General Purpose Methods for Combinatorial Optimization

Size: px
Start display at page:

Download "General Purpose Methods for Combinatorial Optimization"

Transcription

1 General Purpose Methods for Combinatorial Optimization 0/7/00 Maximum Contiguous Sum Σ = 87 Given:... N Z, at least one i > 0 ind i, j such that j k k = i is maximal 0/7/00 0/7/00

2 MCS: lgorithm L U MaxSoar := 0 for L := to N do sum := 0 for U := L to N do sum := sum + x[u] sum of x[ L... U ] MaxSoar := max (MaxSoar, sum) aster: one nested for-loop less 0/7/00 3 nalysis of lgorithm MaxSoar := 0 for L := to N do sum := 0 for U := L to N do sum := sum + x[u] sum of x[ L... U ] MaxSoar := max (MaxSoar, sum) Constant time per inner loop iteration Count number of times inner loop is executed N N O() = O(N ) L= U = L 0/7/00 4 0/7/00

3 Challenge: lgorithm 3 Can you develop a linear time algorithm? Solution next lecture this Σ = 87 0/7/00 lgorithm 3: Linear Time (solution) MaxEndingHere MaxSoar Empty vector gives maximum sum == 0 Scan the array just once Keep track of max sum in first I elements (-> MaxSoar) nd of maximum sum ending in position I (-> MaxEndingHere) MaxSoar := 0 MaxEndingHere := 0 for I := to N do MaxEndingHere := max (0, MaxEndingHere + x[i]) MaxSoar := max (MaxSoar, MaxEndingHere) 0/7/00 6 0/7/00 3

4 Comparison algorithm 3 computation time (µsec) computation time as a function of N 3.4 N 3 3 N 33 N sec 30 ms 3.3 ms 0 3 hour 3 sec 33 ms days min 0.33 sec 0 08 years. days 3.3 sec centuries months 33 sec 0/7/00 7 Traveling Salesman Problem No polynomial algorithm known Exact solution only by exhaustive search ½((N-)!) possible routes Stirling: lnn! nlogn n Large n: n! nlogn e = log ( n n n n e ) = n = o( e ) 0/7/00 8 0/7/00 4

5 Result for 000 cities Clearly sub-optimal 0/7/00 9 Simulated nnealing important much applied method for various combinatorial optimalization problems. Idea (thermo dynamics, static mechanics) Growing of crystals by means of nnealing. start off with high temperature. cool down slowly Theoretical Model matter strives for state with lowest energy movement of atoms small random displacements E < 0 accept displacement E > 0 accept with probability exp(- E/k B T) 0/7/00 0 0/7/00

6 Simulated nnealing () state of atoms configuration displacement move energy cost function perfect crystal optimal solution lgorithm T := T 0 X := start configuration while (not satisfied stop criterium) { for (a few times) { X new := new configuration if (accept (cost (X new ) cost (X), T)) X := X new } T := update (T) } accept ( cost,t) { if ( cost < 0) return TRUE else { if (exp(- cost /ct) > random (0,)) return TRUE else return LSE } } 0/7/00 Traveling Salesman by means of Simulated nnealing Randomly select two cities, interchange order of visiting: B C D C B D relatively long calculations be careful with detailed parameters of algorithm 0/7/00 0/7/00 6

7 Shortest Path Given: Weighted, directed graph G=(V,E). Single-source shortest path ind shortest path form source vertex s V to each v V. Single-destination shortest path equivalent by reducing (reverse direction of edges) 3. Single-pair shortest path route-planning no known algorithm being asymptotically better then 4. ll-pairs shortest path 0/7/00 3 Dijkstra s Shortest Path lgorithm v 6 v 3 v v 3 v 4 v 6 Q: What is the shortest path from v to v? : v v 4 v v 6 v of length 4. ind from v the shortest path to its neighbors. Say u is the closest to v 3. See if any of the routes from v to the neighbors of u becomes shorter if passing through u 4. Continue with step, until reaching v (target) 0/7/00 4 0/7/00 7

8 Dijkstra s Shortest Path lgorithm v 6 v 3 v v 3 v 4 v v 4 v v 6 v v 6 0/7/00 Dijkstra s Shortest Path lgorithm v 6 v 3 v v 3 v 4 Shortest distance to these vertices is known v 6. ind from v the shortest path to its neighbors. Say u is the closest to v 3. See if any of the routes from v to the neighbors of u becomes shorter if passing through u 4. Continue with step, until reaching v (target) This is vertex u. Shortest distance to these vertices has just become known 0/7/00 6 0/7/00 8

9 def Dijkstra (G, start, end = None, animate=0): # G[v] is a dict of distances keyed by vertices adjacent to v # G[v][u] is the distance from v to u if u is adjacent to v T = set () D = dict () Dijkstra in PYTHON language # set of vertices for which min distance is known. # dictionary of final distances, # with vertex as key and distance as value V = G.keys () # set which is initialized to all vertices. T.add (start) V.remove (start) D[start] = 0 for v in V: D[v] = sys.maxint for v in G[start]: D [v] = G[start][v] # initialize all distances # loop over all vertices reachable from start while end not in T and len (V) > 0: if animate: print "T", T, "\n", "D", D u = closest (D, V) T.add (u) V.remove (u) for v in G[u]: if D [v] > G[u][v] + D[u]: D [v] = G[u][v] + D[u] # find closest vertex to start, among those in V return D 0/7/00 7 Optimization Public Transport: It brings you from a place where you are not, to a place where you don t want to be, at a time that you do not prefer ED: It provides a solution to a problem that you don t want to solve Why? Because most ED problems are just too hard to be solved exactly Many optimization problems are NP-hard Therefore, problems are usually replaced by simpler problems that are solved instead. 0/7/00 8 0/7/00 9

10 Typical ED Optimization Setting Chip optimization problem Standard problem Transform problem into similar, known, solvable problem in mathematics world Mathematics / computer science discipline of science / engineering Standard lgorithm Problem (approximately) solved bend back into real world Sub-optimal chip 0/7/00 9 Continuous vs Discrete Optimization Continuous Optimization: Solution space forms a continuous domain Example: adjust transistor sizes in a network to optimize the speed of the network, under the assumption of continuously variable transistor dimensions Discrete Optimization: the number of solutions can be counted, from a discrete set (might be infinite) Example: traveling salesman in graph there are a finite number of distinct tours visiting all vertices Or: adjust transistor sizes in a network to optimize the speed of the network, under the assumption that transistor dimensions should be integral multiples of a step size. 0/7/00 0 0/7/00 0

11 Discrete Optimization Optimization algorithms typically go through a sequence of steps Set of choices at each step (Result of) each step is called a configuration bove we see 6 configurations with different cost, 4 choices in config of cost 6. 0/7/00 Discrete Optimization () 6 3 Π p X p = X = {x k } c(x k ) G = (X, E) step (move) E 4 given optimization problem instance of Π algorithm for Π set of all possible (legal) configurations (solutions) of p cost of configuration x k a directed graph, the configuration graph the transformation (by the algorithm) of configuration x i in x j set of all steps that algorithm considers 0/7/00 0/7/00

12 3 4 local minimum global minimum greedy algorithm Discrete Optimization (3) x i is a local minimum in case no neighboring configurations exist with lower cost desired configuration with absolute lowest cost algorithm that only takes steps that result in a lower cost convex configuration graph in case every local minimum also global minimum (and strongly connected) greedy algorithm will give exact solution. (Not necessarily in optimal time.) Uphill move 6 What is the global minimum? Is this example convex? If not: What is/are local minima? Can you change the graph to become convex? step of algorithm that (temporarily) increases cost aimed at escaping local minima 0/7/00 3 Standard Optimization Techniques Backtracking, branch and bound (.) Dynamic programming (.3) Linear programming (LP), integer LP (ILP) (.4) Local Search (.) Simulated nnealing (.6) Tabu search (.7) Genetic algorithms (.8) Boolean Satisfiability (ST) Neural networks Simulated evolution Matching, max flow, shortest path, Non-linear programming: Lagrange relaxation, Levenberg- Marquardt, 0/7/00 4 0/7/00

13 f 3 E D 8 B C 3 E D 8 B Branch and Bound C Example: TSP in graph The blue partial solution leads to a kill f B E f 3 C D B C D E f 4 f f 6 f 7 D C D E C B C D E D E D C E D B B C C B D C x x x x E E D E C B C B D B x x x x C B D C E D x x D E B C x x E B /7/00 f 3 E 4 7 D Bound-step using MST 9 B 3 8 C E 7 D 3 E D f f 3 f 4 f f 6 B E C D D C D E C E C E D B 3+8 x x X MST can be solved in polynomial time! + f /7/00 6 0/7/00 3

14 Linear Programming (LP) Maximize z = x + x + 3x 3 - ½x 4 Such that x i > 0 for all i x + x x 7x 4 0 x x 3 + x 4 ½ x + x + x 3 + x 4 = 9 (objective function) (primary constraints) (additional constraints) Example with independent variables and only inequalities easible region x Lines (hyperplanes) of constant z x Optimum is in cornerpoint LP solver searches for optimum corner point 0/7/00 7 LP Solvers Ellipsoid algorithm runs in polynomial time In practice, Simplex algorithm is often faster, but it has exponential worst-case time complexity Simplex algorithm is clever way of enumerating boundary points, it steps from point to point along the outside of the feasible region Based on principles from linear algebra Many on-line sources (e.g. see wikipedia -> linear programming) lso see the book Numerical Recipes in {C/C++/ortran} Press et al. On-line C version of the book (pdf) via See lp_solve originally by Michel Berkelaar Now at TUD/EWI/CS 0/7/00 8 0/7/00 4

15 Integer Linear Programming (ILP) Linear Programming with the x i restricted to integer numbers Surprise: ILP is NP-hard (LP has polynomial time complexity) Does not work: solving an equivalent LP and rounding to nearest integer; solution may not be optimal, or even feasible. Yet other variant is 0- LP, x i {0, } 0/7/00 9 Genetic lgorithms irst parent: (f (k) ) irst child: (f (k ) ) Second parent: (g (k) ) Second child: (g (k ) ) Inspired on biology: survival of the fittest Work with a population P (k), set of feasible solutions Each f P (k) is encoded as a chromosome, e.g. a bit-string Cross-over operations between members of P (k) to derive P (k+) Prefer parents with lower cost for mating Many variations possible (mutation, cloning, ) 0/7/ /7/00

16 Dynamic Programming ibonacci numbers: 0,,,, 3,, 8, 3,, 34, function Each fib(n) number starting from if n 3rd = 0 is or sum n = of return previous n two else Write return algorithm fib(n ) + fib(n ) var f := map(0 0, ) function fib(n) if n not in keys(f) f[n] := fib(n ) + fib(n ) return f[n] Recursive algorithm is a lot of work: e.g. fib(), fib(3) computed more then once Dynamic programming: Overlapping subproblems Optimal substructure Memoization 0/7/00 3 ibonacci Sequence Using Dynamic Programming in Python f = {0: 0, : } def dynfib (n): if n not in f: f[n] = dynfib (n-) + dynfib (n-) return f[n] def dynfib (n): if n == 0 or n == : return n prevprev = 0 prev = for i in range (, n+): fib = prev + prevprev prevprev = prev prev = fib return fib Recursive version Time and space O(n) Runs into max recursion depth problems Iterative (bottom-up) version Time O(n), space O() Runs easily for n = /7/00 3 0/7/00 6

17 Dynamic Programming Elegant approach Two variants: bottom-up and top-down Several applications in ED E.g. in channel routing, later lecture. E.g. technology mapping, Dirk-Jan Jongeneel, Optimized boolean equations Library of std cells Gate netlist Timing constraints [Jongeneel and Otten, Integration, 000] 0/7/00 33 Library of Std Cells [Jongeneel and Otten, Integration, 000] 0/7/ /7/00 7

18 Matching of Library Patterns Cost at all primary inputs Cost of library element = + #inputs (for sake of example) Cost at node after partial matching [Jongeneel and Otten, Integration, 000] 0/7/00 3 Partial Matching of Library Patterns with Optimal Cost Covering by contracting saved matches at every node, from output to inputs [Jongeneel and Otten, Integration, 000] 0/7/ /7/00 8

19 Techn. Map. Result [Jongeneel and Otten, Integration, 000] 0/7/00 37 Summary Graph algorithms and optimization very common in ED Discrete vs continuous optimization Chip optimization problem Standard problem Transform problem into similar, known, solvable problem in mathematics world Mathematics / computer science discipline of science / engineering Standard lgorithm Problem (approximately) solved bend back into real world Sub-optimal chip Many different algorithms, with different properties inding right one depends on transformation from and back into real world 0/7/ /7/00 9

20 Summary Many different optimization algorithmic techniques Backtracking, branch and bound (.) Dynamic programming (.3) Linear programming (LP), integer LP (ILP) (.4) Local Search (.) Simulated nnealing (.6) Tabu search (.7) Genetic algorithms (.8) Boolean Satisfiability (ST) Neural networks Simulated evolution Matching, max flow, shortest path, Non-linear programming: Lagrange relaxation, Levenberg- Marquardt, Many applications of optimization in ED (e.g. techn. mapping) symptotic complexity important for effectivity of algorithm Implementation can also count (e.g. recursive vs iterative implementation) 0/7/ /7/00 0

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld )

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) Local Search and Optimization Chapter 4 Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) 1 2 Outline Local search techniques and optimization Hill-climbing

More information

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld )

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) Local Search and Optimization Chapter 4 Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) 1 2 Outline Local search techniques and optimization Hill-climbing

More information

3 INTEGER LINEAR PROGRAMMING

3 INTEGER LINEAR PROGRAMMING 3 INTEGER LINEAR PROGRAMMING PROBLEM DEFINITION Integer linear programming problem (ILP) of the decision variables x 1,..,x n : (ILP) subject to minimize c x j j n j= 1 a ij x j x j 0 x j integer n j=

More information

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld )

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) Local Search and Optimization Chapter 4 Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) 1 Outline Local search techniques and optimization Hill-climbing

More information

Algorithms for Decision Support. Integer linear programming models

Algorithms for Decision Support. Integer linear programming models Algorithms for Decision Support Integer linear programming models 1 People with reduced mobility (PRM) require assistance when travelling through the airport http://www.schiphol.nl/travellers/atschiphol/informationforpassengerswithreducedmobility.htm

More information

Pre-requisite Material for Course Heuristics and Approximation Algorithms

Pre-requisite Material for Course Heuristics and Approximation Algorithms Pre-requisite Material for Course Heuristics and Approximation Algorithms This document contains an overview of the basic concepts that are needed in preparation to participate in the course. In addition,

More information

Machine Learning for Software Engineering

Machine Learning for Software Engineering Machine Learning for Software Engineering Introduction and Motivation Prof. Dr.-Ing. Norbert Siegmund Intelligent Software Systems 1 2 Organizational Stuff Lectures: Tuesday 11:00 12:30 in room SR015 Cover

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

Algorithms for Integer Programming

Algorithms for Integer Programming Algorithms for Integer Programming Laura Galli November 9, 2016 Unlike linear programming problems, integer programming problems are very difficult to solve. In fact, no efficient general algorithm is

More information

Notes for Lecture 24

Notes for Lecture 24 U.C. Berkeley CS170: Intro to CS Theory Handout N24 Professor Luca Trevisan December 4, 2001 Notes for Lecture 24 1 Some NP-complete Numerical Problems 1.1 Subset Sum The Subset Sum problem is defined

More information

CSE 417 Branch & Bound (pt 4) Branch & Bound

CSE 417 Branch & Bound (pt 4) Branch & Bound CSE 417 Branch & Bound (pt 4) Branch & Bound Reminders > HW8 due today > HW9 will be posted tomorrow start early program will be slow, so debugging will be slow... Review of previous lectures > Complexity

More information

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W.

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W. : Coping with NP-Completeness Course contents: Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems Reading: Chapter 34 Chapter 35.1, 35.2 Y.-W. Chang 1 Complexity

More information

Last topic: Summary; Heuristics and Approximation Algorithms Topics we studied so far:

Last topic: Summary; Heuristics and Approximation Algorithms Topics we studied so far: Last topic: Summary; Heuristics and Approximation Algorithms Topics we studied so far: I Strength of formulations; improving formulations by adding valid inequalities I Relaxations and dual problems; obtaining

More information

Optimal tour along pubs in the UK

Optimal tour along pubs in the UK 1 From Facebook Optimal tour along 24727 pubs in the UK Road distance (by google maps) see also http://www.math.uwaterloo.ca/tsp/pubs/index.html (part of TSP homepage http://www.math.uwaterloo.ca/tsp/

More information

Algorithm Design Techniques (III)

Algorithm Design Techniques (III) Algorithm Design Techniques (III) Minimax. Alpha-Beta Pruning. Search Tree Strategies (backtracking revisited, branch and bound). Local Search. DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 1 Tic-Tac-Toe

More information

Coping with the Limitations of Algorithm Power Exact Solution Strategies Backtracking Backtracking : A Scenario

Coping with the Limitations of Algorithm Power Exact Solution Strategies Backtracking Backtracking : A Scenario Coping with the Limitations of Algorithm Power Tackling Difficult Combinatorial Problems There are two principal approaches to tackling difficult combinatorial problems (NP-hard problems): Use a strategy

More information

V1.0: Seth Gilbert, V1.1: Steven Halim August 30, Abstract. d(e), and we assume that the distance function is non-negative (i.e., d(x, y) 0).

V1.0: Seth Gilbert, V1.1: Steven Halim August 30, Abstract. d(e), and we assume that the distance function is non-negative (i.e., d(x, y) 0). CS4234: Optimisation Algorithms Lecture 4 TRAVELLING-SALESMAN-PROBLEM (4 variants) V1.0: Seth Gilbert, V1.1: Steven Halim August 30, 2016 Abstract The goal of the TRAVELLING-SALESMAN-PROBLEM is to find

More information

Theorem 2.9: nearest addition algorithm

Theorem 2.9: nearest addition algorithm There are severe limits on our ability to compute near-optimal tours It is NP-complete to decide whether a given undirected =(,)has a Hamiltonian cycle An approximation algorithm for the TSP can be used

More information

Decision Problems. Observation: Many polynomial algorithms. Questions: Can we solve all problems in polynomial time? Answer: No, absolutely not.

Decision Problems. Observation: Many polynomial algorithms. Questions: Can we solve all problems in polynomial time? Answer: No, absolutely not. Decision Problems Observation: Many polynomial algorithms. Questions: Can we solve all problems in polynomial time? Answer: No, absolutely not. Definition: The class of problems that can be solved by polynomial-time

More information

Optimization Techniques for Design Space Exploration

Optimization Techniques for Design Space Exploration 0-0-7 Optimization Techniques for Design Space Exploration Zebo Peng Embedded Systems Laboratory (ESLAB) Linköping University Outline Optimization problems in ERT system design Heuristic techniques Simulated

More information

Standard Optimization Techniques

Standard Optimization Techniques 12 Standard Optimization Techniques Peter Marwedel Informatik 12 TU Dortmund Germany 2009/12/10 Graphics: Alexandra Nolte, Gesine Marwedel, 2003 These slides use Microsoft cliparts. All Microsoft restrictions

More information

1 The Traveling Salesperson Problem (TSP)

1 The Traveling Salesperson Problem (TSP) CS 598CSC: Approximation Algorithms Lecture date: January 23, 2009 Instructor: Chandra Chekuri Scribe: Sungjin Im In the previous lecture, we had a quick overview of several basic aspects of approximation

More information

J Linear Programming Algorithms

J Linear Programming Algorithms Simplicibus itaque verbis gaudet Mathematica Veritas, cum etiam per se simplex sit Veritatis oratio. [And thus Mathematical Truth prefers simple words, because the language of Truth is itself simple.]

More information

February 19, Integer programming. Outline. Problem formulation. Branch-andbound

February 19, Integer programming. Outline. Problem formulation. Branch-andbound Olga Galinina olga.galinina@tut.fi ELT-53656 Network Analysis and Dimensioning II Department of Electronics and Communications Engineering Tampere University of Technology, Tampere, Finland February 19,

More information

Two approaches. Local Search TSP. Examples of algorithms using local search. Local search heuristics - To do list

Two approaches. Local Search TSP. Examples of algorithms using local search. Local search heuristics - To do list Unless P=NP, there is no polynomial time algorithm for SAT, MAXSAT, MIN NODE COVER, MAX INDEPENDENT SET, MAX CLIQUE, MIN SET COVER, TSP,. But we have to solve (instances of) these problems anyway what

More information

8/19/13. Computational problems. Introduction to Algorithm

8/19/13. Computational problems. Introduction to Algorithm I519, Introduction to Introduction to Algorithm Yuzhen Ye (yye@indiana.edu) School of Informatics and Computing, IUB Computational problems A computational problem specifies an input-output relationship

More information

11.1 Facility Location

11.1 Facility Location CS787: Advanced Algorithms Scribe: Amanda Burton, Leah Kluegel Lecturer: Shuchi Chawla Topic: Facility Location ctd., Linear Programming Date: October 8, 2007 Today we conclude the discussion of local

More information

Combinatorial Optimization - Lecture 14 - TSP EPFL

Combinatorial Optimization - Lecture 14 - TSP EPFL Combinatorial Optimization - Lecture 14 - TSP EPFL 2012 Plan Simple heuristics Alternative approaches Best heuristics: local search Lower bounds from LP Moats Simple Heuristics Nearest Neighbor (NN) Greedy

More information

Dynamic programming. Trivial problems are solved first More complex solutions are composed from the simpler solutions already computed

Dynamic programming. Trivial problems are solved first More complex solutions are composed from the simpler solutions already computed Dynamic programming Solves a complex problem by breaking it down into subproblems Each subproblem is broken down recursively until a trivial problem is reached Computation itself is not recursive: problems

More information

CSE 417 Network Flows (pt 4) Min Cost Flows

CSE 417 Network Flows (pt 4) Min Cost Flows CSE 417 Network Flows (pt 4) Min Cost Flows Reminders > HW6 is due Monday Review of last three lectures > Defined the maximum flow problem find the feasible flow of maximum value flow is feasible if it

More information

1. Lecture notes on bipartite matching February 4th,

1. Lecture notes on bipartite matching February 4th, 1. Lecture notes on bipartite matching February 4th, 2015 6 1.1.1 Hall s Theorem Hall s theorem gives a necessary and sufficient condition for a bipartite graph to have a matching which saturates (or matches)

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Local Search Vibhav Gogate The University of Texas at Dallas Some material courtesy of Luke Zettlemoyer, Dan Klein, Dan Weld, Alex Ihler, Stuart Russell, Mausam Systematic Search:

More information

GENETIC ALGORITHM with Hands-On exercise

GENETIC ALGORITHM with Hands-On exercise GENETIC ALGORITHM with Hands-On exercise Adopted From Lecture by Michael Negnevitsky, Electrical Engineering & Computer Science University of Tasmania 1 Objective To understand the processes ie. GAs Basic

More information

Foundations of Computing

Foundations of Computing Foundations of Computing Darmstadt University of Technology Dept. Computer Science Winter Term 2005 / 2006 Copyright c 2004 by Matthias Müller-Hannemann and Karsten Weihe All rights reserved http://www.algo.informatik.tu-darmstadt.de/

More information

Optimal tree for Genetic Algorithms in the Traveling Salesman Problem (TSP).

Optimal tree for Genetic Algorithms in the Traveling Salesman Problem (TSP). Optimal tree for Genetic Algorithms in the Traveling Salesman Problem (TSP). Liew Sing liews_ryan@yahoo.com.sg April 1, 2012 Abstract In this paper, the author proposes optimal tree as a gauge for the

More information

Informed search algorithms. Chapter 4

Informed search algorithms. Chapter 4 Informed search algorithms Chapter 4 Outline Best-first search Greedy best-first search A * search Heuristics Memory Bounded A* Search Best-first search Idea: use an evaluation function f(n) for each node

More information

Algorithm Design (4) Metaheuristics

Algorithm Design (4) Metaheuristics Algorithm Design (4) Metaheuristics Takashi Chikayama School of Engineering The University of Tokyo Formalization of Constraint Optimization Minimize (or maximize) the objective function f(x 0,, x n )

More information

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 600.469 / 600.669 Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 9.1 Linear Programming Suppose we are trying to approximate a minimization

More information

11. APPROXIMATION ALGORITHMS

11. APPROXIMATION ALGORITHMS 11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: vertex cover LP rounding: vertex cover generalized load balancing knapsack problem Lecture slides by Kevin Wayne Copyright 2005

More information

Fuzzy Inspired Hybrid Genetic Approach to Optimize Travelling Salesman Problem

Fuzzy Inspired Hybrid Genetic Approach to Optimize Travelling Salesman Problem Fuzzy Inspired Hybrid Genetic Approach to Optimize Travelling Salesman Problem Bindu Student, JMIT Radaur binduaahuja@gmail.com Mrs. Pinki Tanwar Asstt. Prof, CSE, JMIT Radaur pinki.tanwar@gmail.com Abstract

More information

Informed search algorithms. (Based on slides by Oren Etzioni, Stuart Russell)

Informed search algorithms. (Based on slides by Oren Etzioni, Stuart Russell) Informed search algorithms (Based on slides by Oren Etzioni, Stuart Russell) The problem # Unique board configurations in search space 8-puzzle 9! = 362880 15-puzzle 16! = 20922789888000 10 13 24-puzzle

More information

Discrete Optimization. Lecture Notes 2

Discrete Optimization. Lecture Notes 2 Discrete Optimization. Lecture Notes 2 Disjunctive Constraints Defining variables and formulating linear constraints can be straightforward or more sophisticated, depending on the problem structure. The

More information

Fundamentals of Integer Programming

Fundamentals of Integer Programming Fundamentals of Integer Programming Di Yuan Department of Information Technology, Uppsala University January 2018 Outline Definition of integer programming Formulating some classical problems with integer

More information

56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998

56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998 56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998 Part A: Answer any four of the five problems. (15 points each) 1. Transportation problem 2. Integer LP Model Formulation

More information

Practice Problems for the Final

Practice Problems for the Final ECE-250 Algorithms and Data Structures (Winter 2012) Practice Problems for the Final Disclaimer: Please do keep in mind that this problem set does not reflect the exact topics or the fractions of each

More information

Approximation Algorithms

Approximation Algorithms Chapter 8 Approximation Algorithms Algorithm Theory WS 2016/17 Fabian Kuhn Approximation Algorithms Optimization appears everywhere in computer science We have seen many examples, e.g.: scheduling jobs

More information

CAD Algorithms. Categorizing Algorithms

CAD Algorithms. Categorizing Algorithms CAD Algorithms Categorizing Algorithms Mohammad Tehranipoor ECE Department 2 September 2008 1 Categorizing Algorithms Greedy Algorithms Prim s Algorithm (Minimum Spanning Tree) A subgraph that is a tree

More information

Sankalchand Patel College of Engineering - Visnagar Department of Computer Engineering and Information Technology. Assignment

Sankalchand Patel College of Engineering - Visnagar Department of Computer Engineering and Information Technology. Assignment Class: V - CE Sankalchand Patel College of Engineering - Visnagar Department of Computer Engineering and Information Technology Sub: Design and Analysis of Algorithms Analysis of Algorithm: Assignment

More information

Unit-5 Dynamic Programming 2016

Unit-5 Dynamic Programming 2016 5 Dynamic programming Overview, Applications - shortest path in graph, matrix multiplication, travelling salesman problem, Fibonacci Series. 20% 12 Origin: Richard Bellman, 1957 Programming referred to

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures 3 Definitions an undirected graph G = (V, E) is a

More information

For 100% Result Oriented IGNOU Coaching and Project Training Call CPD: ,

For 100% Result Oriented IGNOU Coaching and Project Training Call CPD: , ASSIGNMENT OF MCS-031(ADA) Question 1: (a) Show, through appropriate examples or otherwise, that the following three characteristics of an algorithm are independent (i) finiteness An algorithm must terminate

More information

1. Lecture notes on bipartite matching

1. Lecture notes on bipartite matching Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans February 5, 2017 1. Lecture notes on bipartite matching Matching problems are among the fundamental problems in

More information

The Simplex Algorithm for LP, and an Open Problem

The Simplex Algorithm for LP, and an Open Problem The Simplex Algorithm for LP, and an Open Problem Linear Programming: General Formulation Inputs: real-valued m x n matrix A, and vectors c in R n and b in R m Output: n-dimensional vector x There is one

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 29 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/7/2016 Approximation

More information

TIE Graph algorithms

TIE Graph algorithms TIE-20106 1 1 Graph algorithms This chapter discusses the data structure that is a collection of points (called nodes or vertices) and connections between them (called edges or arcs) a graph. The common

More information

Data Mining Chapter 8: Search and Optimization Methods Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 8: Search and Optimization Methods Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 8: Search and Optimization Methods Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Search & Optimization Search and Optimization method deals with

More information

(Refer Slide Time: 01:00)

(Refer Slide Time: 01:00) Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture minus 26 Heuristics for TSP In this lecture, we continue our discussion

More information

Questions? You are given the complete graph of Facebook. What questions would you ask? (What questions could we hope to answer?)

Questions? You are given the complete graph of Facebook. What questions would you ask? (What questions could we hope to answer?) P vs. NP What now? Attribution These slides were prepared for the New Jersey Governor s School course The Math Behind the Machine taught in the summer of 2011 by Grant Schoenebeck Large parts of these

More information

Spanning Tree. Lecture19: Graph III. Minimum Spanning Tree (MSP)

Spanning Tree. Lecture19: Graph III. Minimum Spanning Tree (MSP) Spanning Tree (015) Lecture1: Graph III ohyung Han S, POSTH bhhan@postech.ac.kr efinition and property Subgraph that contains all vertices of the original graph and is a tree Often, a graph has many different

More information

METAHEURISTICS. Introduction. Introduction. Nature of metaheuristics. Local improvement procedure. Example: objective function

METAHEURISTICS. Introduction. Introduction. Nature of metaheuristics. Local improvement procedure. Example: objective function Introduction METAHEURISTICS Some problems are so complicated that are not possible to solve for an optimal solution. In these problems, it is still important to find a good feasible solution close to the

More information

Introduction to Approximation Algorithms

Introduction to Approximation Algorithms Introduction to Approximation Algorithms Dr. Gautam K. Das Departmet of Mathematics Indian Institute of Technology Guwahati, India gkd@iitg.ernet.in February 19, 2016 Outline of the lecture Background

More information

56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997

56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997 56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997 Answer #1 and any five of the remaining six problems! possible score 1. Multiple Choice 25 2. Traveling Salesman Problem 15 3.

More information

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 23 January, 2018

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 23 January, 2018 DIT411/TIN175, Artificial Intelligence Chapters 3 4: More search algorithms CHAPTERS 3 4: MORE SEARCH ALGORITHMS DIT411/TIN175, Artificial Intelligence Peter Ljunglöf 23 January, 2018 1 TABLE OF CONTENTS

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures Chapter 9 Graph s 2 Definitions Definitions an undirected graph is a finite set

More information

Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost

Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R

More information

Travelling Salesman Problem. Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij

Travelling Salesman Problem. Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij Travelling Salesman Problem Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij 1 Contents TSP and its applications Heuristics and approximation algorithms Construction heuristics,

More information

Artificial Intelligence p.1/49. n-queens. Artificial Intelligence p.2/49. Initial state: the empty board or a board with n random

Artificial Intelligence p.1/49. n-queens. Artificial Intelligence p.2/49. Initial state: the empty board or a board with n random Example: n-queens Put n queens on an n n board with no two queens on the same row, column, or diagonal A search problem! State space: the board with 0 to n queens Initial state: the empty board or a board

More information

EXECUTION PLAN OPTIMIZATION TECHNIQUES

EXECUTION PLAN OPTIMIZATION TECHNIQUES EXECUTION PLAN OPTIMIZATION TECHNIQUES Július Štroffek Database Sustaining Engineer Sun Microsystems, Inc. Tomáš Kovařík Faculty of Mathematics and Physics, Charles University, Prague PostgreSQL Conference,

More information

Lecture 13. Reading: Weiss, Ch. 9, Ch 8 CSE 100, UCSD: LEC 13. Page 1 of 29

Lecture 13. Reading: Weiss, Ch. 9, Ch 8 CSE 100, UCSD: LEC 13. Page 1 of 29 Lecture 13 Connectedness in graphs Spanning trees in graphs Finding a minimal spanning tree Time costs of graph problems and NP-completeness Finding a minimal spanning tree: Prim s and Kruskal s algorithms

More information

Informed Search and Exploration

Informed Search and Exploration Informed Search and Exploration Chapter 4 (4.1-4.3) CS 2710 1 Introduction Ch.3 searches good building blocks for learning about search But vastly inefficient eg: Can we do better? Breadth Depth Uniform

More information

Traveling Salesman Problem. Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij

Traveling Salesman Problem. Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij Traveling Salesman Problem Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij 1 Contents TSP and its applications Heuristics and approximation algorithms Construction heuristics,

More information

Class Overview. Introduction to Artificial Intelligence COMP 3501 / COMP Lecture 2. Problem Solving Agents. Problem Solving Agents: Assumptions

Class Overview. Introduction to Artificial Intelligence COMP 3501 / COMP Lecture 2. Problem Solving Agents. Problem Solving Agents: Assumptions Class Overview COMP 3501 / COMP 4704-4 Lecture 2 Prof. JGH 318 Problem Solving Agents Problem Solving Agents: Assumptions Requires a goal Assume world is: Requires actions Observable What actions? Discrete

More information

6. Algorithm Design Techniques

6. Algorithm Design Techniques 6. Algorithm Design Techniques 6. Algorithm Design Techniques 6.1 Greedy algorithms 6.2 Divide and conquer 6.3 Dynamic Programming 6.4 Randomized Algorithms 6.5 Backtracking Algorithms Malek Mouhoub, CS340

More information

Practice Final Exam 1

Practice Final Exam 1 Algorithm esign Techniques Practice Final xam Instructions. The exam is hours long and contains 6 questions. Write your answers clearly. You may quote any result/theorem seen in the lectures or in the

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 36 CS 473: Algorithms, Spring 2018 LP Duality Lecture 20 April 3, 2018 Some of the

More information

Dr. Mustafa Jarrar. Chapter 4 Informed Searching. Sina Institute, University of Birzeit

Dr. Mustafa Jarrar. Chapter 4 Informed Searching. Sina Institute, University of Birzeit Lecture Notes, Advanced Artificial Intelligence (SCOM7341) Sina Institute, University of Birzeit 2 nd Semester, 2012 Advanced Artificial Intelligence (SCOM7341) Chapter 4 Informed Searching Dr. Mustafa

More information

Approximation Algorithms

Approximation Algorithms 18.433 Combinatorial Optimization Approximation Algorithms November 20,25 Lecturer: Santosh Vempala 1 Approximation Algorithms Any known algorithm that finds the solution to an NP-hard optimization problem

More information

CMPSCI611: The Simplex Algorithm Lecture 24

CMPSCI611: The Simplex Algorithm Lecture 24 CMPSCI611: The Simplex Algorithm Lecture 24 Let s first review the general situation for linear programming problems. Our problem in standard form is to choose a vector x R n, such that x 0 and Ax = b,

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

LECTURE 3 ALGORITHM DESIGN PARADIGMS

LECTURE 3 ALGORITHM DESIGN PARADIGMS LECTURE 3 ALGORITHM DESIGN PARADIGMS Introduction Algorithm Design Paradigms: General approaches to the construction of efficient solutions to problems. Such methods are of interest because: They provide

More information

March 19, Heuristics for Optimization. Outline. Problem formulation. Genetic algorithms

March 19, Heuristics for Optimization. Outline. Problem formulation. Genetic algorithms Olga Galinina olga.galinina@tut.fi ELT-53656 Network Analysis and Dimensioning II Department of Electronics and Communications Engineering Tampere University of Technology, Tampere, Finland March 19, 2014

More information

CMU-Q Lecture 2: Search problems Uninformed search. Teacher: Gianni A. Di Caro

CMU-Q Lecture 2: Search problems Uninformed search. Teacher: Gianni A. Di Caro CMU-Q 15-381 Lecture 2: Search problems Uninformed search Teacher: Gianni A. Di Caro RECAP: ACT RATIONALLY Think like people Think rationally Agent Sensors? Actuators Percepts Actions Environment Act like

More information

Outline of the module

Outline of the module Evolutionary and Heuristic Optimisation (ITNPD8) Lecture 2: Heuristics and Metaheuristics Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ Computing Science and Mathematics, School of Natural Sciences University

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms CSE 101, Winter 018 D/Q Greed SP s DP LP, Flow B&B, Backtrack Metaheuristics P, NP Design and Analysis of Algorithms Lecture 8: Greed Class URL: http://vlsicad.ucsd.edu/courses/cse101-w18/ Optimization

More information

Problem Solving: Informed Search

Problem Solving: Informed Search Problem Solving: Informed Search References Russell and Norvig, Artificial Intelligence: A modern approach, 2nd ed. Prentice Hall, 2003 (Chapters 1,2, and 4) Nilsson, Artificial intelligence: A New synthesis.

More information

Algorithm classification

Algorithm classification Types of Algorithms Algorithm classification Algorithms that use a similar problem-solving approach can be grouped together We ll talk about a classification scheme for algorithms This classification scheme

More information

Heuristic Optimisation

Heuristic Optimisation Heuristic Optimisation Part 3: Classification of algorithms. Exhaustive search Sándor Zoltán Németh http://web.mat.bham.ac.uk/s.z.nemeth s.nemeth@bham.ac.uk University of Birmingham S Z Németh (s.nemeth@bham.ac.uk)

More information

Combinatorial Optimization

Combinatorial Optimization Combinatorial Optimization Frank de Zeeuw EPFL 2012 Today Introduction Graph problems - What combinatorial things will we be optimizing? Algorithms - What kind of solution are we looking for? Linear Programming

More information

AMATH 383 Lecture Notes Linear Programming

AMATH 383 Lecture Notes Linear Programming AMATH 8 Lecture Notes Linear Programming Jakob Kotas (jkotas@uw.edu) University of Washington February 4, 014 Based on lecture notes for IND E 51 by Zelda Zabinsky, available from http://courses.washington.edu/inde51/notesindex.htm.

More information

Modified Order Crossover (OX) Operator

Modified Order Crossover (OX) Operator Modified Order Crossover (OX) Operator Ms. Monica Sehrawat 1 N.C. College of Engineering, Israna Panipat, Haryana, INDIA. Mr. Sukhvir Singh 2 N.C. College of Engineering, Israna Panipat, Haryana, INDIA.

More information

CS583 Lecture 01. Jana Kosecka. some materials here are based on Profs. E. Demaine, D. Luebke A.Shehu, J-M. Lien and Prof. Wang s past lecture notes

CS583 Lecture 01. Jana Kosecka. some materials here are based on Profs. E. Demaine, D. Luebke A.Shehu, J-M. Lien and Prof. Wang s past lecture notes CS583 Lecture 01 Jana Kosecka some materials here are based on Profs. E. Demaine, D. Luebke A.Shehu, J-M. Lien and Prof. Wang s past lecture notes Course Info course webpage: - from the syllabus on http://cs.gmu.edu/

More information

Algorithm Design, Anal. & Imp., Homework 4 Solution

Algorithm Design, Anal. & Imp., Homework 4 Solution Algorithm Design, Anal. & Imp., Homework 4 Solution Note: The solution is for your personal use for this course. You are not allowed to post the solution in public place. There could be mistakes in the

More information

Comparison of TSP Algorithms

Comparison of TSP Algorithms Comparison of TSP Algorithms Project for Models in Facilities Planning and Materials Handling December 1998 Participants: Byung-In Kim Jae-Ik Shim Min Zhang Executive Summary Our purpose in this term project

More information

CSC Design and Analysis of Algorithms. Lecture 4 Brute Force, Exhaustive Search, Graph Traversal Algorithms. Brute-Force Approach

CSC Design and Analysis of Algorithms. Lecture 4 Brute Force, Exhaustive Search, Graph Traversal Algorithms. Brute-Force Approach CSC 8301- Design and Analysis of Algorithms Lecture 4 Brute Force, Exhaustive Search, Graph Traversal Algorithms Brute-Force Approach Brute force is a straightforward approach to solving a problem, usually

More information

Lecture 3. Brute Force

Lecture 3. Brute Force Lecture 3 Brute Force 1 Lecture Contents 1. Selection Sort and Bubble Sort 2. Sequential Search and Brute-Force String Matching 3. Closest-Pair and Convex-Hull Problems by Brute Force 4. Exhaustive Search

More information

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs 15.082J and 6.855J Lagrangian Relaxation 2 Algorithms Application to LPs 1 The Constrained Shortest Path Problem (1,10) 2 (1,1) 4 (2,3) (1,7) 1 (10,3) (1,2) (10,1) (5,7) 3 (12,3) 5 (2,2) 6 Find the shortest

More information

Amanur Rahman Saiyed (Indiana State University) THE TRAVELING SALESMAN PROBLEM November 22, / 21

Amanur Rahman Saiyed (Indiana State University) THE TRAVELING SALESMAN PROBLEM November 22, / 21 . Amanur Rahman Saiyed (Indiana State University) THE TRAVELING SALESMAN PROBLEM November 22, 2011 1 / 21 THE TRAVELING SALESMAN PROBLEM Amanur Rahman Saiyed Indiana State University November 22, 2011

More information

10/31/18. About A6, Prelim 2. Spanning Trees, greedy algorithms. Facts about trees. Undirected trees

10/31/18. About A6, Prelim 2. Spanning Trees, greedy algorithms. Facts about trees. Undirected trees //8 About A, Prelim Spanning Trees, greedy algorithms Lecture CS Fall 8 Prelim : Thursday, November. Visit exams page of course website and read carefully to find out when you take it (: or 7:) and what

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Given an NP-hard problem, what should be done? Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one of three desired features. Solve problem to optimality.

More information

Spanning Trees, greedy algorithms. Lecture 20 CS2110 Fall 2018

Spanning Trees, greedy algorithms. Lecture 20 CS2110 Fall 2018 1 Spanning Trees, greedy algorithms Lecture 20 CS2110 Fall 2018 1 About A6, Prelim 2 Prelim 2: Thursday, 15 November. Visit exams page of course website and read carefully to find out when you take it

More information