Single Image Super-resolution. Slides from Libin Geoffrey Sun and James Hays

Size: px
Start display at page:

Download "Single Image Super-resolution. Slides from Libin Geoffrey Sun and James Hays"

Transcription

1 Single Image Super-resolution Slides from Libin Geoffrey Sun and James Hays Cs129 Computational Photography James Hays, Brown, fall 2012

2 Types of Super-resolution Multi-image (sub-pixel registration) Single-image (Hallucination)

3 Super-resolution Goals 1) Produce a detailed, realistic output image. 2) Be faithful to the low resolution input image.

4 Bicubic Upsampling 1) Produce a detailed, realistic output image. 2) Be faithful to the low resolution input image.

5 Best Scene Match 1) Produce a detailed, realistic output image. 2) Be faithful to the low resolution input image.

6 Typical Super-resolution Method 1) Build some statistical model of the visual world. 2) Coerce an upsampled image to obey those statistics. Methods can be divided based on the statistical model either parametric or non-parametric (data-driven).

7 Bicubic Upsampling

8 Fattal, SIGGRAPH 2007

9 Example-Based Super-Resolution. Freeman, Jones, and Pasztor. 2000

10 Example-Based Super-Resolution. Freeman, Jones, and Pasztor Bicubic Super-resolution

11 Super-resolution from Internet-scale Scene Matching Libin (Geoffrey) Sun, James Hays Brown University

12 Problem Statement single image super-resolution We want: - more pixels - sharp edges - correct textures x 128 Extremely ill-posed 680 x 1024

13 Why is it hard? - mathematically ill-posed - vision-hard sky mountain, rocks snow, grass 8

14 Previous Work Tappen et al, 2003 Fattal, 2007 Sun et al, 2008 Freeman et al, 2000 Baker&Kanade, 2002 Sun et al, 2003 Yang et al, 2008 Glasner et al, 2009 Sun&Tappen, 2010 HaCohen et al, 2010

15 HaCohen et al, ICCP 2010 texture database with 13 categories, 106 images - material/texture recognition is hard - requires human intervention - edge handling - limited categories

16 Sun & Tappen, CVPR natural images, 160,000 low/high segment pairs - hard to establish 'correct' segment correspondences Query segment Similar segments

17 Self-similarity Based Methods [Glasner et al, 2009] [Freedman & Fattal, 2010]

18 Overview and Contributions The first to use scene matches for SR, at extremely low-res Scene match statistics favored over internal statistics Competitive results, insertion of details, texture transitions

19 Number of images Scale of Training Data Ours 6.3 Million Sun & Tappen 4000 Freeman et al 6 Sun et al 16 Yang et al 30 HaCohen et al year

20 Scene Matching: Image-level Context

21 Scene Matching Image restoration/inpainting [Hays & Efros, SIGGRAPH 2007] [Dale et al, ICCV 2009] [Johnson et al, TVGC 2010] Geolocation [Hays & Efros, CVPR 2008] Image similarity [Shrivastava et al, SIGGRAPH ASIA 2011] Object recognition [Russell et al, NIPS 2007] [Torralba et al, CVPR 2008] Image-based rendering [Sivic et al, CVPR 2008] Scene parsing [Liu et al, CVPR 2009] Event prediction [Yuen & Torralba, ECCV 2010]

22 Scene Matching Example Scene Matches Input (low-res) Database Features: Gist color/texton histogram sparse BoW geometric context 6.3 million images

23 How Useful are the Scene Matches? Expressiveness and Predictive Power [Zontak & Irani 2011] 1 Internal Database (all scales) Input image (ground truth) External Database [Zontak & Irani 2011] 3 BSD training set 2 External Database [Ours] 4 Internal Database (limited) Scene Matches

24 Expressiveness high-res (ground truth) How close is the nearest neighbor? Database High-res patches

25 Predictive Error low-res (observed) error in estimated HR patch? Database low/high patch pairs Retrieve knn patches + Estimate high-res high-res (ground truth)

26 Segmentation: Region-level Context

27 Segmentation: Region-level Context textons learned per image/scene - Color histograms query segments top 5 segment matches Input image (low res)

28 Optimization Framework

29 Optimization Framework Greedy selection of pixel candidates [Sun & Tappen 2010] Reconstruction term Hallucination term Edge smoothness term Image formation model Pixel candidates (data-driven) Sparse prior (student-t)

30 80 test images.

31 Bicubic 8 Ours Sun & Tappen, CVPR 2010 Glasner et al, ICCV 2009

32 Bicubic 8 Ours Sun & Tappen, CVPR 2010 Glasner et al, ICCV 2009

33 Bicubic 8 Ours Sun & Tappen, CVPR 2010 Glasner et al, ICCV 2009

34 Bicubic 8 Ours Sun & Tappen, CVPR 2010 Glasner et al, ICCV 2009

35 Failure Modes: Bad Scene Match Top Scene Matches Input image

36 Failures

37 Failure Modes: Bad Texture Transfer Top Scene Matches Input image

38

39 Evaluation Perceptual Studies, similar to [Liu et al, 2009] - 20 test scenes - Binary comparison: 'higher quality' - 22 participants

40 Conclusions The first to use scene matches for SR, at extremely low-res Scene match statistics favored over internal statistics Competitive results, insertion of details, texture transitions

41

42 Thank you! And Questions?

43 Expressiveness 5x5 vs 9x9

44 Predictive Error 5x5 vs 9x9

45 Predictive Uncertainty 5x5 vs 9x9

46 Optimization Framework [Sun 2010]

ROBUST INTERNAL EXEMPLAR-BASED IMAGE ENHANCEMENT. Yang Xian 1 and Yingli Tian 1,2

ROBUST INTERNAL EXEMPLAR-BASED IMAGE ENHANCEMENT. Yang Xian 1 and Yingli Tian 1,2 ROBUST INTERNAL EXEMPLAR-BASED IMAGE ENHANCEMENT Yang Xian 1 and Yingli Tian 1,2 1 The Graduate Center, 2 The City College, The City University of New York, New York, Email: yxian@gc.cuny.edu; ytian@ccny.cuny.edu

More information

Blind Deblurring using Internal Patch Recurrence. Tomer Michaeli & Michal Irani Weizmann Institute

Blind Deblurring using Internal Patch Recurrence. Tomer Michaeli & Michal Irani Weizmann Institute Blind Deblurring using Internal Patch Recurrence Tomer Michaeli & Michal Irani Weizmann Institute Scale Invariance in Natural Images Small patterns recur at different scales Scale Invariance in Natural

More information

Admin. Data driven methods. Overview. Overview. Parametric model of image patches. Data driven (Non parametric) Approach 3/31/2008

Admin. Data driven methods. Overview. Overview. Parametric model of image patches. Data driven (Non parametric) Approach 3/31/2008 Admin Office hours straight after class today Data driven methods Assignment 3 out, due in 2 weeks Lecture 8 Projects.. Overview Overview Texture synthesis Quilting Image Analogies Super resolution Scene

More information

A Bayesian Approach to Alignment-based Image Hallucination

A Bayesian Approach to Alignment-based Image Hallucination A Bayesian Approach to Alignment-based Image Hallucination Marshall F. Tappen 1 and Ce Liu 2 1 University of Central Florida mtappen@eecs.ucf.edu 2 Microsoft Research New England celiu@microsoft.com Abstract.

More information

A Bayesian Approach to Alignment-Based Image Hallucination

A Bayesian Approach to Alignment-Based Image Hallucination A Bayesian Approach to Alignment-Based Image Hallucination Marshall F. Tappen 1 and Ce Liu 2 1 University of Central Florida mtappen@eecs.ucf.edu 2 Microsoft Research New England celiu@microsoft.com Abstract.

More information

Previous Lecture - Coded aperture photography

Previous Lecture - Coded aperture photography Previous Lecture - Coded aperture photography Depth from a single image based on the amount of blur Estimate the amount of blur using and recover a sharp image by deconvolution with a sparse gradient prior.

More information

Structured Face Hallucination

Structured Face Hallucination 2013 IEEE Conference on Computer Vision and Pattern Recognition Structured Face Hallucination Chih-Yuan Yang Sifei Liu Ming-Hsuan Yang Electrical Engineering and Computer Science University of California

More information

Opportunities of Scale

Opportunities of Scale Opportunities of Scale 11/07/17 Computational Photography Derek Hoiem, University of Illinois Most slides from Alyosha Efros Graphic from Antonio Torralba Today s class Opportunities of Scale: Data-driven

More information

Beyond bags of features: Adding spatial information. Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba

Beyond bags of features: Adding spatial information. Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba Beyond bags of features: Adding spatial information Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba Adding spatial information Forming vocabularies from pairs of nearby features doublets

More information

Fast Image Super-resolution Based on In-place Example Regression

Fast Image Super-resolution Based on In-place Example Regression 2013 IEEE Conference on Computer Vision and Pattern Recognition Fast Image Super-resolution Based on In-place Example Regression Jianchao Yang, Zhe Lin, Scott Cohen Adobe Research 345 Park Avenue, San

More information

Data-driven Depth Inference from a Single Still Image

Data-driven Depth Inference from a Single Still Image Data-driven Depth Inference from a Single Still Image Kyunghee Kim Computer Science Department Stanford University kyunghee.kim@stanford.edu Abstract Given an indoor image, how to recover its depth information

More information

Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform. Xintao Wang Ke Yu Chao Dong Chen Change Loy

Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform. Xintao Wang Ke Yu Chao Dong Chen Change Loy Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform Xintao Wang Ke Yu Chao Dong Chen Change Loy Problem enlarge 4 times Low-resolution image High-resolution image Previous

More information

Web-Scale Image Search and Their Applications

Web-Scale Image Search and Their Applications Web-Scale Image Search and Their Applications Sung-Eui Yoon KAIST http://sglab.kaist.ac.kr Project Guidelines: Project Topics Any topics related to the course theme are okay You can find topics by browsing

More information

Robust Single Image Super-resolution based on Gradient Enhancement

Robust Single Image Super-resolution based on Gradient Enhancement Robust Single Image Super-resolution based on Gradient Enhancement Licheng Yu, Hongteng Xu, Yi Xu and Xiaokang Yang Department of Electronic Engineering, Shanghai Jiaotong University, Shanghai 200240,

More information

Joint Inference in Image Databases via Dense Correspondence. Michael Rubinstein MIT CSAIL (while interning at Microsoft Research)

Joint Inference in Image Databases via Dense Correspondence. Michael Rubinstein MIT CSAIL (while interning at Microsoft Research) Joint Inference in Image Databases via Dense Correspondence Michael Rubinstein MIT CSAIL (while interning at Microsoft Research) My work Throughout the year (and my PhD thesis): Temporal Video Analysis

More information

Super-Resolution from a Single Image

Super-Resolution from a Single Image Super-Resolution from a Single Image Daniel Glasner Shai Bagon Michal Irani Dept. of Computer Science and Applied Mathematics The Weizmann Institute of Science Rehovot 76100, Israel Abstract Methods for

More information

Can Similar Scenes help Surface Layout Estimation?

Can Similar Scenes help Surface Layout Estimation? Can Similar Scenes help Surface Layout Estimation? Santosh K. Divvala, Alexei A. Efros, Martial Hebert Robotics Institute, Carnegie Mellon University. {santosh,efros,hebert}@cs.cmu.edu Abstract We describe

More information

arxiv: v1 [cs.cv] 8 Feb 2018

arxiv: v1 [cs.cv] 8 Feb 2018 DEEP IMAGE SUPER RESOLUTION VIA NATURAL IMAGE PRIORS Hojjat S. Mousavi, Tiantong Guo, Vishal Monga Dept. of Electrical Engineering, The Pennsylvania State University arxiv:802.0272v [cs.cv] 8 Feb 208 ABSTRACT

More information

Efficient Self-learning for Single Image Upsampling

Efficient Self-learning for Single Image Upsampling Efficient Self-learning for Single Image Upsampling Nilay Khatri, Manjunath V. Joshi DA-IICT, Gandhinagar, India {khatri_nilay, mv_joshi}@daiict.ac.in ABSTRACT Exploiting similarity of patches within multiple

More information

Local Features and Bag of Words Models

Local Features and Bag of Words Models 10/14/11 Local Features and Bag of Words Models Computer Vision CS 143, Brown James Hays Slides from Svetlana Lazebnik, Derek Hoiem, Antonio Torralba, David Lowe, Fei Fei Li and others Computer Engineering

More information

Single Image Super-Resolution. via Internal Gradient Similarity

Single Image Super-Resolution. via Internal Gradient Similarity Single Image Super-Resolution via Internal Gradient Similarity Yang Xian and Yingli Tian * The Graduate Center and the City College of New York, City University of New York, New York, NY 10016 USA Email:

More information

Example-Based Image Super-Resolution Techniques

Example-Based Image Super-Resolution Techniques Example-Based Image Super-Resolution Techniques Mark Sabini msabini & Gili Rusak gili December 17, 2016 1 Introduction With the current surge in popularity of imagebased applications, improving content

More information

Image Super-Resolution using Gradient Profile Prior

Image Super-Resolution using Gradient Profile Prior Image Super-Resolution using Gradient Profile Prior Jian Sun 1 Jian Sun 2 Zongben Xu 1 Heung-Yeung Shum 2 1 Xi an Jiaotong University 2 Microsoft Research Asia Xi an, P. R. China Beijing, P. R. China Abstract

More information

Texture. CS 419 Slides by Ali Farhadi

Texture. CS 419 Slides by Ali Farhadi Texture CS 419 Slides by Ali Farhadi What is a Texture? Texture Spectrum Steven Li, James Hays, Chenyu Wu, Vivek Kwatra, and Yanxi Liu, CVPR 06 Texture scandals!! Two crucial algorithmic points Nearest

More information

Automatic Generation of An Infinite Panorama

Automatic Generation of An Infinite Panorama Automatic Generation of An Infinite Panorama Lisa H. Chan Alexei A. Efros Carnegie Mellon University Original Image Scene Matches Output Image Figure 1: Given an input image, scene matching from a large

More information

CS231A Course Project: GPU Accelerated Image Super-Resolution

CS231A Course Project: GPU Accelerated Image Super-Resolution CS231A Course Project: GPU Accelerated Image Super-Resolution Fei Yue Stanford University 450 Serra Mall Stanford, CA jessyue@stanford.edu Abstract This paper proposes a GPU based real-time approach for

More information

Blind Image Deblurring Using Dark Channel Prior

Blind Image Deblurring Using Dark Channel Prior Blind Image Deblurring Using Dark Channel Prior Jinshan Pan 1,2,3, Deqing Sun 2,4, Hanspeter Pfister 2, and Ming-Hsuan Yang 3 1 Dalian University of Technology 2 Harvard University 3 UC Merced 4 NVIDIA

More information

FAST SINGLE-IMAGE SUPER-RESOLUTION WITH FILTER SELECTION. Image Processing Lab Technicolor R&I Hannover

FAST SINGLE-IMAGE SUPER-RESOLUTION WITH FILTER SELECTION. Image Processing Lab Technicolor R&I Hannover FAST SINGLE-IMAGE SUPER-RESOLUTION WITH FILTER SELECTION Jordi Salvador Eduardo Pérez-Pellitero Axel Kochale Image Processing Lab Technicolor R&I Hannover ABSTRACT This paper presents a new method for

More information

Context. CS 554 Computer Vision Pinar Duygulu Bilkent University. (Source:Antonio Torralba, James Hays)

Context. CS 554 Computer Vision Pinar Duygulu Bilkent University. (Source:Antonio Torralba, James Hays) Context CS 554 Computer Vision Pinar Duygulu Bilkent University (Source:Antonio Torralba, James Hays) A computer vision goal Recognize many different objects under many viewing conditions in unconstrained

More information

Evaluation of GIST descriptors for web scale image search

Evaluation of GIST descriptors for web scale image search Evaluation of GIST descriptors for web scale image search Matthijs Douze Hervé Jégou, Harsimrat Sandhawalia, Laurent Amsaleg and Cordelia Schmid INRIA Grenoble, France July 9, 2009 Evaluation of GIST for

More information

Super Resolution using Edge Prior and Single Image Detail Synthesis

Super Resolution using Edge Prior and Single Image Detail Synthesis Super Resolution using Edge Prior and Single Image Detail Synthesis Yu-Wing Tai 1 Shuaicheng Liu 2 Michael S. Brown 2 Stephen Lin 3 1 Korean Advanced Institute of Science and Technology. 2 National University

More information

Self-Learning of Edge-Preserving Single Image Super-Resolution via Contourlet Transform

Self-Learning of Edge-Preserving Single Image Super-Resolution via Contourlet Transform Self-Learning of Edge-Preserving Single Image Super-Resolution via Contourlet Transform Min-Chun Yang, De-An Huang, Chih-Yun Tsai, and Yu-Chiang Frank Wang Dept. Computer Science and Information Engineering,

More information

A A A. Fig.1 image patch. Then the edge gradient magnitude is . (1)

A A A. Fig.1 image patch. Then the edge gradient magnitude is . (1) International Conference on Information Science and Computer Applications (ISCA 013) Two-Dimensional Barcode Image Super-Resolution Reconstruction Via Sparse Representation Gaosheng Yang 1,Ningzhong Liu

More information

Depth image super-resolution via multi-frame registration and deep learning

Depth image super-resolution via multi-frame registration and deep learning Depth image super-resolution via multi-frame registration and deep learning Ching Wei Tseng 1 and Hong-Ren Su 1 and Shang-Hong Lai 1 * and JenChi Liu 2 1 National Tsing Hua University, Hsinchu, Taiwan

More information

Sky is Not the Limit: Semantic-Aware Sky Replacement

Sky is Not the Limit: Semantic-Aware Sky Replacement Sky is Not the Limit: Semantic-Aware Sky Replacement ACM Transactions on Graphics (SIGGRAPH), 2016 Yi-Hsuan Tsai UC Merced Xiaohui Shen Adobe Research Zhe Lin Adobe Research Kalyan Sunkavalli Adobe Research

More information

Combining Semantic Scene Priors and Haze Removal for Single Image Depth Estimation

Combining Semantic Scene Priors and Haze Removal for Single Image Depth Estimation Combining Semantic Scene Priors and Haze Removal for Single Image Depth Estimation Ke Wang Enrique Dunn Joseph Tighe Jan-Michael Frahm University of North Carolina at Chapel Hill Chapel Hill, NC, USA {kewang,dunn,jtighe,jmf}@cs.unc.edu

More information

Super-resolution using Neighbor Embedding of Back-projection residuals

Super-resolution using Neighbor Embedding of Back-projection residuals Super-resolution using Neighbor Embedding of Back-projection residuals Marco Bevilacqua, Aline Roumy, Christine Guillemot SIROCCO Research team INRIA Rennes, France {marco.bevilacqua, aline.roumy, christine.guillemot}@inria.fr

More information

Three-Dimensional Object Detection and Layout Prediction using Clouds of Oriented Gradients

Three-Dimensional Object Detection and Layout Prediction using Clouds of Oriented Gradients ThreeDimensional Object Detection and Layout Prediction using Clouds of Oriented Gradients Authors: Zhile Ren, Erik B. Sudderth Presented by: Shannon Kao, Max Wang October 19, 2016 Introduction Given an

More information

Ping Tan. Simon Fraser University

Ping Tan. Simon Fraser University Ping Tan Simon Fraser University Photos vs. Videos (live photos) A good photo tells a story Stories are better told in videos Videos in the Mobile Era (mobile & share) More videos are captured by mobile

More information

Visual words. Map high-dimensional descriptors to tokens/words by quantizing the feature space.

Visual words. Map high-dimensional descriptors to tokens/words by quantizing the feature space. Visual words Map high-dimensional descriptors to tokens/words by quantizing the feature space. Quantize via clustering; cluster centers are the visual words Word #2 Descriptor feature space Assign word

More information

Discriminative classifiers for image recognition

Discriminative classifiers for image recognition Discriminative classifiers for image recognition May 26 th, 2015 Yong Jae Lee UC Davis Outline Last time: window-based generic object detection basic pipeline face detection with boosting as case study

More information

COMPACT AND COHERENT DICTIONARY CONSTRUCTION FOR EXAMPLE-BASED SUPER-RESOLUTION

COMPACT AND COHERENT DICTIONARY CONSTRUCTION FOR EXAMPLE-BASED SUPER-RESOLUTION COMPACT AND COHERENT DICTIONARY CONSTRUCTION FOR EXAMPLE-BASED SUPER-RESOLUTION Marco Bevilacqua Aline Roumy Christine Guillemot Marie-Line Alberi Morel INRIA Rennes, Campus de Beaulieu, 35042 Rennes Cedex,

More information

Deep Learning for Visual Manipulation and Synthesis

Deep Learning for Visual Manipulation and Synthesis Deep Learning for Visual Manipulation and Synthesis Jun-Yan Zhu 朱俊彦 UC Berkeley 2017/01/11 @ VALSE What is visual manipulation? Image Editing Program input photo User Input result Desired output: stay

More information

Single Image Super-resolution using Deformable Patches

Single Image Super-resolution using Deformable Patches Single Image Super-resolution using Deformable Patches Yu Zhu 1, Yanning Zhang 1, Alan L. Yuille 2 1 School of Computer Science, Northwestern Polytechnical University, China 2 Department of Statistics,

More information

Seven ways to improve example-based single image super resolution

Seven ways to improve example-based single image super resolution Seven ways to improve example-based single image super resolution Radu Timofte CVL, D-ITET, ETH Zurich radu.timofte@vision.ee.ethz.ch Rasmus Rothe CVL, D-ITET, ETH Zurich rrothe@vision.ee.ethz.ch Luc Van

More information

Super-Resolution. Many slides from Miki Elad Technion Yosi Rubner RTC and more

Super-Resolution. Many slides from Miki Elad Technion Yosi Rubner RTC and more Super-Resolution Many slides from Mii Elad Technion Yosi Rubner RTC and more 1 Example - Video 53 images, ratio 1:4 2 Example Surveillance 40 images ratio 1:4 3 Example Enhance Mosaics 4 5 Super-Resolution

More information

Martian lava field, NASA, Wikipedia

Martian lava field, NASA, Wikipedia Martian lava field, NASA, Wikipedia Old Man of the Mountain, Franconia, New Hampshire Pareidolia http://smrt.ccel.ca/203/2/6/pareidolia/ Reddit for more : ) https://www.reddit.com/r/pareidolia/top/ Pareidolia

More information

One Network to Solve Them All Solving Linear Inverse Problems using Deep Projection Models

One Network to Solve Them All Solving Linear Inverse Problems using Deep Projection Models One Network to Solve Them All Solving Linear Inverse Problems using Deep Projection Models [Supplemental Materials] 1. Network Architecture b ref b ref +1 We now describe the architecture of the networks

More information

Enhancing DubaiSat-1 Satellite Imagery Using a Single Image Super-Resolution

Enhancing DubaiSat-1 Satellite Imagery Using a Single Image Super-Resolution Enhancing DubaiSat-1 Satellite Imagery Using a Single Image Super-Resolution Saeed AL-Mansoori 1 and Alavi Kunhu 2 1 Associate Image Processing Engineer, SIPAD Image Enhancement Section Emirates Institution

More information

Single Image Improvement using Superresolution.

Single Image Improvement using Superresolution. Single Image Improvement using Superresolution. ABSTRACT Shwetambari Shinde, Meeta Dewangan Department of Computer Science & Engineering,CSIT,Bhilai,India. shweta_shinde9388@yahoo Department of Computer

More information

arxiv: v1 [cs.cv] 6 Nov 2015

arxiv: v1 [cs.cv] 6 Nov 2015 Seven ways to improve example-based single image super resolution Radu Timofte Computer Vision Lab D-ITET, ETH Zurich timofter@vision.ee.ethz.ch Rasmus Rothe Computer Vision Lab D-ITET, ETH Zurich rrothe@vision.ee.ethz.ch

More information

Segmentation. Bottom up Segmentation Semantic Segmentation

Segmentation. Bottom up Segmentation Semantic Segmentation Segmentation Bottom up Segmentation Semantic Segmentation Semantic Labeling of Street Scenes Ground Truth Labels 11 classes, almost all occur simultaneously, large changes in viewpoint, scale sky, road,

More information

CS 558: Computer Vision 13 th Set of Notes

CS 558: Computer Vision 13 th Set of Notes CS 558: Computer Vision 13 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Overview Context and Spatial Layout

More information

Single-Image Super-Resolution Using Multihypothesis Prediction

Single-Image Super-Resolution Using Multihypothesis Prediction Single-Image Super-Resolution Using Multihypothesis Prediction Chen Chen and James E. Fowler Department of Electrical and Computer Engineering, Geosystems Research Institute (GRI) Mississippi State University,

More information

Requesting changes to the grades, please write to me in an with descriptions. Move my office hours to the morning. 11am - 12:30pm Thursdays

Requesting changes to the grades, please write to me in an  with descriptions. Move my office hours to the morning. 11am - 12:30pm Thursdays Lab1 graded. Requesting changes to the grades, please write to me in an email with descriptions. Move my office hours to the morning. 11am - 12:30pm Thursdays Internet-scale texture synthesis With slides

More information

What are we trying to achieve? Why are we doing this? What do we learn from past history? What will we talk about today?

What are we trying to achieve? Why are we doing this? What do we learn from past history? What will we talk about today? Introduction What are we trying to achieve? Why are we doing this? What do we learn from past history? What will we talk about today? What are we trying to achieve? Example from Scott Satkin 3D interpretation

More information

Unsupervised Patch-based Context from Millions of Images

Unsupervised Patch-based Context from Millions of Images Carnegie Mellon University Research Showcase @ CMU Robotics Institute School of Computer Science 12-2011 Unsupervised Patch-based Context from Millions of Images Santosh K. Divvala Carnegie Mellon University

More information

Super-Resolution-based Inpainting

Super-Resolution-based Inpainting Super-Resolution-based Inpainting Olivier Le Meur and Christine Guillemot University of Rennes 1, France; INRIA Rennes, France olemeur@irisa.fr, christine.guillemot@inria.fr Abstract. This paper introduces

More information

arxiv: v1 [cs.cv] 3 Jan 2017

arxiv: v1 [cs.cv] 3 Jan 2017 Learning a Mixture of Deep Networks for Single Image Super-Resolution Ding Liu, Zhaowen Wang, Nasser Nasrabadi, and Thomas Huang arxiv:1701.00823v1 [cs.cv] 3 Jan 2017 Beckman Institute, University of Illinois

More information

Efficient Graphical Models for Processing Images

Efficient Graphical Models for Processing Images Abstract Efficient Graphical Models for Processing Images Marshall F. Tappen Bryan C. Russell William T. Freeman Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology

More information

Part-based and local feature models for generic object recognition

Part-based and local feature models for generic object recognition Part-based and local feature models for generic object recognition May 28 th, 2015 Yong Jae Lee UC Davis Announcements PS2 grades up on SmartSite PS2 stats: Mean: 80.15 Standard Dev: 22.77 Vote on piazza

More information

Explore the Power of External Data in Denoising Task

Explore the Power of External Data in Denoising Task Explore the Power of External Data in Denoising Task Yipin Zhou Brown University Abstract The goal of this paper is to explore the power of external data in the image denoising task, that is, to show that

More information

Belief propagation and MRF s

Belief propagation and MRF s Belief propagation and MRF s Bill Freeman 6.869 March 7, 2011 1 1 Outline of MRF section Inference in MRF s. Gibbs sampling, simulated annealing Iterated conditional modes (ICM) Belief propagation Application

More information

Ms.DHARANI SAMPATH Computer Science And Engineering, Sri Krishna College Of Engineering & Technology Coimbatore, India

Ms.DHARANI SAMPATH Computer Science And Engineering, Sri Krishna College Of Engineering & Technology Coimbatore, India Improving Super Resolution of Image by Multiple Kernel Learning Ms.DHARANI SAMPATH Computer Science And Engineering, Sri Krishna College Of Engineering & Technology Coimbatore, India dharanis012@gmail.com

More information

Patch Based Blind Image Super Resolution

Patch Based Blind Image Super Resolution Patch Based Blind Image Super Resolution Qiang Wang, Xiaoou Tang, Harry Shum Microsoft Research Asia, Beijing 100080, P.R. China {qiangwa,xitang,hshum@microsoft.com} Abstract In this paper, a novel method

More information

By Suren Manvelyan,

By Suren Manvelyan, By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116 By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116 By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116 By Suren Manvelyan,

More information

Stealing Objects With Computer Vision

Stealing Objects With Computer Vision Stealing Objects With Computer Vision Learning Based Methods in Vision Analysis Project #4: Mar 4, 2009 Presented by: Brian C. Becker Carnegie Mellon University Motivation Goal: Detect objects in the photo

More information

Super-resolution using Neighbor Embedding of Back-projection residuals

Super-resolution using Neighbor Embedding of Back-projection residuals Super-resolution using Neighbor Embedding of Back-projection residuals Marco Bevilacqua, Aline Roumy, Christine Guillemot, Marie-Line Alberi Morel To cite this version: Marco Bevilacqua, Aline Roumy, Christine

More information

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009 Analysis: TextonBoost and Semantic Texton Forests Daniel Munoz 16-721 Februrary 9, 2009 Papers [shotton-eccv-06] J. Shotton, J. Winn, C. Rother, A. Criminisi, TextonBoost: Joint Appearance, Shape and Context

More information

FAST: A Framework to Accelerate Super- Resolution Processing on Compressed Videos

FAST: A Framework to Accelerate Super- Resolution Processing on Compressed Videos FAST: A Framework to Accelerate Super- Resolution Processing on Compressed Videos Zhengdong Zhang, Vivienne Sze Massachusetts Institute of Technology http://www.mit.edu/~sze/fast.html 1 Super-Resolution

More information

SuperParsing: Scalable Nonparametric Image Parsing with Superpixels

SuperParsing: Scalable Nonparametric Image Parsing with Superpixels SuperParsing: Scalable Nonparametric Image Parsing with Superpixels Joseph Tighe and Svetlana Lazebnik Dept. of Computer Science, University of North Carolina at Chapel Hill Chapel Hill, NC 27599-3175

More information

Curriculum Vitae. Ce Liu

Curriculum Vitae. Ce Liu Curriculum Vitae Ce Liu Title Senior Research Scientist Google Research Research Affiliate Computer Science and Artificial Intelligence Laboratory (CSAIL) Massachusetts Institute of Technology Contact

More information

Super-resolution via Transform-invariant Group-sparse Regularization

Super-resolution via Transform-invariant Group-sparse Regularization 2013 IEEE International Conference on Computer Vision Super-resolution via Transform-invariant Group-sparse Regularization Carlos Fernandez-Granda Stanford University cfgranda@stanford.edu Emmanuel J.

More information

A New Approach for Super resolution by Using Web Images and FFT Based Image Registration

A New Approach for Super resolution by Using Web Images and FFT Based Image Registration A New Approach for Super resolution by Using Web Images and FFT Based Image Registration Archana Vijayan 1, Vincy Salam 2 1 P.G Scholar, Department of Computer Science, Musaliar College of Engineering

More information

Previously. Part-based and local feature models for generic object recognition. Bag-of-words model 4/20/2011

Previously. Part-based and local feature models for generic object recognition. Bag-of-words model 4/20/2011 Previously Part-based and local feature models for generic object recognition Wed, April 20 UT-Austin Discriminative classifiers Boosting Nearest neighbors Support vector machines Useful for object recognition

More information

Matching and Predicting Street Level Images

Matching and Predicting Street Level Images Matching and Predicting Street Level Images Biliana Kaneva 1, Josef Sivic 2, Antonio Torralba 1, Shai Avidan 3, and William T. Freeman 1 1 Massachusetts Institute of Technology {biliana,torralba,billf}@csail.mit.edu

More information

Efficient Upsampling of Natural Images

Efficient Upsampling of Natural Images MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Efficient Upsampling of Natural Images Hegde, C.; Tuzel, O.; Porikli, F. TR2015-036 February 2015 Abstract We propose a novel method of efficient

More information

Contexts and 3D Scenes

Contexts and 3D Scenes Contexts and 3D Scenes Computer Vision Jia-Bin Huang, Virginia Tech Many slides from D. Hoiem Administrative stuffs Final project presentation Nov 30 th 3:30 PM 4:45 PM Grading Three senior graders (30%)

More information

Local Image Features

Local Image Features Local Image Features Computer Vision CS 143, Brown Read Szeliski 4.1 James Hays Acknowledgment: Many slides from Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial This section: correspondence and alignment

More information

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Marc Pollefeys Joined work with Nikolay Savinov, Christian Haene, Lubor Ladicky 2 Comparison to Volumetric Fusion Higher-order ray

More information

Exploiting Self-Similarities for Single Frame Super-Resolution

Exploiting Self-Similarities for Single Frame Super-Resolution Exploiting Self-Similarities for Single Frame Super-Resolution Chih-Yuan Yang Jia-Bin Huang Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95343,

More information

Seeing 3D chairs: Exemplar part-based 2D-3D alignment using a large dataset of CAD models

Seeing 3D chairs: Exemplar part-based 2D-3D alignment using a large dataset of CAD models Seeing 3D chairs: Exemplar part-based 2D-3D alignment using a large dataset of CAD models Mathieu Aubry (INRIA) Daniel Maturana (CMU) Alexei Efros (UC Berkeley) Bryan Russell (Intel) Josef Sivic (INRIA)

More information

Contexts and 3D Scenes

Contexts and 3D Scenes Contexts and 3D Scenes Computer Vision Jia-Bin Huang, Virginia Tech Many slides from D. Hoiem Administrative stuffs Final project presentation Dec 1 st 3:30 PM 4:45 PM Goodwin Hall Atrium Grading Three

More information

Digital Image Restoration

Digital Image Restoration Digital Image Restoration Blur as a chance and not a nuisance Filip Šroubek sroubekf@utia.cas.cz www.utia.cas.cz Institute of Information Theory and Automation Academy of Sciences of the Czech Republic

More information

A Self-Learning Optimization Approach to Single Image Super-Resolution using Kernel ridge regression model

A Self-Learning Optimization Approach to Single Image Super-Resolution using Kernel ridge regression model A Self-Learning Optimization Approach to Single Image Super-Resolution using Kernel ridge regression model Ms. Dharani S 1 PG Student (CSE), Sri Krishna College of Engineering and Technology, Anna University,

More information

Object Recognition. Computer Vision. Slides from Lana Lazebnik, Fei-Fei Li, Rob Fergus, Antonio Torralba, and Jean Ponce

Object Recognition. Computer Vision. Slides from Lana Lazebnik, Fei-Fei Li, Rob Fergus, Antonio Torralba, and Jean Ponce Object Recognition Computer Vision Slides from Lana Lazebnik, Fei-Fei Li, Rob Fergus, Antonio Torralba, and Jean Ponce How many visual object categories are there? Biederman 1987 ANIMALS PLANTS OBJECTS

More information

General Principal. Huge Dataset. Images. Info from Most Similar Images. Input Image. Associated Info

General Principal. Huge Dataset. Images. Info from Most Similar Images. Input Image. Associated Info Devin Montes General Principal Huge Dataset Input Image Images Associated Info image matching Info from Most Similar Images Hopefully, If you have enough images, the dataset will contain very similar images

More information

SkyFinder: Attribute-based Sky Image Search

SkyFinder: Attribute-based Sky Image Search SkyFinder: Attribute-based Sky Image Search SIGGRAPH 2009 Litian Tao, Lu Yuan, Jian Sun Kim, Wook 2016. 1. 12 Abstract Interactive search system of over a half million sky images Automatically extracted

More information

Course Administration

Course Administration Course Administration Project 2 results are online Project 3 is out today The first quiz is a week from today (don t panic!) Covers all material up to the quiz Emphasizes lecture material NOT project topics

More information

Physics-based Vision: an Introduction

Physics-based Vision: an Introduction Physics-based Vision: an Introduction Robby Tan ANU/NICTA (Vision Science, Technology and Applications) PhD from The University of Tokyo, 2004 1 What is Physics-based? An approach that is principally concerned

More information

Urban Scene Segmentation, Recognition and Remodeling. Part III. Jinglu Wang 11/24/2016 ACCV 2016 TUTORIAL

Urban Scene Segmentation, Recognition and Remodeling. Part III. Jinglu Wang 11/24/2016 ACCV 2016 TUTORIAL Part III Jinglu Wang Urban Scene Segmentation, Recognition and Remodeling 102 Outline Introduction Related work Approaches Conclusion and future work o o - - ) 11/7/16 103 Introduction Motivation Motivation

More information

Image Super-Resolution via Sparse Representation

Image Super-Resolution via Sparse Representation Image Super-Resolution via Sparse Representation Jianchao Yang, John Wright, Thomas Huang and Yi Ma accepted by IEEE Trans. on Image Processing 2010 Presented by known 2010/4/20 1 Super-Resolution Techniques

More information

Learning based face hallucination techniques: A survey

Learning based face hallucination techniques: A survey Vol. 3 (2014-15) pp. 37-45. : A survey Premitha Premnath K Department of Computer Science & Engineering Vidya Academy of Science & Technology Thrissur - 680501, Kerala, India (email: premithakpnath@gmail.com)

More information

SINGLE IMAGE SUPER-RESOLUTION VIA PHASE CONGRUENCY ANALYSIS. Licheng Yu, Yi Xu, Bo Zhang

SINGLE IMAGE SUPER-RESOLUTION VIA PHASE CONGRUENCY ANALYSIS. Licheng Yu, Yi Xu, Bo Zhang SINGLE IMAGE SUPER-RESOLUTION VIA PHASE CONGRUENCY ANALYSIS Licheng Yu, Yi Xu, Bo Zhang Department of Electronic Engineering, Shanghai Jiaotong University, Shanghai 200240, China Shanghai Key Lab of Digital

More information

Spatial Latent Dirichlet Allocation

Spatial Latent Dirichlet Allocation Spatial Latent Dirichlet Allocation Xiaogang Wang and Eric Grimson Computer Science and Computer Science and Artificial Intelligence Lab Massachusetts Tnstitute of Technology, Cambridge, MA, 02139, USA

More information

EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis Supplementary

EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis Supplementary EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis Supplementary Mehdi S. M. Sajjadi Bernhard Schölkopf Michael Hirsch Max Planck Institute for Intelligent Systems Spemanstr.

More information

Computer Vision. I-Chen Lin, Assistant Professor Dept. of CS, National Chiao Tung University

Computer Vision. I-Chen Lin, Assistant Professor Dept. of CS, National Chiao Tung University Computer Vision I-Chen Lin, Assistant Professor Dept. of CS, National Chiao Tung University About the course Course title: Computer Vision Lectures: EC016, 10:10~12:00(Tues.); 15:30~16:20(Thurs.) Pre-requisites:

More information

Snakes, level sets and graphcuts. (Deformable models)

Snakes, level sets and graphcuts. (Deformable models) INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGIES BULGARIAN ACADEMY OF SCIENCE Snakes, level sets and graphcuts (Deformable models) Centro de Visión por Computador, Departament de Matemàtica Aplicada

More information

Scale-less Dense Correspondences

Scale-less Dense Correspondences Scale-less Dense Correspondences The Open University of Israel ICCV 13 Tutorial on Dense Image Correspondences for Computer Vision Matching Pixels In different views, scales, scenes, etc. Invariant detectors

More information

CID: Combined Image Denoising in Spatial and Frequency Domains Using Web Images

CID: Combined Image Denoising in Spatial and Frequency Domains Using Web Images CID: Combined Image Denoising in Spatial and Frequency Domains Using Web Images Huanjing Yue 1, Xiaoyan Sun 2, Jingyu Yang 1, Feng Wu 3 1 Tianjin University, Tianjin, China. {dayueer,yjy}@tju.edu.cn 2

More information