Curve Sketching and Relative Maxima and Minima. The Goal

Size: px
Start display at page:

Download "Curve Sketching and Relative Maxima and Minima. The Goal"

Transcription

1 Curve Sketching and Relative Maxima and Minima The Goal The purpose of the first derivative sign diagram is to indicate where a function is increasing and decreasing. The purpose of this is to identify where the relative maxima and minima are, since we know that if a function switches from increasing to decreasing at some point and remains continuous there it has to have a relative maximum there (likewise for switching in the other direction for a relative minimum). This is known as the First Derivative Test. It is possible to come up with functions that are NOT continuous at a certain point and may not even switch direction but still have a relative maximum or minimum there, but we can't really deal with those here. Plot x Floor x, x, 0, 4, AspectRatio Automatic The purpose of the second derivative sign diagram is to fill in the shape of the function a little more for sketching purposes, since changes in curvature happen at different locations than changes in direction and are distinctive features of the curve. Additionally, in certain circumstances (when the second derivative exists and is not zero) the sign of the second derivative at a critical value will also indicate whether there is a maximum there (downward curvature, f''(x) < 0) or a minimum (upward curvature, f''(x) > 0). This is known as the Second Derivative Test. Also, the change in direction of the curvature also corresponds to the locations of the steepest slope, which turns out to be useful in certain applications. If you can identify the sign of the first and second derivative over the domain of the function it is possible to create a rough sketch by putting together some combination of four arcs. f' x 0 and f'' x 0

2 2 CurveShape.nb f' x 0 and f'' x 0 f' x 0 and f'' x 0 f' x 0 and f'' x 0 Some definitions To indicate where a function is increasing or decreasing we need to identify points where it could possibly change from one to the other. Discontinuities - If there is a break in the function there is nothing to prevent it from sudden changes in value, slope, or even direction at that point. This is where the function doesn't exist, the limit of the function doesn't exist, or they are not the same. It could be a jump, a hole, or a vertical asymptote. Critical Values - If the function does exist and is continuous at some point it can switch from increasing to decreasing or vice versa by either having f'(x) = 0 or f'(x) not existing. Where either of these two conditions occur is called a critical value (CV for short). A function may also have a Horizontal Point of Inflection when f'(x) = 0 ( y = x 3 at x = 0) or a Vertical Point of Inflection

3 CurveShape.nb 3 when f'(x) DNE (y = 3 x at x = 0) at a critical value. Neither of these involves a change of direction. Regular Inflection Point - One way to identify these points of inflection is that the curvature f''(x) switches sign there, which requires either the second derivative f''(x) to be zero or for it not to exist. Oddly, it IS possible for the curvature to switch at a minimum or maximum. To summarize - if there IS a change in direction it will definitely happen at either a discontinuity or a critical value. When the change in direction occurs at a critical value it will be either a relative maximum or minimum Procedure Identify any discontinuities. This generally amounts to calculating where the denominator of f(x) is zero. There are some examples of functions that are discontinuous at other points but we would have to represent these with piecewise notation or something even more bizarre so we won't worry about that. Calculate the derivative f'(x) and identify the CV. Typically this amounts to calculating the points where either the numerator or the denominator of f'(x) are zero but where the denominator of the original function f(x) is NOT zero. First Derivative Test Determine the sign of the derivative between CV's and discontinuities. Pick a test point between, before, or after each CV or discontinuity and calculate f'(x) to see if it is positive or negative. Diagram your results on the f'(x) sign diagram. Classify any switch from + to - at a CV (but not at a discontinuity) as a relative maximum and any switch from - to + as a relative minimum Second Derivative Test Calculate the second derivative f''(x) Determine the sign of f''(x) at each CV If f"(x) = 0 or does not exist at the CV then the test is inconclusive (might be a minimum or maximum but is likely a point of inflection). Otherwise if f''(x) > 0 it definitely indicates a minimum and if f''(x) < 0 it definitely indicates a maximum. For additional shape information Identify the points of inflection when f"(x) = 0 or undefined. Determine the sign of f"(x) between, before, or after any discontinuities and inflection points (you can use the values at the CV already calculated in the Second Derivative Test). Diagram the resultes on an f''(x) sign diagram Combine the first derivative and second derivative information on a sketch using the four arcs shown above.

4 4 CurveShape.nb Average Cost Example avec x : 2900 x x There is a vertical asymptote at x = 0 but that is past the end of the domain, so we don't need to worry about any change in direction when x < 0. Find the derivative. Typically we need to simplify or factor it to determine where it is going to be zero or not exist avec ' x x 2 Factor avec ' x x 2 x 2 The derivative does not exist at x = 0, but since it is not in the domain this does not qualify as a CV. Also any negative values of x are not of any interest. Solve for where the numerator is zero. cv ToRules Reduce avec ' x 0. && x 0, x x Identify the sign of derivative before and after this point (e.g. x = 10 and x = 30) Sign avec ' 10, Sign avec ' 30 1, 1 Show sign of the derivative, with shaded region being positive RegionPlot avec ' x 0, x, 0, 50, y, 0, 1, AspectRatio Automatic Since it is decreasing before x = and increasing after this is a minimum For analysis of the curvature, take the second derivative avec '' x x 3 For x > 0 this is always positive, so there are no inflection points and the function always curves up. You can check the sign of the second derivative at the CV for a more explicit result of the Second Derivative Test Sign avec '' x. cv 1 As you can see, this is positive, indicating a minimum at x = A graph of the sign of the second derivative shows that it is shaded (or positive) everywhere.

5 CurveShape.nb 5 RegionPlot avec '' x 0, x, 0, 50, y, 0, 1, AspectRatio Automatic We can show the two sign diagrams (f'(x) and f''(x)) together, along with some arcs to indicate the direction/shape of the curve Here is the actual curve for comparison's sake Plot avec x, x, 0, Oxygen Purity Example p t : t 4 16 t 4 2 There is a vertical asymptote at t = -4 but that is past the end of the domain, so we don't need to worry about any change in direction at this point. Find the derivative. Typically we need to simplify or factor it to determine where it is going to be zero or not exist

6 6 CurveShape.nb Find the derivative. Typically we need to simplify or factor it to determine where it is going to be zero or not exist Simplify p' t t 4 t 3 The derivative does not exist at t = -4, but since it is not in the domain this does not qualify as a CV. Also any negative values of t are not of any interest, practically speaking. Solve for where the numerator is zero. cv ToRules Reduce p' t 0, t t 4 Identify the sign of derivative before and after this point (e.g. t = 2 and t = 6) Sign p' 2, Sign p' 6 1, 1 Show sign of the derivative, with shaded region being positive RegionPlot p' t 0, t, 0, 10, y, 0,.25, AspectRatio Automatic Since it is decreasing before t = 4 and increasing after this is a minimum For analysis of the curvature, take the second derivative Simplify p'' t t 4 t 4 This also does not exist for t = -4 but once again we can ignore it since it is not in the domain. The numerator does appear to go to zero at some point, which we can verify by setting it equal to zero and solving for the inflection point. ip ToRules Reduce p'' t 0, t t 8 You can check the sign of the second derivative at the CV for a more explicit result of the Second Derivative Test Sign p'' t. cv 1 As you can see, this is positive, indicating a minimum at t = 4. This also takes care of finding the sign of the second derivative BEFORE the inflection point, so all that remains for a sign diagram is to pick some other point like t = 10 that is AFTER the inflection point. Sign p'' 4, Sign p'' 10 1, 1 This tells us that we are concave up initially and switch to concave down at t = 8

7 CurveShape.nb 7 RegionPlot p'' t 0, t, 0, 10, y, 0,.25, AspectRatio Automatic Once again we can combine these two sign diagrams and draw some lines to indicate the overall shape of the curve Here is the actual graph of the function Plot p t, t, 0, Example Using Fractional Powers f x : x x 2 There no vertical asymptote since there is no denominator (or negative power of x) Find the derivative. Typically we need to simplify or factor it to determine where it is going to be zero or not exist

8 8 CurveShape.nb Find the derivative. Typically we need to simplify or factor it to determine where it is going to be zero or not exist Factor f' x 2 4 x 8 7 x 5 x 1 5 The derivative does not exist when x = 0. Solve for where the numerator is zero. cv x 0, ToRules Reduce f' x 0, x x 0, x 8, x 4 7 Identify the sign of derivative before, between, and after these points (e.g. x = -1, x = 1, x = 3, and x = 5) Sign f' 1, Sign f' 1, Sign f' 3, Sign f' 5 1, 1, 1, 1 Show sign of the derivative, with shaded region being positive RegionPlot f' x 0, x, 2, 6, y, 0,.2, AspectRatio Automatic Can see that there is a minimum at x = 0, a maximum at x = 8/7, and another minimum at x = 4 For analysis of the curvature, take the second derivative Factor f'' x x 63 x 2 25 x 6 5 You can find where the numerator goes to zero using the quadratic formula. ip Solve f'' x 0, x x , x This is easier to grasp if written in decimal form ip Solve f'' x 0, x N x , x You can check the sign of the second derivative at the CV for a more explicit result of the Second Derivative Test Sign f'' x. cv Indeterminate, 1, 1 The indeterminate result corresponds to a second derivative that does not exist at the CV of x = 0. You can't tell anything from this regarding whether it is a maximum or a minimum. The other two CV are clear though, with downward curvature at x = 8/7 for a maximum and upward curvature at x = 4 for a minimum.

9 CurveShape.nb 9 For the sign diagram of f''(x) we want to check between all the inflection points. This includes checking both sides of x = 0, since the second derivative still might change sign there, even if it is a minimum or a maximum. Sign f'' 1, Sign f''.1, Sign f'' 1, Sign f'' 3 1, 1, 1, 1 This tells us that we are concave up initially, switch down at x = , stay down at x = 0, and switch back up at x = RegionPlot f'' x 0, x, 2, 6, y, 0,.2, AspectRatio Automatic Once again we can combine these two sign diagrams and draw some lines to indicate the overall shape of the curve Here is the actual graph of the function

10 10 CurveShape.nb Plot f x, x, 2,

a) y = x 3 + 3x 2 2 b) = UNIT 4 CURVE SKETCHING 4.1 INCREASING AND DECREASING FUNCTIONS

a) y = x 3 + 3x 2 2 b) = UNIT 4 CURVE SKETCHING 4.1 INCREASING AND DECREASING FUNCTIONS UNIT 4 CURVE SKETCHING 4.1 INCREASING AND DECREASING FUNCTIONS We read graphs as we read sentences: left to right. Plainly speaking, as we scan the function from left to right, the function is said to

More information

Increasing/Decreasing Behavior

Increasing/Decreasing Behavior Derivatives and the Shapes of Graphs In this section, we will specifically discuss the information that f (x) and f (x) give us about the graph of f(x); it turns out understanding the first and second

More information

Increasing/Decreasing Behavior

Increasing/Decreasing Behavior Derivatives and the Shapes of Graphs In this section, we will specifically discuss the information that f (x) and f (x) give us about the graph of f(x); it turns out understanding the first and second

More information

This handout will discuss three kinds of asymptotes: vertical, horizontal, and slant.

This handout will discuss three kinds of asymptotes: vertical, horizontal, and slant. CURVE SKETCHING This is a handout that will help you systematically sketch functions on a coordinate plane. This handout also contains definitions of relevant terms needed for curve sketching. ASYMPTOTES:

More information

Section 4.3: How Derivatives Affect the Shape of the Graph

Section 4.3: How Derivatives Affect the Shape of the Graph Section 4.3: How Derivatives Affect the Shape of the Graph What does the first derivative of a function tell you about the function? Where on the graph below is f x > 0? Where on the graph below is f x

More information

AH Properties of Functions.notebook April 19, 2018

AH Properties of Functions.notebook April 19, 2018 Functions Rational functions are of the form where p(x) and q(x) are polynomials. If you can sketch a function without lifting the pencil off the paper, it is continuous. E.g. y = x 2 If there is a break

More information

Derivatives and Graphs of Functions

Derivatives and Graphs of Functions Derivatives and Graphs of Functions September 8, 2014 2.2 Second Derivatives, Concavity, and Graphs In the previous section, we discussed how our derivatives can be used to obtain useful information about

More information

Critical and Inflection Points

Critical and Inflection Points Critical and Inflection Points 1 Finding and Classifying Critical Points A critical point is a point on the graph where the tangent slope is horizontal, (0) or vertical, ( ). or not defined like the minimum

More information

Section 3.1(part), Critical Numbers, Extreme Values, Increasing/Decreasing, Concave Up/Down MATH 1190

Section 3.1(part), Critical Numbers, Extreme Values, Increasing/Decreasing, Concave Up/Down MATH 1190 Section 3.(part), 3.3-3.4 Critical Numbers, Extreme Values, Increasing/Decreasing, Concave Up/Down MATH 9 9 rel max f (a) = ; slope tangent line = 8 7. slope of tangent line: neg f (a)

More information

Math 3 Coordinate Geometry Part 2 Graphing Solutions

Math 3 Coordinate Geometry Part 2 Graphing Solutions Math 3 Coordinate Geometry Part 2 Graphing Solutions 1 SOLVING SYSTEMS OF EQUATIONS GRAPHICALLY The solution of two linear equations is the point where the two lines intersect. For example, in the graph

More information

Sec.4.1 Increasing and Decreasing Functions

Sec.4.1 Increasing and Decreasing Functions U4L1: Sec.4.1 Increasing and Decreasing Functions A function is increasing on a particular interval if for any, then. Ie: As x increases,. A function is decreasing on a particular interval if for any,

More information

Math Stuart Jones. 4.3 Curve Sketching

Math Stuart Jones. 4.3 Curve Sketching 4.3 Curve Sketching In this section, we combine much of what we have talked about with derivatives thus far to draw the graphs of functions. This is useful in many situations to visualize properties of

More information

Use Derivatives to Sketch the Graph of a Polynomial Function.

Use Derivatives to Sketch the Graph of a Polynomial Function. Applications of Derivatives Curve Sketching (using derivatives): A) Polynomial Functions B) Rational Functions Lesson 5.2 Use Derivatives to Sketch the Graph of a Polynomial Function. Idea: 1) Identify

More information

To find the intervals on which a given polynomial function is increasing/decreasing using GGB:

To find the intervals on which a given polynomial function is increasing/decreasing using GGB: To find the intervals on which a given polynomial function is increasing/decreasing using GGB: 1. Use GGB to graph the derivative of the function. = ; 2. Find any critical numbers. (Recall that the critical

More information

STEP Support Programme. Assignment 13

STEP Support Programme. Assignment 13 STEP Support Programme Assignment 13 Warm-up You probably already know that for a graph with gradient dy : if dy > 0 then the graph is increasing ; if dy < 0 then the graph is decreasing. The sign of the

More information

Graphing. I ll put this information together with some other techniques into a step-by-step graphing procedure. Here it is:

Graphing. I ll put this information together with some other techniques into a step-by-step graphing procedure. Here it is: Graphing 1010005 Calculus provides information which is useful in graphing curves. The first derivative y tells where a curve is increasing and where a curve is decreasing. The second derivative y tells

More information

4.3, Math 1410 Name: And now for something completely different... Well, not really.

4.3, Math 1410 Name: And now for something completely different... Well, not really. 4.3, Math 1410 Name: And now for something completely different... Well, not really. How derivatives affect the shape of a graph. Please allow me to offer some explanation as to why the first couple parts

More information

Sections 4.3, 4.5 & 4.6: Graphing

Sections 4.3, 4.5 & 4.6: Graphing Sections 4.3, 4.5 & 4.6: Graphing In this section, we shall see how facts about f () and f () can be used to supply useful information about the graph of f(). Since there are three sections devoted to

More information

THE RECIPROCAL FUNCTION FAMILY AND RATIONAL FUNCTIONS AND THEIR GRAPHS L E S S O N 9-2 A N D L E S S O N 9-3

THE RECIPROCAL FUNCTION FAMILY AND RATIONAL FUNCTIONS AND THEIR GRAPHS L E S S O N 9-2 A N D L E S S O N 9-3 THE RECIPROCAL FUNCTION FAMILY AND RATIONAL FUNCTIONS AND THEIR GRAPHS L E S S O N 9-2 A N D L E S S O N 9-3 ASSIGNMENT 2/12/15 Section 9-2 (p506) 2, 6, 16, 22, 24, 28, 30, 32 section 9-3 (p513) 1 18 Functions

More information

Section 4.4 Concavity and Points of Inflection

Section 4.4 Concavity and Points of Inflection Section 4.4 Concavit and Points of Inflection In Chapter 3, ou saw that the second derivative of a function has applications in problems involving velocit and acceleration or in general rates-of-change

More information

Section 4.4 Rational Functions and Their Graphs. 1, the line x = 0 (y-axis) is its vertical asymptote.

Section 4.4 Rational Functions and Their Graphs. 1, the line x = 0 (y-axis) is its vertical asymptote. Section 4.4 Rational Functions and Their Graphs p( ) A rational function can be epressed as where p() and q() are q( ) 3 polynomial functions and q() is not equal to 0. For eample, 16 is a rational function.

More information

Section 4.4 Rational Functions and Their Graphs

Section 4.4 Rational Functions and Their Graphs Section 4.4 Rational Functions and Their Graphs p( ) A rational function can be epressed as where p() and q() are q( ) 3 polynomial functions and q() is not equal to 0. For eample, is a 16 rational function.

More information

Section 18-1: Graphical Representation of Linear Equations and Functions

Section 18-1: Graphical Representation of Linear Equations and Functions Section 18-1: Graphical Representation of Linear Equations and Functions Prepare a table of solutions and locate the solutions on a coordinate system: f(x) = 2x 5 Learning Outcome 2 Write x + 3 = 5 as

More information

Calculus Limits Images in this handout were obtained from the My Math Lab Briggs online e-book.

Calculus Limits Images in this handout were obtained from the My Math Lab Briggs online e-book. Calculus Limits Images in this handout were obtained from the My Math Lab Briggs online e-book. A it is the value a function approaches as the input value gets closer to a specified quantity. Limits are

More information

THS Step By Step Calculus Chapter 3

THS Step By Step Calculus Chapter 3 Name: Class Period: Throughout this packet there will be blanks you are expected to fill in prior to coming to class. This packet follows your Larson Textbook. Do NOT throw away! Keep in 3 ring-binder

More information

Graphing Techniques. Domain (, ) Range (, ) Squaring Function f(x) = x 2 Domain (, ) Range [, ) f( x) = x 2

Graphing Techniques. Domain (, ) Range (, ) Squaring Function f(x) = x 2 Domain (, ) Range [, ) f( x) = x 2 Graphing Techniques In this chapter, we will take our knowledge of graphs of basic functions and expand our ability to graph polynomial and rational functions using common sense, zeros, y-intercepts, stretching

More information

CONCAVITY AND INFLECTION POINTS

CONCAVITY AND INFLECTION POINTS CONCAVITY AND INFLECTION POINTS Find the Second Derivative of the function, f. Set the Second Derivative equal to zero and solve. Determine whether the Second Derivative is undefined for any x-values.

More information

MA 131 Lecture Notes Chapter 4 Calculus by Stewart

MA 131 Lecture Notes Chapter 4 Calculus by Stewart MA 131 Lecture Notes Chapter 4 Calculus by Stewart 4.1) Maimum and Minimum Values 4.3) How Derivatives Affect the Shape of a Graph A function is increasing if its graph moves up as moves to the right and

More information

Section 4.3: Derivatives and the Shapes of Curves

Section 4.3: Derivatives and the Shapes of Curves 1 Section 4.: Derivatives and the Shapes of Curves Practice HW from Stewart Textbook (not to hand in) p. 86 # 1,, 7, 9, 11, 19, 1,, 5 odd The Mean Value Theorem If f is a continuous function on the closed

More information

Math 1314 Lesson 12 Curve Analysis (Polynomials) This lesson will cover analyzing polynomial functions using GeoGebra.

Math 1314 Lesson 12 Curve Analysis (Polynomials) This lesson will cover analyzing polynomial functions using GeoGebra. Math 1314 Lesson 12 Curve Analysis (Polynomials) This lesson will cover analyzing polynomial functions using GeoGebra. Suppose your company embarked on a new marketing campaign and was able to track sales

More information

Chapter 4.1 & 4.2 (Part 1) Practice Problems

Chapter 4.1 & 4.2 (Part 1) Practice Problems Chapter 4. & 4. Part Practice Problems EXPECTED SKILLS: Understand how the signs of the first and second derivatives of a function are related to the behavior of the function. Know how to use the first

More information

Supplemental 1.5. Objectives Interval Notation Increasing & Decreasing Functions Average Rate of Change Difference Quotient

Supplemental 1.5. Objectives Interval Notation Increasing & Decreasing Functions Average Rate of Change Difference Quotient Supplemental 1.5 Objectives Interval Notation Increasing & Decreasing Functions Average Rate of Change Difference Quotient Interval Notation Many times in this class we will only want to talk about what

More information

Graph Sketching. Review: 1) Interval Notation. Set Notation Interval Notation Set Notation Interval Notation. 2) Solving Inequalities

Graph Sketching. Review: 1) Interval Notation. Set Notation Interval Notation Set Notation Interval Notation. 2) Solving Inequalities Lesson. Graph Sketching Review: ) Interval Notation Set Notation Interval Notation Set Notation Interval Notation a) { R / < < 5} b) I (, 3) ( 3, ) c){ R} d) I (, ] (0, ) e){ R / > 5} f) I [ 3,5) ) Solving

More information

2. Suppose we drew many tangent lines for this second curve. How do the slopes of these tangent lines change as we look from left to right?

2. Suppose we drew many tangent lines for this second curve. How do the slopes of these tangent lines change as we look from left to right? Do now as a warm up: 1. Suppose we drew many tangent lines for this first curve. How do the slopes of these tangent lines change as we look from left to right? 2. Suppose we drew many tangent lines for

More information

Section Functions. Function Notation. Is this a function?

Section Functions. Function Notation. Is this a function? Section 1-21 Functions and Their Properties Section 1-21 function definition and notation domain and range continuity increasing/decreasing boundedness local and absolute extrema symmetry asymptotes end

More information

Pre-Calculus Notes: Chapter 3 The Nature of Graphs

Pre-Calculus Notes: Chapter 3 The Nature of Graphs Section Families of Graphs Name: Pre-Calculus Notes: Chapter 3 The Nature of Graphs Family of graphs Parent graph A group of graphs that share similar properties The most basic graph that s transformed

More information

A function: A mathematical relationship between two variables (x and y), where every input value (usually x) has one output value (usually y)

A function: A mathematical relationship between two variables (x and y), where every input value (usually x) has one output value (usually y) SESSION 9: FUNCTIONS KEY CONCEPTS: Definitions & Terminology Graphs of Functions - Straight line - Parabola - Hyperbola - Exponential Sketching graphs Finding Equations Combinations of graphs TERMINOLOGY

More information

Math Calculus f. Business and Mgmt - Worksheet 9. Solutions for Worksheet 9 - Piecewise Defined Functions and Continuity

Math Calculus f. Business and Mgmt - Worksheet 9. Solutions for Worksheet 9 - Piecewise Defined Functions and Continuity Math 220 - Calculus f. Business and Mgmt - Worksheet 9 Solutions for Worksheet 9 - Piecewise Defined Functions and Continuity Evaluating and Graphing Functions Exercise 1: Compose these pairs of functions

More information

Graphing Functions. 0, < x < 0 1, 0 x < is defined everywhere on R but has a jump discontinuity at x = 0. h(x) =

Graphing Functions. 0, < x < 0 1, 0 x < is defined everywhere on R but has a jump discontinuity at x = 0. h(x) = Graphing Functions Section. of your tetbook is devoted to reviewing a series of steps that you can use to develop a reasonable graph of a function. Here is my version of a list of things to check. You

More information

AB Calculus: Extreme Values of a Function

AB Calculus: Extreme Values of a Function AB Calculus: Extreme Values of a Function Name: Extrema (plural for extremum) are the maximum and minimum values of a function. In the past, you have used your calculator to calculate the maximum and minimum

More information

1.1 - Functions, Domain, and Range

1.1 - Functions, Domain, and Range 1.1 - Functions, Domain, and Range Lesson Outline Section 1: Difference between relations and functions Section 2: Use the vertical line test to check if it is a relation or a function Section 3: Domain

More information

MAC Learning Objectives. Transformation of Graphs. Module 5 Transformation of Graphs. - A Library of Functions - Transformation of Graphs

MAC Learning Objectives. Transformation of Graphs. Module 5 Transformation of Graphs. - A Library of Functions - Transformation of Graphs MAC 1105 Module 5 Transformation of Graphs Learning Objectives Upon completing this module, you should be able to: 1. Recognize the characteristics common to families of functions. 2. Evaluate and graph

More information

MAC Module 5 Transformation of Graphs. Rev.S08

MAC Module 5 Transformation of Graphs. Rev.S08 MAC 1105 Module 5 Transformation of Graphs Learning Objectives Upon completing this module, you should be able to: 1. Recognize the characteristics common to families of functions. 2. Evaluate and graph

More information

2.3 Graph Sketching: Asymptotes and Rational Functions Math 125

2.3 Graph Sketching: Asymptotes and Rational Functions Math 125 .3 Graph Sketching: Asymptotes and Rational Functions Math 15.3 GRAPH SKETCHING: ASYMPTOTES AND RATIONAL FUNCTIONS All the functions from the previous section were continuous. In this section we will concern

More information

Quadratic Functions. *These are all examples of polynomial functions.

Quadratic Functions. *These are all examples of polynomial functions. Look at: f(x) = 4x-7 f(x) = 3 f(x) = x 2 + 4 Quadratic Functions *These are all examples of polynomial functions. Definition: Let n be a nonnegative integer and let a n, a n 1,..., a 2, a 1, a 0 be real

More information

MAT 1475 Final Exam Review Problems

MAT 1475 Final Exam Review Problems MAT1475 Final Review Spring 2016 Spring 2016 MAT 1475 Final Exam Review Problems Revised by Prof. Kostadinov, Fall 2015, Fall 2014, Fall 2013, Fall 2012, Fall 2011, Fall 2010 Revised by Prof. Africk and

More information

MA 220 Lesson 28 Notes Section 3.3 (p. 191, 2 nd half of text)

MA 220 Lesson 28 Notes Section 3.3 (p. 191, 2 nd half of text) MA 220 Lesson 28 Notes Section 3.3 (p. 191, 2 nd half of tet) The property of the graph of a function curving upward or downward is defined as the concavity of the graph of a function. Concavity if how

More information

Remember to SHOW ALL STEPS. You must be able to solve analytically. Answers are shown after each problem under A, B, C, or D.

Remember to SHOW ALL STEPS. You must be able to solve analytically. Answers are shown after each problem under A, B, C, or D. Math 165 - Review Chapters 3 and 4 Name Remember to SHOW ALL STEPS. You must be able to solve analytically. Answers are shown after each problem under A, B, C, or D. Find the quadratic function satisfying

More information

College Algebra. Fifth Edition. James Stewart Lothar Redlin Saleem Watson

College Algebra. Fifth Edition. James Stewart Lothar Redlin Saleem Watson College Algebra Fifth Edition James Stewart Lothar Redlin Saleem Watson 4 Polynomial and Rational Functions 4.6 Rational Functions Rational Functions A rational function is a function of the form Px (

More information

Section Graphs and Lines

Section Graphs and Lines Section 1.1 - Graphs and Lines The first chapter of this text is a review of College Algebra skills that you will need as you move through the course. This is a review, so you should have some familiarity

More information

GRAPHING WORKSHOP. A graph of an equation is an illustration of a set of points whose coordinates satisfy the equation.

GRAPHING WORKSHOP. A graph of an equation is an illustration of a set of points whose coordinates satisfy the equation. GRAPHING WORKSHOP A graph of an equation is an illustration of a set of points whose coordinates satisfy the equation. The figure below shows a straight line drawn through the three points (2, 3), (-3,-2),

More information

State the domain and range of the relation. EX: {(-1,1), (1,5), (0,3)} 1 P a g e Province Mathematics Southwest TN Community College

State the domain and range of the relation. EX: {(-1,1), (1,5), (0,3)} 1 P a g e Province Mathematics Southwest TN Community College A relation is a set of ordered pairs of real numbers. The domain, D, of a relation is the set of all first coordinates of the ordered pairs in the relation (the xs). The range, R, of a relation is the

More information

We can determine this with derivatives: the graph rises where its slope is positive.

We can determine this with derivatives: the graph rises where its slope is positive. Math 1 Derivatives and Graphs Stewart. Increasing and decreasing functions. We will see how to determine the important features of a graph y = f(x) from the derivatives f (x) and f (x), summarizing our

More information

2-4 Graphing Rational Functions

2-4 Graphing Rational Functions 2-4 Graphing Rational Functions Factor What are the zeros? What are the end behaviors? How to identify the intercepts, asymptotes, and end behavior of a rational function. How to sketch the graph of a

More information

Section 3.7 Notes. Rational Functions. is a rational function. The graph of every rational function is smooth (no sharp corners)

Section 3.7 Notes. Rational Functions. is a rational function. The graph of every rational function is smooth (no sharp corners) Section.7 Notes Rational Functions Introduction Definition A rational function is fraction of two polynomials. For example, f(x) = x x + x 5 Properties of Rational Graphs is a rational function. The graph

More information

But a vertex has two coordinates, an x and a y coordinate. So how would you find the corresponding y-value?

But a vertex has two coordinates, an x and a y coordinate. So how would you find the corresponding y-value? We will work with the vertex, orientation, and x- and y-intercepts of these functions. Intermediate algebra Class notes More Graphs of Quadratic Functions (section 11.6) In the previous section, we investigated

More information

1.1 Pearson Modeling and Equation Solving

1.1 Pearson Modeling and Equation Solving Date:. Pearson Modeling and Equation Solving Syllabus Objective:. The student will solve problems using the algebra of functions. Modeling a Function: Numerical (data table) Algebraic (equation) Graphical

More information

Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 Completed 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 Completed 1 CCBC Dundalk Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 Completed 1 A Function and its Second Derivative Recall page 4 of Handout 3.1 where we encountered the third degree polynomial f(x) x 3 5x 2 4x + 20.

More information

Objectives Graph and Analyze Rational Functions Find the Domain, Asymptotes, Holes, and Intercepts of a Rational Function

Objectives Graph and Analyze Rational Functions Find the Domain, Asymptotes, Holes, and Intercepts of a Rational Function SECTIONS 3.5: Rational Functions Objectives Graph and Analyze Rational Functions Find the Domain, Asymptotes, Holes, and Intercepts of a Rational Function I. Rational Functions A rational function is a

More information

Direction Fields; Euler s Method

Direction Fields; Euler s Method Direction Fields; Euler s Method It frequently happens that we cannot solve first order systems dy (, ) dx = f xy or corresponding initial value problems in terms of formulas. Remarkably, however, this

More information

Math 1314 Lesson 13 Analyzing Other Types of Functions

Math 1314 Lesson 13 Analyzing Other Types of Functions Math 1314 Lesson 13 Analyzing Other Types of Functions Asymptotes We will need to identify any vertical or horizontal asymptotes of the graph of a function. A vertical asymptote is a vertical line x =

More information

Math 1330 Section : Rational Functions Definition: A rational function is a function that can be written in the form f ( x ), where

Math 1330 Section : Rational Functions Definition: A rational function is a function that can be written in the form f ( x ), where 2.3: Rational Functions P( x ) Definition: A rational function is a function that can be written in the form f ( x ), where Q( x ) and Q are polynomials, consists of all real numbers x such that You will

More information

Slide 1 / 220. Linear Relations and Functions

Slide 1 / 220. Linear Relations and Functions Slide 1 / 220 Linear Relations and Functions Slide 2 / 220 Table of Contents Domain and Range Discrete v Continuous Relations and Functions Function Notation Linear Equations Graphing a Linear Equation

More information

Remember to SHOW ALL STEPS. You must be able to solve analytically. Answers are shown after each problem under A, B, C, or D.

Remember to SHOW ALL STEPS. You must be able to solve analytically. Answers are shown after each problem under A, B, C, or D. Math 165 - Review Chapters 3 and 4 Name Remember to SHOW ALL STEPS. You must be able to solve analytically. Answers are shown after each problem under A, B, C, or D. Find the quadratic function satisfying

More information

1-1. What you'll Learn About Critical Points/Extreme Values. 1 P a g e

1-1. What you'll Learn About Critical Points/Extreme Values. 1 P a g e CALCULUS: by Rogawski 8) 1 y x 1-1 x Chapter 4.2: Extreme Values What you'll Learn About Critical Points/Extreme Values 12) f(x) 4x - x 1 1 P a g e Determine the extreme values of each function 2 21) f(x)

More information

MEI Desmos Tasks for AS Pure

MEI Desmos Tasks for AS Pure Task 1: Coordinate Geometry Intersection of a line and a curve 1. Add a quadratic curve, e.g. y = x² 4x + 1 2. Add a line, e.g. y = x 3 3. Select the points of intersection of the line and the curve. What

More information

3.7. Vertex and tangent

3.7. Vertex and tangent 3.7. Vertex and tangent Example 1. At the right we have drawn the graph of the cubic polynomial f(x) = x 2 (3 x). Notice how the structure of the graph matches the form of the algebraic expression. The

More information

(f) Find an interval over which f is concave upwards.

(f) Find an interval over which f is concave upwards. April 4, 2005 Name The total number of points available is 157. work. Throughout this test, show your 1. (24 points) Consider the function f(x) = 2x+9. For this function there are two 6x+3 important intervals:

More information

Math 1020 Objectives & Exercises Calculus Concepts Spring 2019

Math 1020 Objectives & Exercises Calculus Concepts Spring 2019 Section of Textbook 1.1 AND Learning Objectives/Testable Skills Identify four representations of a function. Specify input and output variables, input and output descriptions, and input and output units.

More information

REVIEW, pages

REVIEW, pages REVIEW, pages 69 697 8.. Sketch a graph of each absolute function. Identif the intercepts, domain, and range. a) = ƒ - + ƒ b) = ƒ ( + )( - ) ƒ 8 ( )( ) Draw the graph of. It has -intercept.. Reflect, in

More information

Math 1314 Lesson 12 Curve Analysis (Polynomials)

Math 1314 Lesson 12 Curve Analysis (Polynomials) Math 1314 Lesson 12 Curve Analysis (Polynomials) This lesson will cover analyzing polynomial functions using GeoGebra. Suppose your company embarked on a new marketing campaign and was able to track sales

More information

Calculus Chapter 1 Limits. Section 1.2 Limits

Calculus Chapter 1 Limits. Section 1.2 Limits Calculus Chapter 1 Limits Section 1.2 Limits Limit Facts part 1 1. The answer to a limit is a y-value. 2. The limit tells you to look at a certain x value. 3. If the x value is defined (in the domain),

More information

ReviewUsingDerivatives.nb 1. As we have seen, the connection between derivatives of a function and the function itself is given by the following:

ReviewUsingDerivatives.nb 1. As we have seen, the connection between derivatives of a function and the function itself is given by the following: ReviewUsingDerivatives.nb Calculus Review: Using First and Second Derivatives As we have seen, the connection between derivatives of a function and the function itself is given by the following: à If f

More information

What's the Slope of a Line?

What's the Slope of a Line? What's the Slope of a Line? These lines look pretty different, don't they? Lines are used to keep track of lots of info -- like how much money a company makes. Just off the top of your head, which of the

More information

Section 2.4 Library of Functions; Piecewise-Defined Functions

Section 2.4 Library of Functions; Piecewise-Defined Functions Section. Library of Functions; Piecewise-Defined Functions Objective #: Building the Library of Basic Functions. Graph the following: Ex. f(x) = b; constant function Since there is no variable x in the

More information

MEI GeoGebra Tasks for AS Pure

MEI GeoGebra Tasks for AS Pure Task 1: Coordinate Geometry Intersection of a line and a curve 1. Add a quadratic curve, e.g. y = x 2 4x + 1 2. Add a line, e.g. y = x 3 3. Use the Intersect tool to find the points of intersection of

More information

Math 1314 Lesson 13 Analyzing Other Types of Functions

Math 1314 Lesson 13 Analyzing Other Types of Functions Math 1314 Lesson 13 Analyzing Other Types of Functions Asymptotes We will need to identify any vertical or horizontal asymptotes of the graph of a function. A vertical asymptote is a vertical line x a

More information

Mth Test 3 Review Stewart 8e Chapter 4. For Test #3 study these problems, the examples in your notes, and the homework.

Mth Test 3 Review Stewart 8e Chapter 4. For Test #3 study these problems, the examples in your notes, and the homework. For Test #3 study these problems, the eamples in your notes, and the homework. I. Absolute Etrema A function, continuous on a closed interval, always has an absolute maimum and absolute minimum. They occur

More information

Four Types of Slope Positive Slope Negative Slope Zero Slope Undefined Slope Slope Dude will help us understand the 4 types of slope

Four Types of Slope Positive Slope Negative Slope Zero Slope Undefined Slope Slope Dude will help us understand the 4 types of slope Four Types of Slope Positive Slope Negative Slope Zero Slope Undefined Slope Slope Dude will help us understand the 4 types of slope https://www.youtube.com/watch?v=avs6c6_kvxm Direct Variation

More information

The term Concavity is used to describe the type of curvature the graph displays at any given point.

The term Concavity is used to describe the type of curvature the graph displays at any given point. 4 4 Concavity and the Second Derivative The term Concavity is used to describe the type of curvature the graph displays at any given point. The curve of the graph is called Up at point if the graph is

More information

Algebra II Lesson 10-5: Hyperbolas Mrs. Snow, Instructor

Algebra II Lesson 10-5: Hyperbolas Mrs. Snow, Instructor Algebra II Lesson 10-5: Hyperbolas Mrs. Snow, Instructor In this section, we will look at the hyperbola. A hyperbola is a set of points P in a plane such that the absolute value of the difference between

More information

3.5D Graphing Rational Functions

3.5D Graphing Rational Functions 3.5D Graphing Rational Functions A. Strategy 1. Find all asymptotes (vertical, horizontal, oblique, curvilinear) and holes for the function. 2. Find the and intercepts. 3. Plot the and intercepts, draw

More information

2-3 Graphing Rational Functions

2-3 Graphing Rational Functions 2-3 Graphing Rational Functions Factor What are the end behaviors of the Graph? Sketch a graph How to identify the intercepts, asymptotes and end behavior of a rational function. How to sketch the graph

More information

Sec 4.1 Coordinates and Scatter Plots. Coordinate Plane: Formed by two real number lines that intersect at a right angle.

Sec 4.1 Coordinates and Scatter Plots. Coordinate Plane: Formed by two real number lines that intersect at a right angle. Algebra I Chapter 4 Notes Name Sec 4.1 Coordinates and Scatter Plots Coordinate Plane: Formed by two real number lines that intersect at a right angle. X-axis: The horizontal axis Y-axis: The vertical

More information

2.2 Graphs Of Functions. Copyright Cengage Learning. All rights reserved.

2.2 Graphs Of Functions. Copyright Cengage Learning. All rights reserved. 2.2 Graphs Of Functions Copyright Cengage Learning. All rights reserved. Objectives Graphing Functions by Plotting Points Graphing Functions with a Graphing Calculator Graphing Piecewise Defined Functions

More information

Polynomial Functions Graphing Investigation Unit 3 Part B Day 1. Graph 1: y = (x 1) Graph 2: y = (x 1)(x + 2) Graph 3: y =(x 1)(x + 2)(x 3)

Polynomial Functions Graphing Investigation Unit 3 Part B Day 1. Graph 1: y = (x 1) Graph 2: y = (x 1)(x + 2) Graph 3: y =(x 1)(x + 2)(x 3) Part I: Polynomial Functions when a = 1 Directions: Polynomial Functions Graphing Investigation Unit 3 Part B Day 1 1. For each set of factors, graph the zeros first, then use your calculator to determine

More information

x 2 + 3, r 4(x) = x2 1

x 2 + 3, r 4(x) = x2 1 Math 121 (Lesieutre); 4.2: Rational functions; September 1, 2017 1. What is a rational function? It s a function of the form p(x), where p(x) and q(x) are both polynomials. In other words, q(x) something

More information

3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS

3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS 3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS Finding the Zeros of a Quadratic Function Examples 1 and and more Find the zeros of f(x) = x x 6. Solution by Factoring f(x) = x x 6 = (x 3)(x + )

More information

Theorem 2(B): Concave DOWNward

Theorem 2(B): Concave DOWNward Montana State University M161: Survey of Calculus 61 Section 4.2 - Applications of the Second Derivative Honeybees This is a population graph for Cyprian honeybees raised in an apiary. The population is

More information

Learning Packet. Lesson 6 Exponents and Rational Functions THIS BOX FOR INSTRUCTOR GRADING USE ONLY

Learning Packet. Lesson 6 Exponents and Rational Functions THIS BOX FOR INSTRUCTOR GRADING USE ONLY Learning Packet Student Name Due Date Class Time/Day Submission Date THIS BOX FOR INSTRUCTOR GRADING USE ONLY Mini-Lesson is complete and information presented is as found on media links (0 5 pts) Comments:

More information

Graphing Rational Functions

Graphing Rational Functions Graphing Rational Functions Return to Table of Contents 109 Vocabulary Review x-intercept: The point where a graph intersects with the x-axis and the y-value is zero. y-intercept: The point where a graph

More information

SUMMARY OF PROPERTY 1 PROPERTY 5

SUMMARY OF PROPERTY 1 PROPERTY 5 SUMMARY OF PROPERTY 1 PROPERTY 5 There comes a time when putting a puzzle together that we start to see the final image. The same is true when we represent the first five (5) FUNction Summary Properties

More information

Vertical and Horizontal Translations

Vertical and Horizontal Translations SECTION 4.3 Vertical and Horizontal Translations Copyright Cengage Learning. All rights reserved. Learning Objectives 1 2 3 4 Find the vertical translation of a sine or cosine function. Find the horizontal

More information

Math 1120, Section 4 Calculus Test 2. November 5, 2008 Name. work. 1. (15 points) Consider the function f(x) = (2x + 3) 2 (x 1) 2.

Math 1120, Section 4 Calculus Test 2. November 5, 2008 Name. work. 1. (15 points) Consider the function f(x) = (2x + 3) 2 (x 1) 2. November 5, 2008 Name The total number of points available is 139 work Throughout this test, show your 1 (15 points) Consider the function f(x) = (2x + 3) 2 (x 1) 2 (a) Use the product rule to find f (x)

More information

MATH 100 DR. MCLOUGHLIN'S HANDY DANDY GRAPHING GUIDE USING SYSTEMATIC OR POSITIVE NEGATIVE ANALYSIS PART II

MATH 100 DR. MCLOUGHLIN'S HANDY DANDY GRAPHING GUIDE USING SYSTEMATIC OR POSITIVE NEGATIVE ANALYSIS PART II Dr. McLoughlin s Handy Dandy Graphing Guide using PNA Part II, page 1 y = A f(b(x C)) + D MATH 100 DR. MCLOUGHLIN'S HANDY DANDY GRAPHING GUIDE USING SYSTEMATIC OR POSITIVE NEGATIVE ANALYSIS PART II A B

More information

Math 121. Graphing Rational Functions Fall 2016

Math 121. Graphing Rational Functions Fall 2016 Math 121. Graphing Rational Functions Fall 2016 1. Let x2 85 x 2 70. (a) State the domain of f, and simplify f if possible. (b) Find equations for the vertical asymptotes for the graph of f. (c) For each

More information

CCNY Math Review Chapter 2: Functions

CCNY Math Review Chapter 2: Functions CCN Math Review Chapter : Functions Section.1: Functions.1.1: How functions are used.1.: Methods for defining functions.1.3: The graph of a function.1.: Domain and range.1.5: Relations, functions, and

More information

Calculus Limits Images in this handout were obtained from the My Math Lab Briggs online e-book.

Calculus Limits Images in this handout were obtained from the My Math Lab Briggs online e-book. Calculus Limits Images in this handout were obtained from the My Math Lab Briggs online e-book. A it is the value a function approaches as the input value gets closer to a specified quantity. Limits are

More information

This is called the vertex form of the quadratic equation. To graph the equation

This is called the vertex form of the quadratic equation. To graph the equation Name Period Date: Topic: 7-5 Graphing ( ) Essential Question: What is the vertex of a parabola, and what is its axis of symmetry? Standard: F-IF.7a Objective: Graph linear and quadratic functions and show

More information

Graphing Linear Equations

Graphing Linear Equations Graphing Linear Equations A.REI.10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane. What am I learning today? How to graph a linear

More information