IEOR E4008: Computational Discrete Optimization

Size: px
Start display at page:

Download "IEOR E4008: Computational Discrete Optimization"

Transcription

1 Yuri Faenza IEOR Department Jan 23th, 2018

2 Logistics Instructor: Yuri Faenza Assistant IEOR from 2016 Research area: Discrete Optimization Schedule: MW, 10:10-11:25 Room: 303 Mudd Office Hours: M, 5:30-7pm or by appointment Mudd 334

3 Website Course website on Courseworks: Slides, lecture notes, links to further material, I ll (try to) upload the slides of each lecture before class starts, so you can print them if you want to Piazza: Online discussions on topics of the class

4 Grading 30%: Assignments, roughly one every two weeks 10%: Class participation 60%: Project - I will list some projects ~ - you can come up with idea for c project, and talk to me

5 Examples of final projects How much would we save if all taxis were replaced by car sharing? How to solve discrete optimization problems with algorithms inspired by statistical physics and genetics How to summarize the content of documents using machine learning and submodular functions How can we visit all streets in a neighborhood as quickly as possible? How can we build index funds using algorithms on graphs?

6 Examples of assignments In an image, each pixel is represented by a 3-dimensional vector in the RGB space, ie each component represents the amount of one of the three primary colors (red, green blue) that appears in the pixel Each component has value between 0 and 256 Adapt one of the algorithms seen in class to the following problem You are given an image as a set of pixels in the RGB space, and an integer k Reducethesizeofthepicturebyrepresentingitusingatmostk colors

7 Image compression via clustering: an example Original image, 302KB 2colors,13KB 16 colors, 44KB 32 colors, 73KB IEORE4004: Optimization Models and Methods

8 What is this course about? Discrete optimization: choosethesolutionofmaximumprofit(orminimum cost) from a discrete family Some discrete optimization problems you have probably seen in basic classes: Many problems on graphs (eg shortest path) : " in

9 What is this course about? Discrete optimization: choosethesolutionofmaximumprofit(orminimum cost) from a discrete family Some discrete optimization problems you have probably seen in basic classes: Many problems on graphs (eg shortest path) Integer Programming f Linear min cx Ax b x Z n programming integer I program

10 Why a class focused on Discrete Optimization? Many applications: production planning network design biomedicine DNA assembling machine learning In general, very hard to solve not a unique approach

11 - - tire Example: online ads Bis 25$ Where does the 97% of Google revenue come from 1? Advertising! Google Adwords: Company i chooses: we car di cci = race cci amonthlybudgetb i ; for each word w acostc(i, w) that the company is willing to pay to have its ad shown when word w is searched on Google,,w ) -_ w ) = 70$ s $,w ) = 3$ When w is searched, Google chooses a set of ads to display If the user clicks on the ad of company i, Google gets c(i, w) from the company (unless the company has finished its budget B i ) 1 Source:

12 Which word produces the biggest revenue 2? Which is the most expensive 3? 2 Source: 3 Source:

13 The Adwords problem Who should we assign each word to? WORDS TO Y OTA CAR BUDGET RACE G- H

14 agg The Adwords problem CAR 3 RACE WORDS 4 [ I f 4O 13 ) Bugg,, 3f) 1[ I I GM Who should we assign each word to? 7) CAR a- ti RACE 8 TOYOTA 2X CAR 2 x RACE STRATEGY :/GRCED WHO STILL HAS G SOME BUDGET LEFT 8 -, q, µ, won, I TO THE HIGHEST BIDDER can TOYOTA G TOYOTA 9 RACE c- n - - I a I 10

15 The Adwords problem WORDS CAR RACE I L TOYOTA 8 2x CAR 2x RACE TSU yy3 ) BUDGET CAR TOYOTA can Gn 3 [ I [ gu RACE TOYOTA 3 Who should we assign each word to? RACE g- n y - II

16 The Adwords problem Who should we assign each word to? What if arrivals are random? Dr Balasubramanian Sivan, Google Research

17 The Stable Marriage problem A marriage is stable if m, w : m prefers w to his partner w a m " hav x, m,w as above is called a " blocking pain, -

18 The Stable Marriage problem my W1 is a blocking pain I not a stable matching

19 The Stable Marriage problem NO BLOCKING PAIR STABLE MATCHING

20 The Stable Marriage problem Applications include: Allocations of students to high schools in NYC, of doctors to hospitals, of kidney donors to patients,

21 A mathematical challenge From a Procter & Gamble ad from 1962: Imagine that Toody and Muldoon want to drive around the country and visit each of the 33 locations represented by dots on the contest map, and that in doing so, they want to travel the shortest possible route You should plan a route for them from location to location which will result in the shortest total mileage from Chicago, Illinois back to Chicago, Illinois TO $ in 1962 correspond to $ in today s value

22 TSP and applications Travelling Salesman Problem (TSP): find a tour of minimum length Today s algorithms can solve problems with tens of thousands of cities, and there are still open challenges Applications: Pick-up & delivery, Guiding industrial machines, Mapping genomes, FREE App SOLVING TSP INSTANCES : CONCORDE

23 Discrete Optimization for Machine Learning i - "shhgreturj Ip,? ' " ',p4 Let f ( S ) = AREA COVERED BY ACTIVATING seasons IN POSITION S f ( sit ) + fcsntsfcs ) + FCT)

24 Discrete Optimization for Machine Learning Those functions have diminishing returns and are called Submodular Functions

25 What is this course about? 1: Problems and Applications Minimum spanning tree, steiner minimum tree, bin packing Network design and beyond TSP: approximation algorithms, heuristics, Integer Programming and branch and bound Extensions: vehicle routing problems Matching problems, stable marriage problem Applications to the New York school system and to the hospital-intern problem Beyond stability Online matching and online advertisement: adwords and secretary problems Submodular functions and their applications in machine learning: MAP inference, document summarization, influence in social networks

26 What is this course about? 2: Algorithms For most of those problems, we will see one or more algorithms for their solutions Why? Often, those algorithms contain ideas that are problem-independent and can be reused for your favourite application How well we want to solve the problem depends on the application

27 What is this course about? 3: Implementations We will test our algorithm in practice using: Python, Gurobi, and their interaction

28 Do we really need to learn all this? Objection 1: There are only a finite number of solutions to these problems Idon tneedasmartalgorithm,ihave asupercomputer! Objection 2: I ll buy an expensive solver and let it do the job!

29 Do we really need to learn all this? Objection 1: There are only a finite number of solutions to these problems Idon tneedasmartalgorithm,ihave asupercomputer! Objection 2: I ll buy an expensive solver and let it do the job! Let s prove those objections wrong!

30 Number of solutions to TSP vs very large sets cities tours Number of cells in a human body: Number of particles in the visible universe: (, n cities # feasible solutions roughly n!

31 in Graphs, trees Graph G(V, E) In is, } n=s edges lk#hkvslkind oh 4floss of J 3

32 Graphs, trees Graph G(V, E) Degree OY degrees

33 Graphs, trees Graph G(V, E) Degree Path o - o - o - O - - o repetition allowed ( of either nodes or edges )

34 Graphs, trees Graph G(V, E) Degree Path / as a Walk (open and closed) ' path ", but repetitions allowed first node #, last node " " first nodes last node -1 open walk closed walk

35 Graphs, trees Graph G(V, E) Degree Path Walk (open and closed) Cycle / % every path is an open walk every cycle is a closed walk

36 Graphs, trees TREE Graph G(V, E) Degree Path Walk (open and closed) Cycle O Tree I NOT A TREE ( 7 cycle ) CONNECTED GRAPH O WITH NO CYCLE A O TREE o ( NOT CONNECTED ) O o

37 Graphs, trees Graph G(V, E) 2 Degree 3 Path Walk (open and closed) Cycle I 4 25 I 3 Tree Weighted graph! weight can be on the edges or on the nodes C or both)

38 Graphs, trees O Graph G(V, E) Degree O O O Path Walk (open and closed) Cycle Tree Weighted graph Subgraph s a subgraph O O of O O [ We Cdn choose any and edges ] selection of nodes

39 Graphs, trees O Vl O 3 Graph G(V, E) Degree Path Walk (open and closed) Cycle Tree Weighted graph Subgraph Induced Subgraph Go ok ou s the subgraph of VI O o 's " f induced by VI Vz, Vs Va choose we a subset of vertices and, take edges between them ]

40 Graphs, trees Graph G(V, E) Degree Path Walk (open and closed) Cycle Tree Weighted graph Subgraph Induced Subgraph Multigraph c) the same edge can :O: Xan than once

41 TSP: a formulation The Travelling Salesman 1 Problem y (TSP): cities 00 Given: A graph G(V, E) withweightsw 0ontheedges Find: a tour ieacycle passing through all vertices of the graph of minimum total weight O between roads cities 1 5 t I tht 6 = t h t 3 t s = 14 the 16 we prefer 2

42 Greedy algorithm for TSP Input: AgraphG(V, E); w : E R 0 L =[0] For i =0,,n 2: Pick j V \ L minimizing w(l[i], j) Set L[i +1]=j ± Output L 1 IT MAY NOT GIVE You THG OPTIMUM 2 IT HAV Bf FAL AWAY But From Ttb OPTIMUM IT IS FAST AND EASY To IMPLEMENT

43 Pros and cons of Greedy Pros: Fast Intuitively, seems to do the right thing Cons: We have no idea how far it is from the optimum

Real-World Applications of Graph Theory

Real-World Applications of Graph Theory Real-World Applications of Graph Theory St. John School, 8 th Grade Math Class February 23, 2018 Dr. Dave Gibson, Professor Department of Computer Science Valdosta State University 1 What is a Graph? A

More information

Machine Learning for Software Engineering

Machine Learning for Software Engineering Machine Learning for Software Engineering Introduction and Motivation Prof. Dr.-Ing. Norbert Siegmund Intelligent Software Systems 1 2 Organizational Stuff Lectures: Tuesday 11:00 12:30 in room SR015 Cover

More information

Combinatorial Optimization

Combinatorial Optimization Combinatorial Optimization Frank de Zeeuw EPFL 2012 Today Introduction Graph problems - What combinatorial things will we be optimizing? Algorithms - What kind of solution are we looking for? Linear Programming

More information

Discrete Optimization

Discrete Optimization Discrete Optimization Quentin Louveaux ULg - Institut Montefiore 2016 Quentin Louveaux (ULg - Institut Montefiore) Discrete Optimization 2016 1 / 28 Discrete optimization problems What is a discrete optimization

More information

Online Graph Exploration

Online Graph Exploration Distributed Computing Online Graph Exploration Semester thesis Simon Hungerbühler simonhu@ethz.ch Distributed Computing Group Computer Engineering and Networks Laboratory ETH Zürich Supervisors: Sebastian

More information

CSE 417 Branch & Bound (pt 4) Branch & Bound

CSE 417 Branch & Bound (pt 4) Branch & Bound CSE 417 Branch & Bound (pt 4) Branch & Bound Reminders > HW8 due today > HW9 will be posted tomorrow start early program will be slow, so debugging will be slow... Review of previous lectures > Complexity

More information

INF Biologically inspired computing Lecture 1: Marsland chapter 9.1, Optimization and Search Jim Tørresen

INF Biologically inspired computing Lecture 1: Marsland chapter 9.1, Optimization and Search Jim Tørresen INF3490 - Biologically inspired computing Lecture 1: Marsland chapter 9.1, 9.4-9.6 2017 Optimization and Search Jim Tørresen Optimization and Search 2 Optimization and Search Methods (selection) 1. Exhaustive

More information

Lecture 11a: Maximum Matchings Lale Özkahya

Lecture 11a: Maximum Matchings Lale Özkahya BBM 205 Discrete Mathematics Hacettepe University Lecture 11a: Maximum Matchings Lale Özkahya Resources: Kenneth Rosen, Discrete Mathematics and App. http://www.cs.cmu.edu/./15251/schedule.html Some motivating

More information

Fuzzy Inspired Hybrid Genetic Approach to Optimize Travelling Salesman Problem

Fuzzy Inspired Hybrid Genetic Approach to Optimize Travelling Salesman Problem Fuzzy Inspired Hybrid Genetic Approach to Optimize Travelling Salesman Problem Bindu Student, JMIT Radaur binduaahuja@gmail.com Mrs. Pinki Tanwar Asstt. Prof, CSE, JMIT Radaur pinki.tanwar@gmail.com Abstract

More information

Introduction to Approximation Algorithms

Introduction to Approximation Algorithms Introduction to Approximation Algorithms Dr. Gautam K. Das Departmet of Mathematics Indian Institute of Technology Guwahati, India gkd@iitg.ernet.in February 19, 2016 Outline of the lecture Background

More information

Graphs and Network Flows IE411. Lecture 21. Dr. Ted Ralphs

Graphs and Network Flows IE411. Lecture 21. Dr. Ted Ralphs Graphs and Network Flows IE411 Lecture 21 Dr. Ted Ralphs IE411 Lecture 21 1 Combinatorial Optimization and Network Flows In general, most combinatorial optimization and integer programming problems are

More information

CAD Algorithms. Categorizing Algorithms

CAD Algorithms. Categorizing Algorithms CAD Algorithms Categorizing Algorithms Mohammad Tehranipoor ECE Department 2 September 2008 1 Categorizing Algorithms Greedy Algorithms Prim s Algorithm (Minimum Spanning Tree) A subgraph that is a tree

More information

Theorem 2.9: nearest addition algorithm

Theorem 2.9: nearest addition algorithm There are severe limits on our ability to compute near-optimal tours It is NP-complete to decide whether a given undirected =(,)has a Hamiltonian cycle An approximation algorithm for the TSP can be used

More information

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs 15.082J and 6.855J Lagrangian Relaxation 2 Algorithms Application to LPs 1 The Constrained Shortest Path Problem (1,10) 2 (1,1) 4 (2,3) (1,7) 1 (10,3) (1,2) (10,1) (5,7) 3 (12,3) 5 (2,2) 6 Find the shortest

More information

1 Better Approximation of the Traveling Salesman

1 Better Approximation of the Traveling Salesman Stanford University CS261: Optimization Handout 4 Luca Trevisan January 13, 2011 Lecture 4 In which we describe a 1.5-approximate algorithm for the Metric TSP, we introduce the Set Cover problem, observe

More information

Notes for Lecture 24

Notes for Lecture 24 U.C. Berkeley CS170: Intro to CS Theory Handout N24 Professor Luca Trevisan December 4, 2001 Notes for Lecture 24 1 Some NP-complete Numerical Problems 1.1 Subset Sum The Subset Sum problem is defined

More information

Optimal tour along pubs in the UK

Optimal tour along pubs in the UK 1 From Facebook Optimal tour along 24727 pubs in the UK Road distance (by google maps) see also http://www.math.uwaterloo.ca/tsp/pubs/index.html (part of TSP homepage http://www.math.uwaterloo.ca/tsp/

More information

Notes for Recitation 9

Notes for Recitation 9 6.042/18.062J Mathematics for Computer Science October 8, 2010 Tom Leighton and Marten van Dijk Notes for Recitation 9 1 Traveling Salesperson Problem Now we re going to talk about a famous optimization

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

Problem set 2. Problem 1. Problem 2. Problem 3. CS261, Winter Instructor: Ashish Goel.

Problem set 2. Problem 1. Problem 2. Problem 3. CS261, Winter Instructor: Ashish Goel. CS261, Winter 2017. Instructor: Ashish Goel. Problem set 2 Electronic submission to Gradescope due 11:59pm Thursday 2/16. Form a group of 2-3 students that is, submit one homework with all of your names.

More information

Hybrid Constraint Programming and Metaheuristic methods for Large Scale Optimization Problems

Hybrid Constraint Programming and Metaheuristic methods for Large Scale Optimization Problems Hybrid Constraint Programming and Metaheuristic methods for Large Scale Optimization Problems Fabio Parisini Tutor: Paola Mello Co-tutor: Michela Milano Final seminars of the XXIII cycle of the doctorate

More information

Pre-requisite Material for Course Heuristics and Approximation Algorithms

Pre-requisite Material for Course Heuristics and Approximation Algorithms Pre-requisite Material for Course Heuristics and Approximation Algorithms This document contains an overview of the basic concepts that are needed in preparation to participate in the course. In addition,

More information

6 ROUTING PROBLEMS VEHICLE ROUTING PROBLEMS. Vehicle Routing Problem, VRP:

6 ROUTING PROBLEMS VEHICLE ROUTING PROBLEMS. Vehicle Routing Problem, VRP: 6 ROUTING PROBLEMS VEHICLE ROUTING PROBLEMS Vehicle Routing Problem, VRP: Customers i=1,...,n with demands of a product must be served using a fleet of vehicles for the deliveries. The vehicles, with given

More information

and 6.855J Lagrangian Relaxation I never missed the opportunity to remove obstacles in the way of unity. Mohandas Gandhi

and 6.855J Lagrangian Relaxation I never missed the opportunity to remove obstacles in the way of unity. Mohandas Gandhi 15.082 and 6.855J Lagrangian Relaxation I never missed the opportunity to remove obstacles in the way of unity. Mohandas Gandhi On bounding in optimization In solving network flow problems, we not only

More information

Mathematical Thinking

Mathematical Thinking Mathematical Thinking Chapter 2 Hamiltonian Circuits and Spanning Trees It often happens in mathematics that what appears to be a minor detail in the statement of a problem can have a profound effect on

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A new 4 credit unit course Part of Theoretical Computer Science courses at the Department of Mathematics There will be 4 hours

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Greedy Algorithms October 28, 2016 École Centrale Paris, Châtenay-Malabry, France Dimo Brockhoff Inria Saclay Ile-de-France 2 Course Overview Date Fri, 7.10.2016 Fri, 28.10.2016

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture 28 Chinese Postman Problem In this lecture we study the Chinese postman

More information

ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS

ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ OUTLINE Optimisation problems Optimisation & search Two Examples The knapsack problem

More information

Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, Approximation Algorithms

Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, Approximation Algorithms Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 Approximation Algorithms 1 Bike Tour Suppose you decide to ride a bicycle around

More information

Travelling salesman problem using reduced algorithmic Branch and bound approach P. Ranjana Hindustan Institute of Technology and Science

Travelling salesman problem using reduced algorithmic Branch and bound approach P. Ranjana Hindustan Institute of Technology and Science Volume 118 No. 20 2018, 419-424 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Travelling salesman problem using reduced algorithmic Branch and bound approach P. Ranjana Hindustan

More information

Maximum flow problem CE 377K. March 3, 2015

Maximum flow problem CE 377K. March 3, 2015 Maximum flow problem CE 377K March 3, 2015 Informal evaluation results 2 slow, 16 OK, 2 fast Most unclear topics: max-flow/min-cut, WHAT WILL BE ON THE MIDTERM? Most helpful things: review at start of

More information

Algorithms for Decision Support. Integer linear programming models

Algorithms for Decision Support. Integer linear programming models Algorithms for Decision Support Integer linear programming models 1 People with reduced mobility (PRM) require assistance when travelling through the airport http://www.schiphol.nl/travellers/atschiphol/informationforpassengerswithreducedmobility.htm

More information

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W.

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W. : Coping with NP-Completeness Course contents: Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems Reading: Chapter 34 Chapter 35.1, 35.2 Y.-W. Chang 1 Complexity

More information

APPROXIMATION ALGORITHMS FOR GEOMETRIC PROBLEMS

APPROXIMATION ALGORITHMS FOR GEOMETRIC PROBLEMS APPROXIMATION ALGORITHMS FOR GEOMETRIC PROBLEMS Subhas C. Nandy (nandysc@isical.ac.in) Advanced Computing and Microelectronics Unit Indian Statistical Institute Kolkata 70010, India. Organization Introduction

More information

Operations Research. Overview of Areas of Faculty Research. Graduate Orientation Fall Department of Mathematical and Statistical Sciences

Operations Research. Overview of Areas of Faculty Research. Graduate Orientation Fall Department of Mathematical and Statistical Sciences Operations Research Overview of Areas of Faculty Research Department of Mathematical and Statistical Sciences Graduate Orientation Fall 2011 What is Operations Research? Agent-based modeling Airline scheduling

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures & Algorithms (Cs-2133) By Dr. Qamas Gul Khan Safi Fall 2018 http://dsa17.weebly.com Department of Electrical Engineering University of Engineering & Technology, Taxila. Lecture No.01 Data

More information

1 The Traveling Salesperson Problem (TSP)

1 The Traveling Salesperson Problem (TSP) CS 598CSC: Approximation Algorithms Lecture date: January 23, 2009 Instructor: Chandra Chekuri Scribe: Sungjin Im In the previous lecture, we had a quick overview of several basic aspects of approximation

More information

Assignment 3b: The traveling salesman problem

Assignment 3b: The traveling salesman problem Chalmers University of Technology MVE165 University of Gothenburg MMG631 Mathematical Sciences Linear and integer optimization Optimization with applications Emil Gustavsson Assignment information Ann-Brith

More information

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld )

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) Local Search and Optimization Chapter 4 Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) 1 2 Outline Local search techniques and optimization Hill-climbing

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 1: Introduction to Optimization. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 1: Introduction to Optimization. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 013 Lecture 1: Introduction to Optimization Instructor: Shaddin Dughmi Outline 1 Course Overview Administrivia 3 Linear Programming Outline 1 Course Overview

More information

Algorithms: Why and How. Dr. Ted Ralphs

Algorithms: Why and How. Dr. Ted Ralphs Algorithms: Why and How Dr. Ted Ralphs Algorithms: Why and How 1 What is an Algorithm? Algorithms: Why and How 1 What is an Algorithm? According to Webster s Collegiate Dictionary: A procedure for solving

More information

Lecture 6: Graph Properties

Lecture 6: Graph Properties Lecture 6: Graph Properties Rajat Mittal IIT Kanpur In this section, we will look at some of the combinatorial properties of graphs. Initially we will discuss independent sets. The bulk of the content

More information

Combinatorial Optimization Lab No. 10 Traveling Salesman Problem

Combinatorial Optimization Lab No. 10 Traveling Salesman Problem Combinatorial Optimization Lab No. 10 Traveling Salesman Problem Industrial Informatics Research Center http://industrialinformatics.cz/ May 29, 2018 Abstract In this lab we review various ways how to

More information

val(y, I) α (9.0.2) α (9.0.3)

val(y, I) α (9.0.2) α (9.0.3) CS787: Advanced Algorithms Lecture 9: Approximation Algorithms In this lecture we will discuss some NP-complete optimization problems and give algorithms for solving them that produce a nearly optimal,

More information

General Purpose Methods for Combinatorial Optimization

General Purpose Methods for Combinatorial Optimization General Purpose Methods for Combinatorial Optimization 0/7/00 Maximum Contiguous Sum 3-4 9 6-3 8 97-93 -3 84 Σ = 87 Given:... N Z, at least one i > 0 ind i, j such that j k k = i is maximal 0/7/00 0/7/00

More information

Heuristic Optimization

Heuristic Optimization Heuristic Optimization Thomas Stützle RDA, CoDE Université Libre de Bruxelles stuetzle@ulb.ac.be iridia.ulb.ac.be/~stuetzle iridia.ulb.ac.be/~stuetzle/teaching/ho Example problems imagine a very good friend

More information

Dr. Mustafa Jarrar. Chapter 4 Informed Searching. Sina Institute, University of Birzeit

Dr. Mustafa Jarrar. Chapter 4 Informed Searching. Sina Institute, University of Birzeit Lecture Notes, Advanced Artificial Intelligence (SCOM7341) Sina Institute, University of Birzeit 2 nd Semester, 2012 Advanced Artificial Intelligence (SCOM7341) Chapter 4 Informed Searching Dr. Mustafa

More information

Foundations of Computing

Foundations of Computing Foundations of Computing Darmstadt University of Technology Dept. Computer Science Winter Term 2005 / 2006 Copyright c 2004 by Matthias Müller-Hannemann and Karsten Weihe All rights reserved http://www.algo.informatik.tu-darmstadt.de/

More information

February 19, Integer programming. Outline. Problem formulation. Branch-andbound

February 19, Integer programming. Outline. Problem formulation. Branch-andbound Olga Galinina olga.galinina@tut.fi ELT-53656 Network Analysis and Dimensioning II Department of Electronics and Communications Engineering Tampere University of Technology, Tampere, Finland February 19,

More information

Computational Complexity CSC Professor: Tom Altman. Capacitated Problem

Computational Complexity CSC Professor: Tom Altman. Capacitated Problem Computational Complexity CSC 5802 Professor: Tom Altman Capacitated Problem Agenda: Definition Example Solution Techniques Implementation Capacitated VRP (CPRV) CVRP is a Vehicle Routing Problem (VRP)

More information

LEAST COST ROUTING ALGORITHM WITH THE STATE SPACE RELAXATION IN A CENTRALIZED NETWORK

LEAST COST ROUTING ALGORITHM WITH THE STATE SPACE RELAXATION IN A CENTRALIZED NETWORK VOL., NO., JUNE 08 ISSN 896608 00608 Asian Research Publishing Network (ARPN). All rights reserved. LEAST COST ROUTING ALGORITHM WITH THE STATE SPACE RELAXATION IN A CENTRALIZED NETWORK Y. J. Lee Department

More information

Math 381 Discrete Mathematical Modeling

Math 381 Discrete Mathematical Modeling Math 381 Discrete Mathematical Modeling Sean Griffin Today: -Equipment Replacement Problem -Min Spanning Tree Problem -Clustering Friday s Plan Intro to LPSolve software Download before class (link on

More information

56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998

56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998 56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998 Part A: Answer any four of the five problems. (15 points each) 1. Transportation problem 2. Integer LP Model Formulation

More information

Combinatorial Optimization - Lecture 14 - TSP EPFL

Combinatorial Optimization - Lecture 14 - TSP EPFL Combinatorial Optimization - Lecture 14 - TSP EPFL 2012 Plan Simple heuristics Alternative approaches Best heuristics: local search Lower bounds from LP Moats Simple Heuristics Nearest Neighbor (NN) Greedy

More information

Questions? You are given the complete graph of Facebook. What questions would you ask? (What questions could we hope to answer?)

Questions? You are given the complete graph of Facebook. What questions would you ask? (What questions could we hope to answer?) P vs. NP What now? Attribution These slides were prepared for the New Jersey Governor s School course The Math Behind the Machine taught in the summer of 2011 by Grant Schoenebeck Large parts of these

More information

Local Algorithms for Sparse Spanning Graphs

Local Algorithms for Sparse Spanning Graphs Local Algorithms for Sparse Spanning Graphs Reut Levi Dana Ron Ronitt Rubinfeld Intro slides based on a talk given by Reut Levi Minimum Spanning Graph (Spanning Tree) Local Access to a Minimum Spanning

More information

CMSC 451: Lecture 22 Approximation Algorithms: Vertex Cover and TSP Tuesday, Dec 5, 2017

CMSC 451: Lecture 22 Approximation Algorithms: Vertex Cover and TSP Tuesday, Dec 5, 2017 CMSC 451: Lecture 22 Approximation Algorithms: Vertex Cover and TSP Tuesday, Dec 5, 2017 Reading: Section 9.2 of DPV. Section 11.3 of KT presents a different approximation algorithm for Vertex Cover. Coping

More information

Introduction to Combinatorial Algorithms

Introduction to Combinatorial Algorithms Fall 2009 Intro Introduction to the course What are : Combinatorial Structures? Combinatorial Algorithms? Combinatorial Problems? Combinatorial Structures Combinatorial Structures Combinatorial structures

More information

Lecture 8 Network Flow Models

Lecture 8 Network Flow Models Lecture 8 Andrew Nunekpeku / Charles Jackson Fall 2011 Outline 1 1 Assignment 4 When we ask for the solution of an LP, we typically mean tell me the values of the decision variables or what is the plan?

More information

How can we lay cable at minimum cost to make every telephone reachable from every other? What is the fastest route between two given cities?

How can we lay cable at minimum cost to make every telephone reachable from every other? What is the fastest route between two given cities? 1 Introduction Graph theory is one of the most in-demand (i.e. profitable) and heavily-studied areas of applied mathematics and theoretical computer science. May graph theory questions are applied in this

More information

Discussion. What problems stretch the limits of computation? Compare 4 Algorithms. What is Brilliance? 11/11/11

Discussion. What problems stretch the limits of computation? Compare 4 Algorithms. What is Brilliance? 11/11/11 11/11/11 UNIVERSITY of WISCONSIN-MADISON Computer Sciences Department CS 0: Introduction to Computation Discussion Professor Andrea Arpaci-Dusseau Is there an inherent difference between What problems

More information

OR 674 DYNAMIC PROGRAMMING Rajesh Ganesan, Associate Professor Systems Engineering and Operations Research George Mason University

OR 674 DYNAMIC PROGRAMMING Rajesh Ganesan, Associate Professor Systems Engineering and Operations Research George Mason University OR 674 DYNAMIC PROGRAMMING Rajesh Ganesan, Associate Professor Systems Engineering and Operations Research George Mason University Ankit Shah Ph.D. Candidate Analytics and Operations Research (OR) Descriptive

More information

Effective Tour Searching for Large TSP Instances. Gerold Jäger

Effective Tour Searching for Large TSP Instances. Gerold Jäger Effective Tour Searching for Large TSP Instances Gerold Jäger Martin-Luther-University Halle-Wittenberg joint work with Changxing Dong, Paul Molitor, Dirk Richter November 14, 2008 Overview 1 Introduction

More information

15-780: Problem Set #2

15-780: Problem Set #2 15-780: Problem Set #2 February 19, 2014 1. Constraint satisfaction problem (CSP) [20pts] A common problem at universities is to schedule rooms for exams. The basic structure of this problem is to divide

More information

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld )

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) Local Search and Optimization Chapter 4 Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) 1 2 Outline Local search techniques and optimization Hill-climbing

More information

GRAPH THEORY AND LOGISTICS

GRAPH THEORY AND LOGISTICS GRAPH THEORY AND LOGISTICS Maja Fošner and Tomaž Kramberger University of Maribor Faculty of Logistics Mariborska cesta 2 3000 Celje Slovenia maja.fosner@uni-mb.si tomaz.kramberger@uni-mb.si Abstract This

More information

A constant-factor approximation algorithm for the asymmetric travelling salesman problem

A constant-factor approximation algorithm for the asymmetric travelling salesman problem A constant-factor approximation algorithm for the asymmetric travelling salesman problem London School of Economics Joint work with Ola Svensson and Jakub Tarnawski cole Polytechnique F d rale de Lausanne

More information

Lecture 1 - Introduction (Class Notes)

Lecture 1 - Introduction (Class Notes) Lecture 1 - Introduction (Class Notes) Outline: How does a computer work? Very brief! What is programming? The evolution of programming languages Generations of programming languages Compiled vs. Interpreted

More information

V1.0: Seth Gilbert, V1.1: Steven Halim August 30, Abstract. d(e), and we assume that the distance function is non-negative (i.e., d(x, y) 0).

V1.0: Seth Gilbert, V1.1: Steven Halim August 30, Abstract. d(e), and we assume that the distance function is non-negative (i.e., d(x, y) 0). CS4234: Optimisation Algorithms Lecture 4 TRAVELLING-SALESMAN-PROBLEM (4 variants) V1.0: Seth Gilbert, V1.1: Steven Halim August 30, 2016 Abstract The goal of the TRAVELLING-SALESMAN-PROBLEM is to find

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms CSE 101, Winter 018 D/Q Greed SP s DP LP, Flow B&B, Backtrack Metaheuristics P, NP Design and Analysis of Algorithms Lecture 8: Greed Class URL: http://vlsicad.ucsd.edu/courses/cse101-w18/ Optimization

More information

15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018

15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018 15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018 In this lecture, we describe a very general problem called linear programming

More information

SPANNING TREES. Lecture 21 CS2110 Spring 2016

SPANNING TREES. Lecture 21 CS2110 Spring 2016 1 SPANNING TREES Lecture 1 CS110 Spring 016 Spanning trees What we do today: Calculating the shortest path in Dijkstra s algorithm Look at time complexity of shortest path Definitions Minimum spanning

More information

Class Overview. Introduction to Artificial Intelligence COMP 3501 / COMP Lecture 2. Problem Solving Agents. Problem Solving Agents: Assumptions

Class Overview. Introduction to Artificial Intelligence COMP 3501 / COMP Lecture 2. Problem Solving Agents. Problem Solving Agents: Assumptions Class Overview COMP 3501 / COMP 4704-4 Lecture 2 Prof. JGH 318 Problem Solving Agents Problem Solving Agents: Assumptions Requires a goal Assume world is: Requires actions Observable What actions? Discrete

More information

Precept 4: Traveling Salesman Problem, Hierarchical Clustering. Qian Zhu 2/23/2011

Precept 4: Traveling Salesman Problem, Hierarchical Clustering. Qian Zhu 2/23/2011 Precept 4: Traveling Salesman Problem, Hierarchical Clustering Qian Zhu 2/23/2011 Agenda Assignment: Traveling salesman problem Hierarchical clustering Example Comparisons with K-means TSP TSP: Given the

More information

Coping with the Limitations of Algorithm Power Exact Solution Strategies Backtracking Backtracking : A Scenario

Coping with the Limitations of Algorithm Power Exact Solution Strategies Backtracking Backtracking : A Scenario Coping with the Limitations of Algorithm Power Tackling Difficult Combinatorial Problems There are two principal approaches to tackling difficult combinatorial problems (NP-hard problems): Use a strategy

More information

Instant Insanity Instructor s Guide Make-it and Take-it Kit for AMTNYS 2006

Instant Insanity Instructor s Guide Make-it and Take-it Kit for AMTNYS 2006 Instant Insanity Instructor s Guide Make-it and Take-it Kit for AMTNYS 2006 THE KIT: This kit contains materials for two Instant Insanity games, a student activity sheet with answer key and this instructor

More information

Graph theory: basic concepts

Graph theory: basic concepts Graph theory: basic concepts Graphs and networks allow modelling many different decision problems Graphs permit to represent relationships among different kinds of entities: Cities connected by roads Computers

More information

ACO and other (meta)heuristics for CO

ACO and other (meta)heuristics for CO ACO and other (meta)heuristics for CO 32 33 Outline Notes on combinatorial optimization and algorithmic complexity Construction and modification metaheuristics: two complementary ways of searching a solution

More information

Some Basics on Tolerances. Gerold Jäger

Some Basics on Tolerances. Gerold Jäger Some Basics on Tolerances Gerold Jäger University Halle, Germany joint work with Boris Goldengorin and Paul Molitor June 21, 2006 Acknowledgement This paper is dedicated to Jop Sibeyn, who is missed since

More information

A NEW HEURISTIC ALGORITHM FOR MULTIPLE TRAVELING SALESMAN PROBLEM

A NEW HEURISTIC ALGORITHM FOR MULTIPLE TRAVELING SALESMAN PROBLEM TWMS J. App. Eng. Math. V.7, N.1, 2017, pp. 101-109 A NEW HEURISTIC ALGORITHM FOR MULTIPLE TRAVELING SALESMAN PROBLEM F. NURIYEVA 1, G. KIZILATES 2, Abstract. The Multiple Traveling Salesman Problem (mtsp)

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures 3 Definitions an undirected graph G = (V, E) is a

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms CS4335: Design and Analysis of Algorithms Who we are: Dr. Lusheng WANG Dept. of Computer Science office: B6422 phone: 2788 9820 e-mail: lwang@cs.cityu.edu.hk Course web site: http://www.cs.cityu.edu.hk/~lwang/ccs3335.html

More information

GENETIC ALGORITHM with Hands-On exercise

GENETIC ALGORITHM with Hands-On exercise GENETIC ALGORITHM with Hands-On exercise Adopted From Lecture by Michael Negnevitsky, Electrical Engineering & Computer Science University of Tasmania 1 Objective To understand the processes ie. GAs Basic

More information

EECS 203 Lecture 20. More Graphs

EECS 203 Lecture 20. More Graphs EECS 203 Lecture 20 More Graphs Admin stuffs Last homework due today Office hour changes starting Friday (also in Piazza) Friday 6/17: 2-5 Mark in his office. Sunday 6/19: 2-5 Jasmine in the UGLI. Monday

More information

Lecture 20 : Trees DRAFT

Lecture 20 : Trees DRAFT CS/Math 240: Introduction to Discrete Mathematics 4/12/2011 Lecture 20 : Trees Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last time we discussed graphs. Today we continue this discussion,

More information

The Generalized Traveling Salesman Problem: A New Genetic Algorithm Approach

The Generalized Traveling Salesman Problem: A New Genetic Algorithm Approach The Generalized Traveling Salesman Problem: A New Genetic Algorithm Approach by John Silberholz, University of Maryland Bruce Golden, University of Maryland Presented at INFORMS 2007 Coral Gables, January

More information

Mathematical Tools for Engineering and Management

Mathematical Tools for Engineering and Management Mathematical Tools for Engineering and Management Lecture 8 8 Dec 0 Overview Models, Data and Algorithms Linear Optimization Mathematical Background: Polyhedra, Simplex-Algorithm Sensitivity Analysis;

More information

CIS 192: Artificial Intelligence. Search and Constraint Satisfaction Alex Frias Nov. 30 th

CIS 192: Artificial Intelligence. Search and Constraint Satisfaction Alex Frias Nov. 30 th CIS 192: Artificial Intelligence Search and Constraint Satisfaction Alex Frias Nov. 30 th What is AI? Designing computer programs to complete tasks that are thought to require intelligence 4 categories

More information

What Time Where Muddy City 10 min MSTLessonPlan.docx MSTWorksheets.pptx Discussion 5 min MSTLessonPlan.docx

What Time Where Muddy City 10 min MSTLessonPlan.docx MSTWorksheets.pptx Discussion 5 min MSTLessonPlan.docx MST Lesson Plan Overview Minimal Spanning Trees Summary Many networks link our society: telephone networks, utility supply networks, computer networks, and road networks. For a particular network there

More information

Math.3336: Discrete Mathematics. Chapter 10 Graph Theory

Math.3336: Discrete Mathematics. Chapter 10 Graph Theory Math.3336: Discrete Mathematics Chapter 10 Graph Theory Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu Fall

More information

Thanks to Chris Bregler. COS 429: Computer Vision

Thanks to Chris Bregler. COS 429: Computer Vision Thanks to Chris Bregler COS 429: Computer Vision COS 429: Computer Vision Instructor: Thomas Funkhouser funk@cs.princeton.edu Preceptors: Ohad Fried, Xinyi Fan {ohad,xinyi}@cs.princeton.edu Web page: http://www.cs.princeton.edu/courses/archive/fall13/cos429/

More information

Travelling Salesman Problem: Tabu Search

Travelling Salesman Problem: Tabu Search Travelling Salesman Problem: Tabu Search (Anonymized) April 2017 Abstract The Tabu Search algorithm is a heuristic method to find optimal solutions to the Travelling Salesman Problem (TSP). It is a local

More information

COMP Analysis of Algorithms & Data Structures

COMP Analysis of Algorithms & Data Structures COMP 3170 - Analysis of Algorithms & Data Structures Shahin Kamali Approximation Algorithms CLRS 35.1-35.5 University of Manitoba COMP 3170 - Analysis of Algorithms & Data Structures 1 / 30 Approaching

More information

Overview. CSE 101: Design and Analysis of Algorithms Lecture 1

Overview. CSE 101: Design and Analysis of Algorithms Lecture 1 Overview CSE 101: Design and Analysis of Algorithms Lecture 1 CSE 101: Design and analysis of algorithms Course overview Logistics CSE 101, Fall 2018 2 First, relevant prerequisites Advanced Data Structures

More information

Mark L. Sherman Quilt Artist- Professional Quilt Instructor- Lecturer Contract

Mark L. Sherman Quilt Artist- Professional Quilt Instructor- Lecturer Contract Mark L. Sherman Quilt Artist- Professional Quilt Instructor- Lecturer Contract A signed copy of this document must be part of any agreement between Mark L. Sherman, Remarkable Quilt Design Company, and

More information

Stanford University CS261: Optimization Handout 1 Luca Trevisan January 4, 2011

Stanford University CS261: Optimization Handout 1 Luca Trevisan January 4, 2011 Stanford University CS261: Optimization Handout 1 Luca Trevisan January 4, 2011 Lecture 1 In which we describe what this course is about and give two simple examples of approximation algorithms 1 Overview

More information

Fundamentals of Integer Programming

Fundamentals of Integer Programming Fundamentals of Integer Programming Di Yuan Department of Information Technology, Uppsala University January 2018 Outline Definition of integer programming Formulating some classical problems with integer

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

Fall CS598CC: Approximation Algorithms. Chandra Chekuri

Fall CS598CC: Approximation Algorithms. Chandra Chekuri Fall 2006 CS598CC: Approximation Algorithms Chandra Chekuri Administrivia http://www.cs.uiuc.edu/homes/chekuri/teaching/fall2006/approx.htm Grading: 4 home works (60-70%), 1 take home final (30-40%) Mailing

More information