimization Professor Jan Pralits Supervisor Joel

More information

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS Dr W. Malalasekera Version 3.0 August 2013 1 COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE

More information

STUDY OF FLOW PERFORMANCE OF A GLOBE VALVE AND DESIGN OPTIMISATION

STUDY OF FLOW PERFORMANCE OF A GLOBE VALVE AND DESIGN OPTIMISATION Journal of Engineering Science and Technology Vol. 12, No. 9 (2017) 2403-2409 School of Engineering, Taylor s University STUDY OF FLOW PERFORMANCE OF A GLOBE VALVE AND DESIGN OPTIMISATION SREEKALA S. K.

More information

Terminal Falling Velocity of a Sand Grain

Terminal Falling Velocity of a Sand Grain Terminal Falling Velocity of a Sand Grain Introduction The first stop for polluted water entering a water work is normally a large tank, where large particles are left to settle. More generally, gravity

More information

Block Nested Refinement and Numerical Estimation for Sudden Expansion Pipes in Various Step Angles

Block Nested Refinement and Numerical Estimation for Sudden Expansion Pipes in Various Step Angles Block Nested finement and Numerical Estimation for Sudden Expansion Pipes in Various Step Angles CHRISTINA G. GEORGANTOPOULOU School of Engineering, Bahrain Polytechnic Isa Town, Po box 33349 KINGDOM OF

More information

Coupled Simulation of the Fluid Flow and Conjugate Heat Transfer in Press Hardening Processes

Coupled Simulation of the Fluid Flow and Conjugate Heat Transfer in Press Hardening Processes 13 th International LS-DYNA Users Conference Session: Metal Forming Coupled Simulation of the Fluid Flow and Conjugate Heat Transfer in Press Hardening Processes Uli Göhner 1), Bruno Boll 1), Inaki Caldichouri

More information

EVALUATION OF A GENERAL CFD-SOLVER FOR A MICRO-SCALE URBAN FLOW

EVALUATION OF A GENERAL CFD-SOLVER FOR A MICRO-SCALE URBAN FLOW EVALATION OF A GENERAL CFD-SOLVER FOR A MICRO-SCALE RBAN FLOW Jarkko Saloranta and Antti Hellsten Helsinki niversity of Technology, Laboratory of Aerodynamics, Finland INTRODCTION In this work we study

More information

3D numerical modeling of flow along spillways with free surface flow. Complementary spillway of Salamonde.

3D numerical modeling of flow along spillways with free surface flow. Complementary spillway of Salamonde. 3D numerical modeling of flow along spillways with free surface flow. Complementary spillway of Salamonde. Miguel Rocha Silva Instituto Superior Técnico, Civil Engineering Department 1. INTRODUCTION Throughout

More information

RBF Morph An Add-on Module for Mesh Morphing in ANSYS Fluent

RBF Morph An Add-on Module for Mesh Morphing in ANSYS Fluent RBF Morph An Add-on Module for Mesh Morphing in ANSYS Fluent Gilles Eggenspieler Senior Product Manager 1 Morphing & Smoothing A mesh morpher is a tool capable of performing mesh modifications in order

More information

ANSYS AIM Tutorial Turbulent Flow Over a Backward Facing Step

ANSYS AIM Tutorial Turbulent Flow Over a Backward Facing Step ANSYS AIM Tutorial Turbulent Flow Over a Backward Facing Step Author(s): Sebastian Vecchi, ANSYS Created using ANSYS AIM 18.1 Problem Specification Pre-Analysis & Start Up Governing Equation Start-Up Geometry

More information

Numerical Study of Turbulent Flow over Backward-Facing Step with Different Turbulence Models

Numerical Study of Turbulent Flow over Backward-Facing Step with Different Turbulence Models Numerical Study of Turbulent Flow over Backward-Facing Step with Different Turbulence Models D. G. Jehad *,a, G. A. Hashim b, A. K. Zarzoor c and C. S. Nor Azwadi d Department of Thermo-Fluids, Faculty

More information

Program: Advanced Certificate Program

Program: Advanced Certificate Program Program: Advanced Certificate Program Course: CFD-Vehicle Aerodynamics Directorate of Training and Lifelong Learning #470-P, Peenya Industrial Area, 4th Phase Peenya, Bengaluru 560 058 www.msruas.ac.in

More information

Investigation of mixing chamber for experimental FGD reactor

Investigation of mixing chamber for experimental FGD reactor Investigation of mixing chamber for experimental FGD reactor Jan Novosád 1,a, Petra Danová 1 and Tomáš Vít 1 1 Department of Power Engineering Equipment, Faculty of Mechanical Engineering, Technical University

More information

CFD Analysis of 2-D Unsteady Flow Past a Square Cylinder at an Angle of Incidence

CFD Analysis of 2-D Unsteady Flow Past a Square Cylinder at an Angle of Incidence CFD Analysis of 2-D Unsteady Flow Past a Square Cylinder at an Angle of Incidence Kavya H.P, Banjara Kotresha 2, Kishan Naik 3 Dept. of Studies in Mechanical Engineering, University BDT College of Engineering,

More information

Introduction to ANSYS CFX

Introduction to ANSYS CFX Workshop 03 Fluid flow around the NACA0012 Airfoil 16.0 Release Introduction to ANSYS CFX 2015 ANSYS, Inc. March 13, 2015 1 Release 16.0 Workshop Description: The flow simulated is an external aerodynamics

More information

Application of Wray-Agarwal Turbulence Model for Accurate Numerical Simulation of Flow Past a Three-Dimensional Wing-body

Application of Wray-Agarwal Turbulence Model for Accurate Numerical Simulation of Flow Past a Three-Dimensional Wing-body Washington University in St. Louis Washington University Open Scholarship Mechanical Engineering and Materials Science Independent Study Mechanical Engineering & Materials Science 4-28-2016 Application

More information

FEMLAB Exercise 1 for ChE366

FEMLAB Exercise 1 for ChE366 FEMLAB Exercise 1 for ChE366 Problem statement Consider a spherical particle of radius r s moving with constant velocity U in an infinitely long cylinder of radius R that contains a Newtonian fluid. Let

More information

NUMERICAL ANALYSIS OF CENTRIFUGAL PUMP IMPELLER FOR PERFORMANCE IMPROVEMENT

NUMERICAL ANALYSIS OF CENTRIFUGAL PUMP IMPELLER FOR PERFORMANCE IMPROVEMENT Int. J. Chem. Sci.: 14(2), 2016, 1148-1156 ISSN 0972-768X www.sadgurupublications.com NUMERICAL ANALYSIS OF CENTRIFUGAL PUMP IMPELLER FOR PERFORMANCE IMPROVEMENT S. KALIAPPAN, M. D. RAJKAMAL and D. BALAMURALI

More information

NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING

NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING Review of the Air Force Academy No.3 (35)/2017 NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING Cvetelina VELKOVA Department of Technical Mechanics, Naval Academy Nikola Vaptsarov,Varna, Bulgaria (cvetelina.velkova1985@gmail.com)

More information

S-ducts and Nozzles: STAR-CCM+ at the Propulsion Aerodynamics Workshop. Peter Burns, CD-adapco

S-ducts and Nozzles: STAR-CCM+ at the Propulsion Aerodynamics Workshop. Peter Burns, CD-adapco S-ducts and Nozzles: STAR-CCM+ at the Propulsion Aerodynamics Workshop Peter Burns, CD-adapco Background The Propulsion Aerodynamics Workshop (PAW) has been held twice PAW01: 2012 at the 48 th AIAA JPC

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

LES Analysis on Shock-Vortex Ring Interaction

LES Analysis on Shock-Vortex Ring Interaction LES Analysis on Shock-Vortex Ring Interaction Yong Yang Jie Tang Chaoqun Liu Technical Report 2015-08 http://www.uta.edu/math/preprint/ LES Analysis on Shock-Vortex Ring Interaction Yong Yang 1, Jie Tang

More information

ISSN(PRINT): ,(ONLINE): ,VOLUME-1,ISSUE-1,

ISSN(PRINT): ,(ONLINE): ,VOLUME-1,ISSUE-1, NUMERICAL ANALYSIS OF THE TUBE BANK PRESSURE DROP OF A SHELL AND TUBE HEAT EXCHANGER Kartik Ajugia, Kunal Bhavsar Lecturer, Mechanical Department, SJCET Mumbai University, Maharashtra Assistant Professor,

More information

Investigation of the critical submergence at pump intakes based on multiphase CFD calculations

Investigation of the critical submergence at pump intakes based on multiphase CFD calculations Advances in Fluid Mechanics X 143 Investigation of the critical submergence at pump intakes based on multiphase CFD calculations P. Pandazis & F. Blömeling TÜV NORD SysTec GmbH and Co. KG, Germany Abstract

More information

Analysis of Flow through a Drip Irrigation Emitter

Analysis of Flow through a Drip Irrigation Emitter International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Analysis of Flow through a Drip Irrigation Emitter Reethi K 1, Mallikarjuna 2, Vijaya Raghu B 3 1 (B.E Scholar, Mechanical Engineering,

More information

Computation of Velocity, Pressure and Temperature Distributions near a Stagnation Point in Planar Laminar Viscous Incompressible Flow

Computation of Velocity, Pressure and Temperature Distributions near a Stagnation Point in Planar Laminar Viscous Incompressible Flow Excerpt from the Proceedings of the COMSOL Conference 8 Boston Computation of Velocity, Pressure and Temperature Distributions near a Stagnation Point in Planar Laminar Viscous Incompressible Flow E. Kaufman

More information

High-Lift Aerodynamics: STAR-CCM+ Applied to AIAA HiLiftWS1 D. Snyder

High-Lift Aerodynamics: STAR-CCM+ Applied to AIAA HiLiftWS1 D. Snyder High-Lift Aerodynamics: STAR-CCM+ Applied to AIAA HiLiftWS1 D. Snyder Aerospace Application Areas Aerodynamics Subsonic through Hypersonic Aeroacoustics Store release & weapons bay analysis High lift devices

More information

P. Grafenberger*, E. Parkinson**, H.A. Georgopoulou, S.A. Kyriacou and K.C. Giannakoglou

P. Grafenberger*, E. Parkinson**, H.A. Georgopoulou, S.A. Kyriacou and K.C. Giannakoglou Constrained Multi-Objective Design Optimization of Hydraulic Components Using a Hierarchical Metamodel Assisted Evolutionary Algorithm. Part 2: Applications P. Grafenberger*, E. Parkinson**, H.A. Georgopoulou,

More information

ON THE NUMERICAL MODELING OF IMPINGING JET HEAT TRANSFER

ON THE NUMERICAL MODELING OF IMPINGING JET HEAT TRANSFER ON THE NUMERICAL MODELING OF IMPINGING JET HEAT TRANSFER Mirko Bovo 1,2, Sassan Etemad 2 and Lars Davidson 1 1 Dept. of Applied Mechanics, Chalmers University of Technology, Gothenburg, Sweden 2 Powertrain

More information

RANS COMPUTATION OF RIBBED DUCT FLOW USING FLUENT AND COMPARING TO LES

RANS COMPUTATION OF RIBBED DUCT FLOW USING FLUENT AND COMPARING TO LES RANS COMPUTATION OF RIBBED DUCT FLOW USING FLUENT AND COMPARING TO LES Máté M., Lohász +*& / Ákos Csécs + + Department of Fluid Mechanics, Budapest University of Technology and Economics, Budapest * Von

More information

FLOWING FLUIDS AND PRESSURE VARIATION

FLOWING FLUIDS AND PRESSURE VARIATION Chapter 4 Pressure differences are (often) the forces that move fluids FLOWING FLUIDS AND PRESSURE VARIATION Fluid Mechanics, Spring Term 2011 e.g., pressure is low at the center of a hurricane. For your

More information

Turbulencja w mikrokanale i jej wpływ na proces emulsyfikacji

Turbulencja w mikrokanale i jej wpływ na proces emulsyfikacji Polish Academy of Sciences Institute of Fundamental Technological Research Turbulencja w mikrokanale i jej wpływ na proces emulsyfikacji S. Błoński, P.Korczyk, T.A. Kowalewski PRESENTATION OUTLINE 0 Introduction

More information

Self-Cultivation System

Self-Cultivation System Development of a Microorganism Incubator using CFD Simulations Self-Cultivation System A comfortable mixing incubator to grow microorganism for agricultural, animal husbandry and ocean agriculture industries

More information

Virtual Product Development on Venturi Pump

Virtual Product Development on Venturi Pump ANALELE UNIVERSITĂłII EFTIMIE MURGU REŞIłA ANUL XVIII, NR. 3, 2011, ISSN 1453-7397 Sava Ianici, DraghiŃa Ianici, Milan Banić, Aleksandar Miltenović Virtual Product Development on Venturi Pump Market globalization

More information

STAR-CCM+: Ventilation SPRING Notes on the software 2. Assigned exercise (submission via Blackboard; deadline: Thursday Week 9, 11 pm)

STAR-CCM+: Ventilation SPRING Notes on the software 2. Assigned exercise (submission via Blackboard; deadline: Thursday Week 9, 11 pm) STAR-CCM+: Ventilation SPRING 208. Notes on the software 2. Assigned exercise (submission via Blackboard; deadline: Thursday Week 9, pm). Features of the Exercise Natural ventilation driven by localised

More information

Numerical Simulation of Heat Transfer by Natural Convection in Horizontal Finned Channels

Numerical Simulation of Heat Transfer by Natural Convection in Horizontal Finned Channels Numerical Simulation of Heat Transfer by Natural Convection in Horizontal Finned Channels Gabriel Gonçalves da Silva Ferreira, Luiz Fernando Lopes Rodrigues Silva Escola de Química, UFRJ Paulo L. C. Lage

More information

THE APPLICATION OF AN ATMOSPHERIC BOUNDARY LAYER TO EVALUATE TRUCK AERODYNAMICS IN CFD

THE APPLICATION OF AN ATMOSPHERIC BOUNDARY LAYER TO EVALUATE TRUCK AERODYNAMICS IN CFD THE APPLICATION OF AN ATMOSPHERIC BOUNDARY LAYER TO EVALUATE TRUCK AERODYNAMICS IN CFD A SOLUTION FOR A REAL-WORLD ENGINEERING PROBLEM Ir. Niek van Dijk DAF Trucks N.V. CONTENTS Scope & Background Theory:

More information

Effect of Position of Wall Mounted Surface Protrusion in Drag Characteristics At Low Reynolds Number

Effect of Position of Wall Mounted Surface Protrusion in Drag Characteristics At Low Reynolds Number ISSN (e): 2250 3005 Volume, 07 Issue, 11 November 2017 International Journal of Computational Engineering Research (IJCER) Effect of Position of Wall Mounted Surface Protrusion in Drag Characteristics

More information

CFD-RANS APPLICATIONS IN COMPLEX TERRAIN ANALYSIS. NUMERICAL VS EXPERIMENTAL RESULTS A CASE STUDY: COZZOVALLEFONDI WIND FARM IN SICILY

CFD-RANS APPLICATIONS IN COMPLEX TERRAIN ANALYSIS. NUMERICAL VS EXPERIMENTAL RESULTS A CASE STUDY: COZZOVALLEFONDI WIND FARM IN SICILY CFD-RANS APPLICATIONS IN COMPLEX TERRAIN ANALYSIS. NUMERICAL VS EXPERIMENTAL RESULTS A CASE STUDY: COZZOVALLEFONDI WIND FARM IN SICILY J.Maza (*),G.Nicoletti(**), (*) Pisa University, Aerospace Engineering

More information

NUMERICAL STUDY OF CAVITATING FLOW INSIDE A FLUSH VALVE

NUMERICAL STUDY OF CAVITATING FLOW INSIDE A FLUSH VALVE Conference on Modelling Fluid Flow (CMFF 09) The 14th International Conference on Fluid Flow Technologies Budapest, Hungary, September 9-12, 2009 NUMERICAL STUDY OF CAVITATING FLOW INSIDE A FLUSH VALVE

More information

Advances in Simulation for Marine And Offshore Applications. Milovan Perić

Advances in Simulation for Marine And Offshore Applications. Milovan Perić Advances in Simulation for Marine And Offshore Applications Milovan Perić Introduction Extensions and enhancements in STAR-CCM+ for marine and offshore applications: Creation of irregular long-crested

More information

Estimating Vertical Drag on Helicopter Fuselage during Hovering

Estimating Vertical Drag on Helicopter Fuselage during Hovering Estimating Vertical Drag on Helicopter Fuselage during Hovering A. A. Wahab * and M.Hafiz Ismail ** Aeronautical & Automotive Dept., Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310

More information

CFD SIMULATION AND SHAPE OPTIMIZATION OF SUPERSONIC EJECTORS FOR REFRIGERATION AND DESALINATION APPLICATIONS

CFD SIMULATION AND SHAPE OPTIMIZATION OF SUPERSONIC EJECTORS FOR REFRIGERATION AND DESALINATION APPLICATIONS Washington University in St. Louis Washington University Open Scholarship Engineering and Applied Science Theses & Dissertations Engineering and Applied Science Summer 8-2015 CFD SIMULATION AND SHAPE OPTIMIZATION

More information

Parallel Computation of Industrial Flows on the Cray T3D

Parallel Computation of Industrial Flows on the Cray T3D Parallel Computation of Industrial Flows on the Cray T3D Olivier Byrde, David Cobut and Mark L. Sawley, Institut de Machines Hydrauliques et de Mécanique des Fluides, Ecole Polytechnique Fédérale de Lausanne,

More information

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil Verification and Validation of Turbulent Flow around a Clark-Y Airfoil 1. Purpose 58:160 Intermediate Mechanics of Fluids CFD LAB 2 By Tao Xing and Fred Stern IIHR-Hydroscience & Engineering The University

More information

Airfoil Design Optimization Using Reduced Order Models Based on Proper Orthogonal Decomposition

Airfoil Design Optimization Using Reduced Order Models Based on Proper Orthogonal Decomposition Airfoil Design Optimization Using Reduced Order Models Based on Proper Orthogonal Decomposition.5.5.5.5.5.5.5..5.95.9.85.8.75.7 Patrick A. LeGresley and Juan J. Alonso Dept. of Aeronautics & Astronautics

More information

Best Practices Workshop: Overset Meshing

Best Practices Workshop: Overset Meshing Best Practices Workshop: Overset Meshing Overview Introduction to Overset Meshes Range of Application Workflow Demonstrations and Best Practices What are Overset Meshes? Overset meshes are also known as

More information

Zooming Capabilities of the 1D ESPSS Propulsion Simulation Tool with 3D-CFD Solvers: Implementation and Validation

Zooming Capabilities of the 1D ESPSS Propulsion Simulation Tool with 3D-CFD Solvers: Implementation and Validation Zooming Capabilities of the 1D ESPSS Propulsion Simulation Tool with 3D-CFD Solvers: Implementation and Validation Kaname Kawatsu and Nobuhiro Yamanishi Japan Aerospace Exploration Agency JAXA's Engineering

More information

FLOWVISION CFD FREQUENTLY ASKED QUESTIONS

FLOWVISION CFD FREQUENTLY ASKED QUESTIONS FLOWVISION CFD FREQUENTLY ASKED QUESTIONS 1. Installation and Licensing 1.1. Does FlowVision have floating licenses? 1.1.1. Actually all FlowVision licenses have floating capability and no extra fees are

More information

Numerical Flow Simulation using Star CCM+

Numerical Flow Simulation using Star CCM+ ABSTRACT Numerical Flow Simulation using Star CCM+ Upendra Rajak, Dr. Vishnu Prasad, Dr. Ruchi Khare Department of Civil Engineering, M.A. National Institute of Technology, Bhopal, MP, India *E-mail: upendrarajak86@gmail.com

More information

CD-adapco STAR Global Conference, Orlando, 2013, March 18-20

CD-adapco STAR Global Conference, Orlando, 2013, March 18-20 Transient Radial Blower Simulation as Part of the Development Process W. Kühnel, M. Weinmann, G. Apostolopoulos, S. Larpent Behr GmbH & Co. KG, Germany CD-adapco STAR Global Conference, Orlando, 2013,

More information

Parametric design of a Francis turbine runner by means of a three-dimensional inverse design method

Parametric design of a Francis turbine runner by means of a three-dimensional inverse design method IOP Conference Series: Earth and Environmental Science Parametric design of a Francis turbine runner by means of a three-dimensional inverse design method To cite this article: K Daneshkah and M Zangeneh

More information

Experimental Validation of the Computation Method for Strongly Nonlinear Wave-Body Interactions

Experimental Validation of the Computation Method for Strongly Nonlinear Wave-Body Interactions Experimental Validation of the Computation Method for Strongly Nonlinear Wave-Body Interactions by Changhong HU and Masashi KASHIWAGI Research Institute for Applied Mechanics, Kyushu University Kasuga

More information

CFD Modeling of a Radiator Axial Fan for Air Flow Distribution

CFD Modeling of a Radiator Axial Fan for Air Flow Distribution CFD Modeling of a Radiator Axial Fan for Air Flow Distribution S. Jain, and Y. Deshpande Abstract The fluid mechanics principle is used extensively in designing axial flow fans and their associated equipment.

More information

SHAPE pilot Monotricat SRL: Hull resistance simulations for an innovative hull using OpenFOAM

SHAPE pilot Monotricat SRL: Hull resistance simulations for an innovative hull using OpenFOAM Available online at www.prace-ri.eu Partnership for Advanced Computing in Europe SHAPE pilot Monotricat SRL: Hull resistance simulations for an innovative hull using OpenFOAM Lilit Axner a,b, Jing Gong

More information

Speed and Accuracy of CFD: Achieving Both Successfully ANSYS UK S.A.Silvester

Speed and Accuracy of CFD: Achieving Both Successfully ANSYS UK S.A.Silvester Speed and Accuracy of CFD: Achieving Both Successfully ANSYS UK S.A.Silvester 2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Content ANSYS CFD Introduction ANSYS, the company Simulation

More information

Computational Fluid Dynamics (CFD) Simulation in Air Duct Channels Using STAR CCM+

Computational Fluid Dynamics (CFD) Simulation in Air Duct Channels Using STAR CCM+ Available onlinewww.ejaet.com European Journal of Advances in Engineering and Technology, 2017,4 (3): 216-220 Research Article ISSN: 2394-658X Computational Fluid Dynamics (CFD) Simulation in Air Duct

More information

Profile Catalogue for Airfoil Sections Based on 3D Computations

Profile Catalogue for Airfoil Sections Based on 3D Computations Risø-R-58(EN) Profile Catalogue for Airfoil Sections Based on 3D Computations Franck Bertagnolio, Niels N. Sørensen and Jeppe Johansen Risø National Laboratory Roskilde Denmark December 26 Author: Franck

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY. Analyzing wind flow around the square plate using ADINA Project. Ankur Bajoria

MASSACHUSETTS INSTITUTE OF TECHNOLOGY. Analyzing wind flow around the square plate using ADINA Project. Ankur Bajoria MASSACHUSETTS INSTITUTE OF TECHNOLOGY Analyzing wind flow around the square plate using ADINA 2.094 - Project Ankur Bajoria May 1, 2008 Acknowledgement I would like to thank ADINA R & D, Inc for the full

More information

CFD Post-Processing of Rampressor Rotor Compressor

CFD Post-Processing of Rampressor Rotor Compressor Gas Turbine Industrial Fellowship Program 2006 CFD Post-Processing of Rampressor Rotor Compressor Curtis Memory, Brigham Young niversity Ramgen Power Systems Mentor: Rob Steele I. Introduction Recent movements

More information

Cloud Cavitating Flow around an Axisymmetric Projectile in the shallow water

Cloud Cavitating Flow around an Axisymmetric Projectile in the shallow water Cloud Cavitating Flow around an Axisymmetric Projectile in the shallow water 1,2 Chang Xu; 1,2 Yiwei Wang*; 1,2 Jian Huang; 1,2 Chenguang Huang 1 Key Laboratory for Mechanics in Fluid Solid Coupling Systems,

More information

Use of CFD in Design and Development of R404A Reciprocating Compressor

Use of CFD in Design and Development of R404A Reciprocating Compressor Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2006 Use of CFD in Design and Development of R404A Reciprocating Compressor Yogesh V. Birari

More information