Synthesis of Near-regular Natural Textures

Size: px
Start display at page:

Download "Synthesis of Near-regular Natural Textures"

Transcription

1 Synthesis of Near-regular Natural Textures V. Asha Dept. of Master of Computer Applications New Horizon College of Engineering Bangalore, Karnataka, INDIA Abstract : Texture synthesis is widely used in the field of computer graphics, vision, and image processing. In the present paper, a texture synthesis algorithm is proposed for near-regular natural textures with the help of a representative periodic pattern extracted from the input textures using distance matching function. Local texture statistics is then analyzed against global texture statistics for non-overlapping windows of size same as periodic pattern size and a representative periodic pattern is extracted from the image and used for texture synthesis, while preserving the global regularity and visual appearance. Validation of the algorithm based on experiments with synthetic textures whose periodic pattern sizes are known and containing camouflages / defects proves the strength of the algorithm for texture synthesis and its application in detection of camouflages / defects in textures. Keywords: Near-regular textures, Periodicity, Periodic pattern, Texture synthesis. 1. INTRODUCTION Texture is an important cue in human and machine vision [1]. Almost all real world objects are textured in nature. Traditionally, textures can be broadly classified as either structural (regular or stochastic []. Most of the real world textures fall between regular and stochastic classes. A structural texture is the one that is characterized by a set of primitives called texons or texels and placement rules like a brick wall texture generated by tiling of bricks in a structured fashion. A perfectly regular texture has periodic patterns, where the color / intensity and shape of all texture elements are repeating in equal intervals along two linearly independent directions [3, 4]. On the other hand, a stochastic texture like grass or sand does not contain explicit primitives. Near-regular textures can be viewed as statistical departures of regular textures along different dimensions. Near-regular textures, according to Liu et al., [3 5], can be of Type-0 (Regular in Geometry and Color or Type-I (Regular in Geometry and Irregular in Color or Type-II (Irregular in Geometry and Regular in Color or Type-III (Irregular in Geometry and Color. A texture synthesis algorithm basically starts from a fundamental unit and attempts to generate a complete texture whose appearance is similar to that of the fundamental unit. Primary advantages of texture synthesis include the ability to generate large and/or tilable textures from a small unit directly. Texture analysis and synthesis algorithms are very important in the field of computer graphics, vision, and image processing. Textures have long been used to decorate object surfaces in computer rendered images. Textures can be synthesized based on mathematical functions (procedural texture synthesis [6 8] or using an input texture fragment (sample-based texture synthesis [4, 9 11]. Image synthesis or scene generation can be approached from two somewhat different directions, namely, qualitative perceptual-cue approach and quantitative perceptual-cue approach [1]. The goal of the qualitative perceptual-cue approach is to develop synthetic images that have the appearance of a particular type of textured surface, while capturing the appearance quality and invoking a realistic surface appearance to the observer. Examples of this kind of synthesis are the approaches used in video games and animated films. The objective of the quantitative perceptual-cue approach is to generate texture fields that are based on quantitative, physical models underlying important perceptual cues or physical properties. The ability to derive a texture field that has a prescribed quantitative characterization of the underlying physical and perceptual models is considered to be a fundamental concept in developing these algorithms. Such type of algorithm is used in infrared and visible scene generation for design and evaluation of target recognition systems [13, 14]. In machine vision, the ability to discriminate, segment, or classify textures is essential for tasks such as automatic inspection in textile or ceramic / tile industries. As far as natural texture images are concerned, these have high frequency contents. Hence, natural textures are hard to compress and compact representation has to be achieved using a good texture analysis algorithm [10]. Also, creating a robust and general texture synthesis algorithm has been proven to be very much difficult [15]. It is observed that the combination of regularity and randomness of near-regular textures challenges some state of the art texture synthesis algorithms and many general purpose synthesis algorithms fail to preserve the structural regularity in near-periodic textures [3, 4]. Extraction of a representative tile from near-periodic textures with the help of image-editing software manually is very much difficult Page 635

2 and time-consuming. Also, the junction between tiles is often not smooth and the appearance is not pleasing, even after multiple attempts [16]. Thus, the development of algorithm which can yield good texture-synthesis remains an open area of research. As many textures can be considered as combination of periodic repetition of basic elements or building blocks called texels or texture elements [17], in this work, a simple method is presented for synthesis of near-regular natural textures with the help of a representative periodic pattern extracted from the image, while preserving global regularity and aesthetic appearance. This texel is representative in the sense that it alone can be used to generate an image that is faithful to the original image, just by tiling. The idea is to determine the row and column periodicities of the input texture through enhanced version of Distance Matching Function (DMF proposed in [18] and then to extract a representative periodic pattern based on visual appearance. Once DMFs are computed, textural periodicities and hence periodic pattern size can be determined. For each periodic pattern/ block and for the entire image, first order statistical properties can be evaluated. The first order statistics is based on probability of occurrence of a gray level r k in an image given by n k p(r, k = 0, 1,,, L-1 k n where, n is the total number of pixels, n k is the number of pixels that have gray level r k, and L is the total number of gray levels in the image. The properties, mean ( r, variance (, skewness ( 3, kurtosis (, energy (E 4 1, and entropy (S 1 can be calculated as given below:. ALGORITHM, EXPERIMENTS AND RESULTS In order to extract the periodic pattern which is required for synthesis based on both statistics and visual appearance, it is assumed that the effect of non-uniform or distorted or defective periodic patterns on the global texture properties is negligible. However, the local texture properties of the defective periodic patterns vary considerably with the global statistical properties. Considering this fact, the algorithm for synthesis of natural textures is developed with the following steps: (i Determination of row and column periodicities and hence the periodic pattern size (ii Determination of the global statistics of the input texture and overlaying an imaginary grid to divide the entire image into blocks each of size same as periodic pattern size (iii Computation of local statistics of each periodic pattern and extraction of a representative periodic pattern from the image based on local statistics of each block against global statistics (iv Tiling of the representative periodic pattern to form synthesized counterpart of the input image, while preserving the regularity and visual appearance In order to illustrate the present method of texture synthesis, near-regular natural textures were tested. Figure 1 shows test image-1. r rk p(rk (r rk p(rk E S 3 3 (r rk p(rk 4 4 (r rk p(rk 1 [p(rk ] 1 p(rk log [p(rk ] Synthesis of texture can be made based on analysis of local statistics of each periodic blockagainst global statistics of the input image. Fig.1: Test image-1. By fixing a 10% deviation of local statistics against global statistics, totally nine periodic patterns were extracted from the test image using periodicities determined based on [18] and considering visual appearance, a representative periodic pattern is used for texture synthesis. The synthesized texture thus generated using the representative periodic pattern is shown in Fig.. Page 636

3 Fig.: Result of texture synthesis for the test image 1. Test image- is the texture D0 from Brodatz album and is shown in Fig. 3. Fig. 5: Test image-3 consisting of cluttered U camouflaged in V background. The image being synthetic, within % deviation of local statistics against global statistics, texture synthesis has been achieved with periodic patterns that are pure background. The synthesized texture is shown in Fig. 6. Periodic patterns which are not selected for synthesis are nothing but camouflages as shown highlighted in Fig. 7. Fig.3: Test image- (D0 from Brodatz album. Here also, based on 10% deviation of local statistics against global statistics, totally twelve periodic patterns were extracted using periodicities determined and considering visual appearance, a representative periodic pattern is used for texture synthesis. The synthesized texture thus generated using the representative periodic pattern is shown in Fig. 4. Fig. 6: Result of texture synthesis for the test image 3. Fig.4: Result of texture synthesis for the test image. 3. VALIDATION OF THE ALGORITHM To validate the present method of synthesis, synthetic images used in our previous work [19] and whose periodic pattern sizes are known were tested. Figure 5 shows a test imageconsisting of cluttered U camouflaged in V background. Page 637

4 Fig.7: Image highlighting boundary of camouflages of the test image 3. Another synthetic image with defective patterns (Fig. 8 was also tested. Here also, within % deviation of local statistics against global statistics, texture synthesis has been achieved with periodic patterns that are not defective. Fig.10: Image highlighting boundary of defective periodic patterns of test image 4. Fig. 8: Test image-4 containing defects. The result of synthesis is shown in Fig. 9 and the defective periodic patterns which are not used for synthesis are shown highlighted in Fig CONCLUSIONS The algorithm proposed can help in extraction of representative periodic patterns which may be of square or rectangular size from near-regular natural textures and texture synthesis based on analysis of local texture statistics against global texture statistics, while preserving the global regularity and visual appearance. Validation of the algorithm based on experiments with synthetic textures with periodic patterns of known size and containing camouflages/defects has proved the strength of the algorithm for texture synthesis and detection of defects / camouflages. 5. REFERENCES [1] Levine, M.D., Vision in Man and Machine, McGraw-Hill, New York,1985. [] Efros,A.A., and Leung,T.K., Texture Synthesis by Nonparametric Sampling, ICCV (, pp , [3] Liu, Y., Collins, R., and Tsin,Y., A Computational Model for Periodic Pattern Perception based on Frieze and Wallpaper Groups, IEEE Transactions on Pattern Analysis and Machine Intelligence 6(3, pp , March 004. Fig. 9: Result of texture synthesis for the test image 4. [4] Liu, Y., Lin, W.C., and Hays, J., Near-Regular Texture Analysis and Manipulation, ACM Transactions on Graphics (SIGGRAPH 004 3(3, August 004. [5] Lin, W.C., Hays, J., Wu, C., Kwatra, V., and Liu, Y., Quantitative Evaluation of Near Regular Texture Synthesis Algorithm, Computer Vision and Pattern Recognition Conference (CVPR 06, Vol.1, pp , June-006. [6] Perlin, K., An Image Synthesizer, Proceedings of ACM SIGGRAPH Computer Graphics Conference, pp , Page 638

5 [7] Walter, M., and Fournier, A Clonal Mosaic Model for the Synthesis of Mammalian Coat Patterns, Proceedings of Graphics Interface '98, pp [8] Lefebvre, L., and Poulin, P, Analysis and synthesis of Structural Textures, Proceedings of Graphics Interface 000, pp , 000. [9] D Bonet, J.S., Multi-resolution Sampling Procedure for Analysis and Synthesis of Texture Images, ACM SIGGRAPH, pp , [10] Wei, L., and Levoy, M., Texture Synthesis over Arbitrary, Manifold Surfaces, Proceedings of ACM SIGGRAPH, pp , 001. [11] Efros, A.A., and Freeman, W.T., Image Quilting for Texture Synthesis and Transfer, ACM SIGGRAPH, pp , 001. [1] Copeland, A.C., Ravichandran, G., and Trivedi, M.M., Texture Synthesis using Gray-level Co-occurrence Models: Algorithms, Experimental Analysis, and Psychophysical Support, Optical Engineering 40(11, pp , 001. [13] Copeland, A.C., Trivedi, M.M., and McManamey, J.R., Evaluation of Image Metrics for Target Discrimination using Psychophysical Experiments, Optical Engineering 35 (6, , [14] Gerhart, G.R., Bednarz, E.L., Meitzler, T.J., Sohn, E., and Karlsen, R.E, Target Acquisition Methodology for Visual and Infrared Imaging Sensors, Optical Engineering 35 (10, pp , [15] Ashikhmin, M., Synthesizing Natural Textures, Proceedings of the 001 ACM Symposium on Interactive 3D Graphics, Research Triangle Park, North Carolina, pp. 17-6, 001. [16] Djado, K., Egli, R., and Deschàenesá, U.F., Extraction of a Representative Tile from a Near-Periodic Texture, Proceedings of the 3rd International Conference on Computer Graphics and Interactive Techniques in Aus tralasia and Southeast Asia (GRAPHITE 005, Dunedin, New Zealand, pp , 005. [17] Ballard, D., and Brown, C. M., Computer Vision, Prentice-Hall, Englewood Cliffs, NJ, pp , 198. [18] Asha,V., Nagabhushan, P. and Bhajantri, N.U., Automatic extraction of texture-periodicity using superposition of distance matching functions and their forward differences, Pattern Recognition Letters, vol. 33 (5, , 01. [19] Asha, V., and Nagabhushan, P., Detection and Extraction of Camouflaged Segments using Distance Matching Function, Proceedings of International Conference on Systemics, Cybernetics and Informatics (ICSCI-007, Vol. 1, pp , January, Page 639

Periodicity Extraction using Superposition of Distance Matching Function and One-dimensional Haar Wavelet Transform

Periodicity Extraction using Superposition of Distance Matching Function and One-dimensional Haar Wavelet Transform Periodicity Extraction using Superposition of Distance Matching Function and One-dimensional Haar Wavelet Transform Dr. N.U. Bhajantri Department of Computer Science & Engineering, Government Engineering

More information

Figure 1: A sampler of different types of textures. Figure 2: Left: An irregular texture overlaid with its lattice. Right: its near-regular counterpar

Figure 1: A sampler of different types of textures. Figure 2: Left: An irregular texture overlaid with its lattice. Right: its near-regular counterpar Deformable Texture: the Irregular-Regular-Irregular Cycle Yanxi Liu and Wen-Chieh Lin The Robotics Institute, Carnegie Mellon University, 5000 Forbes Ave. Pittsburgh, PA 15213 fyanxi,wcling@cs.cmu.edu

More information

ABSTRACT Departures from a regular texture pattern can happen in many different dimensions. Previous related work has focused on faithful texture synt

ABSTRACT Departures from a regular texture pattern can happen in many different dimensions. Previous related work has focused on faithful texture synt Deformable Texture: the Irregular-Regular-Irregular Cycle Yanxi Liu and Wen-Chieh Lin CMU-RI-TR-03-26 The Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213 cfl2003 Carnegie Mellon University

More information

Tiled Texture Synthesis

Tiled Texture Synthesis International Journal of Information & Computation Technology. ISSN 0974-2239 Volume 4, Number 16 (2014), pp. 1667-1672 International Research Publications House http://www. irphouse.com Tiled Texture

More information

Texture Synthesis and Manipulation Project Proposal. Douglas Lanman EN 256: Computer Vision 19 October 2006

Texture Synthesis and Manipulation Project Proposal. Douglas Lanman EN 256: Computer Vision 19 October 2006 Texture Synthesis and Manipulation Project Proposal Douglas Lanman EN 256: Computer Vision 19 October 2006 1 Outline Introduction to Texture Synthesis Previous Work Project Goals and Timeline Douglas Lanman

More information

A Comparison Study of Four Texture Synthesis Algorithms on Regular and Near-regular Textures

A Comparison Study of Four Texture Synthesis Algorithms on Regular and Near-regular Textures A Comparison Study of Four Texture Synthesis Algorithms on Regular and Near-regular Textures Wen-Chieh Lin James H. Hays Chenyu Wu Vivek Kwatra Yanxi Liu CMU-RI-TR-04-01 January 2004 School of Computer

More information

Motion Texture. Harriet Pashley Advisor: Yanxi Liu Ph.D. Student: James Hays. 1. Introduction

Motion Texture. Harriet Pashley Advisor: Yanxi Liu Ph.D. Student: James Hays. 1. Introduction Motion Texture Harriet Pashley Advisor: Yanxi Liu Ph.D. Student: James Hays 1. Introduction Motion capture data is often used in movies and video games because it is able to realistically depict human

More information

Combining Abstract Images using Texture Transfer

Combining Abstract Images using Texture Transfer BRIDGES Mathematical Connections in Art, Music, and Science Combining Abstract Images using Texture Transfer Gary R. Greenfield Department of Mathematics & Computer Science University of Richmond Richmond,

More information

An Improved Texture Synthesis Algorithm Using Morphological Processing with Image Analogy

An Improved Texture Synthesis Algorithm Using Morphological Processing with Image Analogy An Improved Texture Synthesis Algorithm Using Morphological Processing with Image Analogy Jiang Ni Henry Schneiderman CMU-RI-TR-04-52 October 2004 Robotics Institute Carnegie Mellon University Pittsburgh,

More information

Automatic Detection of Texture Defects using Texture-Periodicity and Gabor Wavelets

Automatic Detection of Texture Defects using Texture-Periodicity and Gabor Wavelets Abstract Automatic Detection of Texture Defects using Texture-Periodicity and Gabor Wavelets V Asha 1, N U Bhajantri, and P Nagabhushan 3 1 New Horizon College of Engineering, Bangalore, Karnataka, India

More information

Volume Editor. Hans Weghorn Faculty of Mechatronics BA-University of Cooperative Education, Stuttgart Germany

Volume Editor. Hans Weghorn Faculty of Mechatronics BA-University of Cooperative Education, Stuttgart Germany Volume Editor Hans Weghorn Faculty of Mechatronics BA-University of Cooperative Education, Stuttgart Germany Proceedings of the 4 th Annual Meeting on Information Technology and Computer Science ITCS,

More information

Texture April 17 th, 2018

Texture April 17 th, 2018 Texture April 17 th, 2018 Yong Jae Lee UC Davis Announcements PS1 out today Due 5/2 nd, 11:59 pm start early! 2 Review: last time Edge detection: Filter for gradient Threshold gradient magnitude, thin

More information

Texture Image Segmentation using FCM

Texture Image Segmentation using FCM Proceedings of 2012 4th International Conference on Machine Learning and Computing IPCSIT vol. 25 (2012) (2012) IACSIT Press, Singapore Texture Image Segmentation using FCM Kanchan S. Deshmukh + M.G.M

More information

Tiled Textures What if Miro Had Painted a Sphere

Tiled Textures What if Miro Had Painted a Sphere Tiled Textures What if Miro Had Painted a Sphere ERGUN AKLEMAN, AVNEET KAUR and LORI GREEN Visualization Sciences Program, Department of Architecture Texas A&M University December 26, 2005 Abstract We

More information

Image Inpainting by Hyperbolic Selection of Pixels for Two Dimensional Bicubic Interpolations

Image Inpainting by Hyperbolic Selection of Pixels for Two Dimensional Bicubic Interpolations Image Inpainting by Hyperbolic Selection of Pixels for Two Dimensional Bicubic Interpolations Mehran Motmaen motmaen73@gmail.com Majid Mohrekesh mmohrekesh@yahoo.com Mojtaba Akbari mojtaba.akbari@ec.iut.ac.ir

More information

Robust Steganography Using Texture Synthesis

Robust Steganography Using Texture Synthesis Robust Steganography Using Texture Synthesis Zhenxing Qian 1, Hang Zhou 2, Weiming Zhang 2, Xinpeng Zhang 1 1. School of Communication and Information Engineering, Shanghai University, Shanghai, 200444,

More information

Automated Classification of Quilt Photographs Into Crazy and Noncrazy

Automated Classification of Quilt Photographs Into Crazy and Noncrazy Automated Classification of Quilt Photographs Into Crazy and Noncrazy Alhaad Gokhale a and Peter Bajcsy b a Dept. of Computer Science and Engineering, Indian institute of Technology, Kharagpur, India;

More information

Texture synthesis using gray-level co-occurrence models: algorithms, experimental analysis, and psychophysical support

Texture synthesis using gray-level co-occurrence models: algorithms, experimental analysis, and psychophysical support Texture synthesis using gray-level co-occurrence models: algorithms, experimental analysis, and psychophysical support Anthony C. Copeland Gopalan Ravichandran Mohan M. Trivedi, FELLOW SPIE University

More information

ISSN: (Online) Volume 2, Issue 5, May 2014 International Journal of Advance Research in Computer Science and Management Studies

ISSN: (Online) Volume 2, Issue 5, May 2014 International Journal of Advance Research in Computer Science and Management Studies ISSN: 2321-7782 (Online) Volume 2, Issue 5, May 2014 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online at:

More information

Texture. CS 419 Slides by Ali Farhadi

Texture. CS 419 Slides by Ali Farhadi Texture CS 419 Slides by Ali Farhadi What is a Texture? Texture Spectrum Steven Li, James Hays, Chenyu Wu, Vivek Kwatra, and Yanxi Liu, CVPR 06 Texture scandals!! Two crucial algorithmic points Nearest

More information

Steganography Using Reversible Texture Synthesis: The Study Chaitali Bobade, Iramnaaz Pathan, Shital Salunkhe, Jyoti Shinde, Sachin Pukale

Steganography Using Reversible Texture Synthesis: The Study Chaitali Bobade, Iramnaaz Pathan, Shital Salunkhe, Jyoti Shinde, Sachin Pukale Steganography Using Reversible Texture Synthesis: The Study Chaitali Bobade, Iramnaaz Pathan, Shital Salunkhe, Jyoti Shinde, Sachin Pukale Abstract It is a unique approach for steganography using a reversible

More information

Texture Analysis. Selim Aksoy Department of Computer Engineering Bilkent University

Texture Analysis. Selim Aksoy Department of Computer Engineering Bilkent University Texture Analysis Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Texture An important approach to image description is to quantify its texture content. Texture

More information

Texture. The Challenge. Texture Synthesis. Statistical modeling of texture. Some History. COS526: Advanced Computer Graphics

Texture. The Challenge. Texture Synthesis. Statistical modeling of texture. Some History. COS526: Advanced Computer Graphics COS526: Advanced Computer Graphics Tom Funkhouser Fall 2010 Texture Texture is stuff (as opposed to things ) Characterized by spatially repeating patterns Texture lacks the full range of complexity of

More information

Announcements. Texture. Review: last time. Texture 9/15/2009. Write your CS login ID on the pset hardcopy. Tuesday, Sept 15 Kristen Grauman UT-Austin

Announcements. Texture. Review: last time. Texture 9/15/2009. Write your CS login ID on the pset hardcopy. Tuesday, Sept 15 Kristen Grauman UT-Austin Announcements Texture Write your CS login ID on the pset hardcopy Tuesday, Sept 5 Kristen Grauman UT-Austin Review: last time Edge detection: Filter for gradient Threshold gradient magnitude, thin Texture

More information

More details on presentations

More details on presentations More details on presentations Aim to speak for ~50 min (after 15 min review, leaving 10 min for discussions) Try to plan discussion topics It s fine to steal slides from the Web, but be sure to acknowledge

More information

5. Feature Extraction from Images

5. Feature Extraction from Images 5. Feature Extraction from Images Aim of this Chapter: Learn the Basic Feature Extraction Methods for Images Main features: Color Texture Edges Wie funktioniert ein Mustererkennungssystem Test Data x i

More information

Texture April 14 th, 2015

Texture April 14 th, 2015 Texture April 14 th, 2015 Yong Jae Lee UC Davis Announcements PS1 out today due 4/29 th, 11:59 pm start early! 2 Review: last time Edge detection: Filter for gradient Threshold gradient magnitude, thin

More information

An ICA based Approach for Complex Color Scene Text Binarization

An ICA based Approach for Complex Color Scene Text Binarization An ICA based Approach for Complex Color Scene Text Binarization Siddharth Kherada IIIT-Hyderabad, India siddharth.kherada@research.iiit.ac.in Anoop M. Namboodiri IIIT-Hyderabad, India anoop@iiit.ac.in

More information

+ = The Goal of Texture Synthesis. Image Quilting for Texture Synthesis & Transfer. The Challenge. Texture Synthesis for Graphics

+ = The Goal of Texture Synthesis. Image Quilting for Texture Synthesis & Transfer. The Challenge. Texture Synthesis for Graphics Image Quilting for Texture Synthesis & Transfer Alexei Efros (UC Berkeley) Bill Freeman (MERL) The Goal of Texture Synthesis True (infinite) texture input image SYNTHESIS generated image Given a finite

More information

A Quantitative Approach for Textural Image Segmentation with Median Filter

A Quantitative Approach for Textural Image Segmentation with Median Filter International Journal of Advancements in Research & Technology, Volume 2, Issue 4, April-2013 1 179 A Quantitative Approach for Textural Image Segmentation with Median Filter Dr. D. Pugazhenthi 1, Priya

More information

Camouflage Breaking: A Review of Contemporary Techniques

Camouflage Breaking: A Review of Contemporary Techniques Camouflage Breaking: A Review of Contemporary Techniques Amy Whicker University of South Carolina Columbia, South Carolina rossam2@cse.sc.edu Abstract. Camouflage is an attempt to make a target "invisible"

More information

Lecture 6: Texture. Tuesday, Sept 18

Lecture 6: Texture. Tuesday, Sept 18 Lecture 6: Texture Tuesday, Sept 18 Graduate students Problem set 1 extension ideas Chamfer matching Hierarchy of shape prototypes, search over translations Comparisons with Hausdorff distance, L1 on

More information

A New Image Based Ligthing Method: Practical Shadow-Based Light Reconstruction

A New Image Based Ligthing Method: Practical Shadow-Based Light Reconstruction A New Image Based Ligthing Method: Practical Shadow-Based Light Reconstruction Jaemin Lee and Ergun Akleman Visualization Sciences Program Texas A&M University Abstract In this paper we present a practical

More information

Neural Network based textural labeling of images in multimedia applications

Neural Network based textural labeling of images in multimedia applications Neural Network based textural labeling of images in multimedia applications S.A. Karkanis +, G.D. Magoulas +, and D.A. Karras ++ + University of Athens, Dept. of Informatics, Typa Build., Panepistimiopolis,

More information

Single Image Super-resolution. Slides from Libin Geoffrey Sun and James Hays

Single Image Super-resolution. Slides from Libin Geoffrey Sun and James Hays Single Image Super-resolution Slides from Libin Geoffrey Sun and James Hays Cs129 Computational Photography James Hays, Brown, fall 2012 Types of Super-resolution Multi-image (sub-pixel registration) Single-image

More information

Hexagonal Image Quilting for Texture Synthesis

Hexagonal Image Quilting for Texture Synthesis Hexagonal Image Quilting for Texture Synthesis David Kuri OVGU Magdeburg Universitätsplatz 2 39114 Magdeburg, Germany david.kuri@st.ovgu.de Elena Root Volkswagen AG Berliner Ring 2 38440 Wolfsburg, Germany

More information

Image-Based Deformation of Objects in Real Scenes

Image-Based Deformation of Objects in Real Scenes Image-Based Deformation of Objects in Real Scenes Han-Vit Chung and In-Kwon Lee Dept. of Computer Science, Yonsei University sharpguy@cs.yonsei.ac.kr, iklee@yonsei.ac.kr Abstract. We present a new method

More information

Face Cyclographs for Recognition

Face Cyclographs for Recognition Face Cyclographs for Recognition Guodong Guo Department of Computer Science North Carolina Central University E-mail: gdguo@nccu.edu Charles R. Dyer Computer Sciences Department University of Wisconsin-Madison

More information

ADVANCED IMAGE PROCESSING METHODS FOR ULTRASONIC NDE RESEARCH C. H. Chen, University of Massachusetts Dartmouth, N.

ADVANCED IMAGE PROCESSING METHODS FOR ULTRASONIC NDE RESEARCH C. H. Chen, University of Massachusetts Dartmouth, N. ADVANCED IMAGE PROCESSING METHODS FOR ULTRASONIC NDE RESEARCH C. H. Chen, University of Massachusetts Dartmouth, N. Dartmouth, MA USA Abstract: The significant progress in ultrasonic NDE systems has now

More information

Quasi-Euclidean Uncalibrated Epipolar Rectification

Quasi-Euclidean Uncalibrated Epipolar Rectification Dipartimento di Informatica Università degli Studi di Verona Rapporto di ricerca Research report September 2006 RR 43/2006 Quasi-Euclidean Uncalibrated Epipolar Rectification L. Irsara A. Fusiello Questo

More information

Use of Shape Deformation to Seamlessly Stitch Historical Document Images

Use of Shape Deformation to Seamlessly Stitch Historical Document Images Use of Shape Deformation to Seamlessly Stitch Historical Document Images Wei Liu Wei Fan Li Chen Jun Sun Satoshi Naoi In China, efforts are being made to preserve historical documents in the form of digital

More information

I Chen Lin, Assistant Professor Dept. of CS, National Chiao Tung University. Computer Vision: 6. Texture

I Chen Lin, Assistant Professor Dept. of CS, National Chiao Tung University. Computer Vision: 6. Texture I Chen Lin, Assistant Professor Dept. of CS, National Chiao Tung University Computer Vision: 6. Texture Objective Key issue: How do we represent texture? Topics: Texture analysis Texture synthesis Shape

More information

Light Field Occlusion Removal

Light Field Occlusion Removal Light Field Occlusion Removal Shannon Kao Stanford University kaos@stanford.edu Figure 1: Occlusion removal pipeline. The input image (left) is part of a focal stack representing a light field. Each image

More information

Hybrid Textons: Modeling Surfaces with Reflectance and Geometry

Hybrid Textons: Modeling Surfaces with Reflectance and Geometry Hybrid Textons: Modeling Surfaces with Reflectance and Geometry Jing Wang and Kristin J. Dana Electrical and Computer Engineering Department Rutgers University Piscataway, NJ, USA {jingwang,kdana}@caip.rutgers.edu

More information

Median filter. Non-linear filtering example. Degraded image. Radius 1 median filter. Today

Median filter. Non-linear filtering example. Degraded image. Radius 1 median filter. Today Today Non-linear filtering example Median filter Replace each pixel by the median over N pixels (5 pixels, for these examples). Generalizes to rank order filters. In: In: 5-pixel neighborhood Out: Out:

More information

Non-linear filtering example

Non-linear filtering example Today Non-linear filtering example Median filter Replace each pixel by the median over N pixels (5 pixels, for these examples). Generalizes to rank order filters. In: In: 5-pixel neighborhood Out: Out:

More information

Image Compression and Resizing Using Improved Seam Carving for Retinal Images

Image Compression and Resizing Using Improved Seam Carving for Retinal Images Image Compression and Resizing Using Improved Seam Carving for Retinal Images Prabhu Nayak 1, Rajendra Chincholi 2, Dr.Kalpana Vanjerkhede 3 1 PG Student, Department of Electronics and Instrumentation

More information

Image Base Rendering: An Introduction

Image Base Rendering: An Introduction Image Base Rendering: An Introduction Cliff Lindsay CS563 Spring 03, WPI 1. Introduction Up to this point, we have focused on showing 3D objects in the form of polygons. This is not the only approach to

More information

Universiteit Leiden Opleiding Informatica

Universiteit Leiden Opleiding Informatica Internal Report 2012-2013-09 June 2013 Universiteit Leiden Opleiding Informatica Evaluation of Image Quilting algorithms Pepijn van Heiningen BACHELOR THESIS Leiden Institute of Advanced Computer Science

More information

Local Image Registration: An Adaptive Filtering Framework

Local Image Registration: An Adaptive Filtering Framework Local Image Registration: An Adaptive Filtering Framework Gulcin Caner a,a.murattekalp a,b, Gaurav Sharma a and Wendi Heinzelman a a Electrical and Computer Engineering Dept.,University of Rochester, Rochester,

More information

Low Cost Motion Capture

Low Cost Motion Capture Low Cost Motion Capture R. Budiman M. Bennamoun D.Q. Huynh School of Computer Science and Software Engineering The University of Western Australia Crawley WA 6009 AUSTRALIA Email: budimr01@tartarus.uwa.edu.au,

More information

A Miniature-Based Image Retrieval System

A Miniature-Based Image Retrieval System A Miniature-Based Image Retrieval System Md. Saiful Islam 1 and Md. Haider Ali 2 Institute of Information Technology 1, Dept. of Computer Science and Engineering 2, University of Dhaka 1, 2, Dhaka-1000,

More information

A Survey of Light Source Detection Methods

A Survey of Light Source Detection Methods A Survey of Light Source Detection Methods Nathan Funk University of Alberta Mini-Project for CMPUT 603 November 30, 2003 Abstract This paper provides an overview of the most prominent techniques for light

More information

Decorating Surfaces with Bidirectional Texture Functions

Decorating Surfaces with Bidirectional Texture Functions Decorating Surfaces with Bidirectional Texture Functions Category: Research Abstract We present a system for decorating arbitrary surfaces with bidirectional texture functions (BTF). Our system generates

More information

Detection of a Single Hand Shape in the Foreground of Still Images

Detection of a Single Hand Shape in the Foreground of Still Images CS229 Project Final Report Detection of a Single Hand Shape in the Foreground of Still Images Toan Tran (dtoan@stanford.edu) 1. Introduction This paper is about an image detection system that can detect

More information

Rendering Technique for Colored Paper Mosaic

Rendering Technique for Colored Paper Mosaic Rendering Technique for Colored Paper Mosaic Youngsup Park, Sanghyun Seo, YongJae Gi, Hanna Song, and Kyunghyun Yoon CG Lab., CS&E, ChungAng University, 221, HeokSuk-dong, DongJak-gu, Seoul, Korea {cookie,shseo,yj1023,comely1004,khyoon}@cglab.cse.cau.ac.kr

More information

Computer Graphics. P08 Texture Synthesis. Aleksandra Pizurica Ghent University

Computer Graphics. P08 Texture Synthesis. Aleksandra Pizurica Ghent University Computer Graphics P08 Texture Synthesis Aleksandra Pizurica Ghent University Telecommunications and Information Processing Image Processing and Interpretation Group Applications of texture synthesis Computer

More information

Space Filling: A new algorithm for procedural creation of game assets

Space Filling: A new algorithm for procedural creation of game assets Space Filling: A new algorithm for procedural creation of game assets Paul Bourke ivec@uwa, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, West Australia 6009. Email: paul.bourke@uwa.edu.au

More information

Final Exam Schedule. Final exam has been scheduled. 12:30 pm 3:00 pm, May 7. Location: INNOVA It will cover all the topics discussed in class

Final Exam Schedule. Final exam has been scheduled. 12:30 pm 3:00 pm, May 7. Location: INNOVA It will cover all the topics discussed in class Final Exam Schedule Final exam has been scheduled 12:30 pm 3:00 pm, May 7 Location: INNOVA 1400 It will cover all the topics discussed in class One page double-sided cheat sheet is allowed A calculator

More information

Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting

Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting R. Maier 1,2, K. Kim 1, D. Cremers 2, J. Kautz 1, M. Nießner 2,3 Fusion Ours 1

More information

Texture. COS 429 Princeton University

Texture. COS 429 Princeton University Texture COS 429 Princeton University Texture What is a texture? Antonio Torralba Texture What is a texture? Antonio Torralba Texture What is a texture? Antonio Torralba Texture Texture is stochastic and

More information

Announcements. Texture. Review. Today: Texture 9/14/2015. Reminder: A1 due this Friday. Tues, Sept 15. Kristen Grauman UT Austin

Announcements. Texture. Review. Today: Texture 9/14/2015. Reminder: A1 due this Friday. Tues, Sept 15. Kristen Grauman UT Austin Announcements Reminder: A due this Friday Texture Tues, Sept 5 Kristen Grauman UT Austin Review Edge detection: Filter for gradient Threshold gradient magnitude, thin Today: Texture Chamfer matching to

More information

Fast Texture Synthesis on Arbitrary Meshes

Fast Texture Synthesis on Arbitrary Meshes Eurographics Symposium on Rendering 2003 Per Christensen and Daniel Cohen-Or (Editors) Fast Texture Synthesis on Arbitrary Meshes Sebastian Magda, 1 David Kriegman 2 1 University of Illinois at Urbana-Champaign

More information

FEATURE EXTRACTION TECHNIQUES FOR IMAGE RETRIEVAL USING HAAR AND GLCM

FEATURE EXTRACTION TECHNIQUES FOR IMAGE RETRIEVAL USING HAAR AND GLCM FEATURE EXTRACTION TECHNIQUES FOR IMAGE RETRIEVAL USING HAAR AND GLCM Neha 1, Tanvi Jain 2 1,2 Senior Research Fellow (SRF), SAM-C, Defence R & D Organization, (India) ABSTRACT Content Based Image Retrieval

More information

A Modified SVD-DCT Method for Enhancement of Low Contrast Satellite Images

A Modified SVD-DCT Method for Enhancement of Low Contrast Satellite Images A Modified SVD-DCT Method for Enhancement of Low Contrast Satellite Images G.Praveena 1, M.Venkatasrinu 2, 1 M.tech student, Department of Electronics and Communication Engineering, Madanapalle Institute

More information

CLASSIFICATION OF BOUNDARY AND REGION SHAPES USING HU-MOMENT INVARIANTS

CLASSIFICATION OF BOUNDARY AND REGION SHAPES USING HU-MOMENT INVARIANTS CLASSIFICATION OF BOUNDARY AND REGION SHAPES USING HU-MOMENT INVARIANTS B.Vanajakshi Department of Electronics & Communications Engg. Assoc.prof. Sri Viveka Institute of Technology Vijayawada, India E-mail:

More information

Image Composition. COS 526 Princeton University

Image Composition. COS 526 Princeton University Image Composition COS 526 Princeton University Modeled after lecture by Alexei Efros. Slides by Efros, Durand, Freeman, Hays, Fergus, Lazebnik, Agarwala, Shamir, and Perez. Image Composition Jurassic Park

More information

A SYNTAX FOR IMAGE UNDERSTANDING

A SYNTAX FOR IMAGE UNDERSTANDING A SYNTAX FOR IMAGE UNDERSTANDING Narendra Ahuja University of Illinois at Urbana-Champaign May 21, 2009 Work Done with. Sinisa Todorovic, Mark Tabb, Himanshu Arora, Varsha. Hedau, Bernard Ghanem, Tim Cheng.

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Introduction to 2 What is? A process that produces from images of the external world a description

More information

We present a method to accelerate global illumination computation in pre-rendered animations

We present a method to accelerate global illumination computation in pre-rendered animations Attention for Computer Graphics Rendering Hector Yee PDI / DreamWorks Sumanta Pattanaik University of Central Florida Corresponding Author: Hector Yee Research and Development PDI / DreamWorks 1800 Seaport

More information

Content Based Image Retrieval: Survey and Comparison between RGB and HSV model

Content Based Image Retrieval: Survey and Comparison between RGB and HSV model Content Based Image Retrieval: Survey and Comparison between RGB and HSV model Simardeep Kaur 1 and Dr. Vijay Kumar Banga 2 AMRITSAR COLLEGE OF ENGG & TECHNOLOGY, Amritsar, India Abstract Content based

More information

An Algorithm for Seamless Image Stitching and Its Application

An Algorithm for Seamless Image Stitching and Its Application An Algorithm for Seamless Image Stitching and Its Application Jing Xing, Zhenjiang Miao, and Jing Chen Institute of Information Science, Beijing JiaoTong University, Beijing 100044, P.R. China Abstract.

More information

Automatic Texture Segmentation for Texture-based Image Retrieval

Automatic Texture Segmentation for Texture-based Image Retrieval Automatic Texture Segmentation for Texture-based Image Retrieval Ying Liu, Xiaofang Zhou School of ITEE, The University of Queensland, Queensland, 4072, Australia liuy@itee.uq.edu.au, zxf@itee.uq.edu.au

More information

CCITC Shervan Fekri-Ershad Department of Computer Science and Engineering Shiraz University Shiraz, Fars, Iran

CCITC Shervan Fekri-Ershad Department of Computer Science and Engineering Shiraz University Shiraz, Fars, Iran Innovative Texture Database Collecting Approach and Feature Extraction Method based on Combination of Gray Tone Difference Matrixes, Local Binary Patterns, and K-means Clustering Shervan Fekri-Ershad Department

More information

Today: non-linear filters, and uses for the filters and representations from last time. Review pyramid representations Non-linear filtering Textures

Today: non-linear filters, and uses for the filters and representations from last time. Review pyramid representations Non-linear filtering Textures 1 Today: non-linear filters, and uses for the filters and representations from last time Review pyramid representations Non-linear filtering Textures 2 Reading Related to today s lecture: Chapter 9, Forsyth&Ponce..

More information

An Efficient Semantic Image Retrieval based on Color and Texture Features and Data Mining Techniques

An Efficient Semantic Image Retrieval based on Color and Texture Features and Data Mining Techniques An Efficient Semantic Image Retrieval based on Color and Texture Features and Data Mining Techniques Doaa M. Alebiary Department of computer Science, Faculty of computers and informatics Benha University

More information

Analysis of Irregularly Shaped Texture Regions 1

Analysis of Irregularly Shaped Texture Regions 1 Computer Vision and Image Understanding 84, 62 76 (2001) doi:10.1006/cviu.2001.0941, available online at http://www.idealibrary.com on Analysis of Irregularly Shaped Texture Regions 1 Pedro García-Sevilla

More information

Self-similarity Based Editing of 3D Surface Textures

Self-similarity Based Editing of 3D Surface Textures J. Dong et al.: Self-similarity based editing of 3D surface textures. In Texture 2005: Proceedings of the 4th International Workshop on Texture Analysis and Synthesis, pp. 71 76, 2005. Self-similarity

More information

Detecting motion by means of 2D and 3D information

Detecting motion by means of 2D and 3D information Detecting motion by means of 2D and 3D information Federico Tombari Stefano Mattoccia Luigi Di Stefano Fabio Tonelli Department of Electronics Computer Science and Systems (DEIS) Viale Risorgimento 2,

More information

What is Computer Vision? Introduction. We all make mistakes. Why is this hard? What was happening. What do you see? Intro Computer Vision

What is Computer Vision? Introduction. We all make mistakes. Why is this hard? What was happening. What do you see? Intro Computer Vision What is Computer Vision? Trucco and Verri (Text): Computing properties of the 3-D world from one or more digital images Introduction Introduction to Computer Vision CSE 152 Lecture 1 Sockman and Shapiro:

More information

PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing

PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing Barnes et al. In SIGGRAPH 2009 발표이성호 2009 년 12 월 3 일 Introduction Image retargeting Resized to a new aspect ratio [Rubinstein

More information

Compressing 2-D Shapes using Concavity Trees

Compressing 2-D Shapes using Concavity Trees Compressing 2-D Shapes using Concavity Trees O. El Badawy 1 and M. S. Kamel 2 1 Dept. of Systems Design Engineering. 2 Dept. of Electrical and Computer Engineering. Pattern Analysis and Machine Intelligence

More information

values). In order to find such tiles we developed an algorithm [15], called region of dominance, for locating the underlying lattice of a given patter

values). In order to find such tiles we developed an algorithm [15], called region of dominance, for locating the underlying lattice of a given patter The Promise and The Perils of Near-regular Texture Λ Yanxi Liu and Yanghai Tsin The Robotics Institute, Carnegie Mellon University, 5000 Forbes Ave. Pittsburgh, PA 15213 fyanxi,ytsing@cs.cmu.edu Abstract

More information

Face Detection for Skintone Images Using Wavelet and Texture Features

Face Detection for Skintone Images Using Wavelet and Texture Features Face Detection for Skintone Images Using Wavelet and Texture Features 1 H.C. Vijay Lakshmi, 2 S. Patil Kulkarni S.J. College of Engineering Mysore, India 1 vijisjce@yahoo.co.in, 2 pk.sudarshan@gmail.com

More information

Drywall state detection in image data for automatic indoor progress monitoring C. Kropp, C. Koch and M. König

Drywall state detection in image data for automatic indoor progress monitoring C. Kropp, C. Koch and M. König Drywall state detection in image data for automatic indoor progress monitoring C. Kropp, C. Koch and M. König Chair for Computing in Engineering, Department of Civil and Environmental Engineering, Ruhr-Universität

More information

Image Classification for JPEG Compression

Image Classification for JPEG Compression Image Classification for Compression Jevgenij Tichonov Vilnius University, Institute of Mathematics and Informatics Akademijos str. 4 LT-08663, Vilnius jevgenij.tichonov@gmail.com Olga Kurasova Vilnius

More information

A Novel Texture Classification Procedure by using Association Rules

A Novel Texture Classification Procedure by using Association Rules ITB J. ICT Vol. 2, No. 2, 2008, 03-4 03 A Novel Texture Classification Procedure by using Association Rules L. Jaba Sheela & V.Shanthi 2 Panimalar Engineering College, Chennai. 2 St.Joseph s Engineering

More information

Object Shape Recognition in Image for Machine Vision Application

Object Shape Recognition in Image for Machine Vision Application Object Shape Recognition in Image for Machine Vision Application Mohd Firdaus Zakaria, Hoo Seng Choon, and Shahrel Azmin Suandi Abstract Vision is the most advanced of our senses, so it is not surprising

More information

Experimentation on the use of Chromaticity Features, Local Binary Pattern and Discrete Cosine Transform in Colour Texture Analysis

Experimentation on the use of Chromaticity Features, Local Binary Pattern and Discrete Cosine Transform in Colour Texture Analysis Experimentation on the use of Chromaticity Features, Local Binary Pattern and Discrete Cosine Transform in Colour Texture Analysis N.Padmapriya, Ovidiu Ghita, and Paul.F.Whelan Vision Systems Laboratory,

More information

Image Enhancement 3-1

Image Enhancement 3-1 Image Enhancement The goal of image enhancement is to improve the usefulness of an image for a given task, such as providing a more subjectively pleasing image for human viewing. In image enhancement,

More information

Nonparametric Bayesian Texture Learning and Synthesis

Nonparametric Bayesian Texture Learning and Synthesis Appears in Advances in Neural Information Processing Systems (NIPS) 2009. Nonparametric Bayesian Texture Learning and Synthesis Long (Leo) Zhu 1 Yuanhao Chen 2 William Freeman 1 Antonio Torralba 1 1 CSAIL,

More information

(Refer Slide Time 00:17) Welcome to the course on Digital Image Processing. (Refer Slide Time 00:22)

(Refer Slide Time 00:17) Welcome to the course on Digital Image Processing. (Refer Slide Time 00:22) Digital Image Processing Prof. P. K. Biswas Department of Electronics and Electrical Communications Engineering Indian Institute of Technology, Kharagpur Module Number 01 Lecture Number 02 Application

More information

FLY THROUGH VIEW VIDEO GENERATION OF SOCCER SCENE

FLY THROUGH VIEW VIDEO GENERATION OF SOCCER SCENE FLY THROUGH VIEW VIDEO GENERATION OF SOCCER SCENE Naho INAMOTO and Hideo SAITO Keio University, Yokohama, Japan {nahotty,saito}@ozawa.ics.keio.ac.jp Abstract Recently there has been great deal of interest

More information

TRANSPARENT OBJECT DETECTION USING REGIONS WITH CONVOLUTIONAL NEURAL NETWORK

TRANSPARENT OBJECT DETECTION USING REGIONS WITH CONVOLUTIONAL NEURAL NETWORK TRANSPARENT OBJECT DETECTION USING REGIONS WITH CONVOLUTIONAL NEURAL NETWORK 1 Po-Jen Lai ( 賴柏任 ), 2 Chiou-Shann Fuh ( 傅楸善 ) 1 Dept. of Electrical Engineering, National Taiwan University, Taiwan 2 Dept.

More information

Texture Synthesis. Darren Green (

Texture Synthesis. Darren Green ( Texture Synthesis Darren Green (www.darrensworld.com) 15-463: Computational Photography Alexei Efros, CMU, Fall 2006 Texture Texture depicts spatially repeating patterns Many natural phenomena are textures

More information

Human Detection. A state-of-the-art survey. Mohammad Dorgham. University of Hamburg

Human Detection. A state-of-the-art survey. Mohammad Dorgham. University of Hamburg Human Detection A state-of-the-art survey Mohammad Dorgham University of Hamburg Presentation outline Motivation Applications Overview of approaches (categorized) Approaches details References Motivation

More information

Using Image's Processing Methods in Bio-Technology

Using Image's Processing Methods in Bio-Technology Int. J. Open Problems Compt. Math., Vol. 2, No. 2, June 2009 Using Image's Processing Methods in Bio-Technology I. A. Ismail 1, S. I. Zaki 2, E. A. Rakha 3 and M. A. Ashabrawy 4 1 Dean of Computer Science

More information

EE640 FINAL PROJECT HEADS OR TAILS

EE640 FINAL PROJECT HEADS OR TAILS EE640 FINAL PROJECT HEADS OR TAILS By Laurence Hassebrook Initiated: April 2015, updated April 27 Contents 1. SUMMARY... 1 2. EXPECTATIONS... 2 3. INPUT DATA BASE... 2 4. PREPROCESSING... 4 4.1 Surface

More information

Hierarchical Matching Techiques for Automatic Image Mosaicing

Hierarchical Matching Techiques for Automatic Image Mosaicing Hierarchical Matching Techiques for Automatic Image Mosaicing C.L Begg, R Mukundan Department of Computer Science, University of Canterbury, Christchurch, New Zealand clb56@student.canterbury.ac.nz, mukund@cosc.canterbury.ac.nz

More information

Texture Synthesis. Darren Green (

Texture Synthesis. Darren Green ( Texture Synthesis Darren Green (www.darrensworld.com) 15-463: Computational Photography Alexei Efros, CMU, Fall 2005 Texture Texture depicts spatially repeating patterns Many natural phenomena are textures

More information