Superpixel Segmentation using Depth

Size: px
Start display at page:

Download "Superpixel Segmentation using Depth"

Transcription

1 Superpixel Segmentation using Depth Information Superpixel Segmentation using Depth Information David Stutz June 25th, 2014 David Stutz June 25th,

2 Introduction - Table of Contents 1 Introduction Oversegmentation and Superpixels Motivation 2 SEEDS Hierarchy and Histograms Iterations Parameters 3 Results Qualitative 4 Depth Information David Stutz June 25th,

3 Introduction - Oversegmentation and Superpixels Oversegmentation and Superpixels Segmentation and Oversegmentation are not clearly defined throughout the literature... Notion (Superpixel) The term superpixel is used to describe the oversegmentation of an image into groups of pixels using low-level features. Well, but what is the difference between usual segmentation and oversegmentation? David Stutz June 25th,

4 Introduction - Oversegmentation and Superpixels Oversegmentation and Superpixels Figure: Original image. David Stutz June 25th,

5 Introduction - Oversegmentation and Superpixels Oversegmentation and Superpixels Figure: Ground truth segmentation one segment per object. David Stutz June 25th,

6 Introduction - Oversegmentation and Superpixels Oversegmentation and Superpixels Figure: Superpixel segmentation multiple superpixels per object. David Stutz June 25th,

7 Introduction - Motivation Motivation There is a whole bunch of superpixel algorithms out there [4] [1] [13] [16] [15] [10] [3] [12]... Only few provide near-realtime [4] [1]... Some of them utilize depth information [1] [10] [15]... SEEDS [4] provides state of the art performance and near-realtime runtime on 2D data! Goal: integrate depth information into SEEDS. David Stutz June 25th,

8 SEEDS - Table of Contents 1 Introduction Oversegmentation and Superpixels Motivation 2 SEEDS Hierarchy and Histograms Iterations Parameters 3 Results Qualitative 4 Depth Information David Stutz June 25th,

9 SEEDS - Overview Overview Given an initial superpixel segmentation, SEEDS iteratively refines this segmentation by... exchanging blocks of pixels between neighboring superpixels (block updates), and exchanging pixels between neighboring superpixels (pixel updates). The initial superpixel segmentation will be a uniform grid. This grid is subdivided to define blocks of pixels. David Stutz June 25th,

10 SEEDS - Overview Overview Figure: Initial superpixel segmentation. David Stutz June 25th,

11 SEEDS - Hierarchy and Histograms Hierarchy and Histograms Step 1 Set up a hierarchy SEEDS is based on a simple hierarchy consisting of L levels... Group w min h min pixel to form one block on level l = 1; and group 4 blocks at level (l 1) to form one block at level l > 1. The blocks at level L represent the initial superpixel segmentation! Step 2 Compute color histograms for each block at level l > 0. David Stutz June 25th,

12 SEEDS - Hierarchy and Histograms Hierarchy and Histograms Figure: Initial blocks at level three (with a total of four levels). David Stutz June 25th,

13 SEEDS - Hierarchy and Histograms Hierarchy and Histograms Figure: Initial blocks at level two (with a total of four levels). David Stutz June 25th,

14 SEEDS - Iterations Block Updates Step 3 Perform block updates For each level l = L 1,..., 1: For each block at level l: If a neighboring block belongs to a different superpixel (= label), consider changing the label. When to change the label? If the histogram intersection of the block histogram and the superpixel histogram is higher than before... David Stutz June 25th,

15 SEEDS - Iterations Hierarchy and Histograms Figure: Block updates at level three. David Stutz June 25th,

16 SEEDS - Iterations Hierarchy and Histograms Figure: Block updates at level two. David Stutz June 25th,

17 SEEDS - Iterations Hierarchy and Histograms Figure: Block updates at level one. David Stutz June 25th,

18 SEEDS - Iterations Pixel Updates Step 4 Perform pixel updates For each pixel: If a neighboring pixel belongs to a different superpixel (= label), consider changing the label. When to change the label? If the color of the pixel is represented well in the superpixel histogram (= intersection distance on pixel level)... and most pixels in a local neighborhood belong to the new superpixel (smoothing term, optional). David Stutz June 25th,

19 SEEDS - Iterations Pixel Updates Figure: Pixel updates without smoothing term. David Stutz June 25th,

20 SEEDS - Iterations Pixel Updates Figure: Pixel updates with smoothing term. David Stutz June 25th,

21 SEEDS - Iterations Pixel Updates Figure: Pixel updates with smoothing term and based on color means. David Stutz June 25th,

22 SEEDS - Parameters Parameters Step 5 Take some time to choose parameters... How many bins to use for the histograms? How many superpixels to obtain? How to define local neighborhood? David Stutz June 25th,

23 Results - Table of Contents 1 Introduction Oversegmentation and Superpixels Motivation 2 SEEDS Hierarchy and Histograms Iterations Parameters 3 Results Qualitative 4 Depth Information David Stutz June 25th,

24 Results - Qualitative Qualitative Results Well, but what does this actually look like? David Stutz June 25th,

25 Results - Qualitative Easy Examples... Figure: Part of the BSDS500 validation set. David Stutz June 25th,

26 Results - Qualitative Easy Examples... Figure: Superpixel segmentation with 400 superpixels, 6 bins, smoothing term and mean based pixel updates. David Stutz June 25th,

27 Results - Qualitative Easy Examples... Figure: Reconstruction by coloring superpixels according to their mean color. David Stutz June 25th,

28 Results - Qualitative Easy Examples... Figure: Original image. David Stutz June 25th,

29 Results - Qualitative Easy Examples... Figure: Superpixel segmentation. David Stutz June 25th,

30 Results - Qualitative Easy Examples... Figure: Reconstruction. David Stutz June 25th,

31 Results - Qualitative Qualitative Results OK, but these were easy, what about some hard ones? David Stutz June 25th,

32 Results - Qualitative The Hard Ones... Figure: Difficult original image. David Stutz June 25th,

33 Results - Qualitative The Hard Ones... Figure: Superpixel segmentation. David Stutz June 25th,

34 Results - Qualitative The Hard Ones... Figure: Reconstruction. David Stutz June 25th,

35 Results - Qualitative The Hard Ones... Figure: Difficult original image. David Stutz June 25th,

36 Results - Qualitative The Hard Ones... Figure: Superpixel segmentation. David Stutz June 25th,

37 Results - Qualitative The Hard Ones... Figure: Reconstruction. David Stutz June 25th,

38 Depth Information - Table of Contents 1 Introduction Oversegmentation and Superpixels Motivation 2 SEEDS Hierarchy and Histograms Iterations Parameters 3 Results Qualitative 4 Depth Information David Stutz June 25th,

39 Depth Information - Demonstration Depth Information Figure: Image taken form the NYU Depth Dataset V2.. David Stutz June 25th,

40 Depth Information - Demonstration Depth Information Figure: Some boundaries which are really hard to see... at least for the algorithm. David Stutz June 25th,

41 Depth Information - Demonstration Depth Information Figure: Segmentation using SEEDS Revised purely color based... Could be better! David Stutz June 25th,

42 Depth Information - Demonstration Depth Information Figure: Better! Pixel and block updates are based on depth information a penalty is added if the depth between blocks or pixels differs by more than 10cm. David Stutz June 25th,

43 Depth Information - Conclusion Depth Information Can depth information lead to better oversegmentation? Yes... especially where color fails! But: Color alone already is very good! Well, but how to integrate depth information? Some ideas... David Stutz June 25th,

44 Depth Information - Ideas Ideas Use depth information for mean updates (= integrate depth information into euclidean distance)... Done! Use 3D point coordinates for pixel updates (= integrate (x, y, z) into euclidean distance)... Already done! But SEEDS is based on histograms... Build histograms using... point normals; or use feature histograms for example Fast Point Feature Histograms (FPFH) [18]! David Stutz June 25th,

45 The End - The End Thanks for your attention! Comments? Ideas? Questions? David Stutz June 25th,

46 Appendix - Recall Recall Let G be a ground truth segmentation and S be a superpixel segmentation. Some definitions [7]... True Positives (TP): The number of boundary pixels in G for which there is a boundary pixel in S in range d. False Negatives (FN): The number of boundary pixels in G for which there is no boundary pixel in S in range d. Then Boundary Recall is defined as R(G, S) = T P T P + F N (1) David Stutz June 25th,

47 Appendix - Undersegmentation Error Undersegmentation Error Let G be a ground truth segmentation, S be a superpixel segmentation and N be the total number of pixels. For a superpixel S S and a ground truth segment G G we define S in = S G; and S out = S S G. The Undersegmentation Error is defined as UE(G, S) = 1 N G G min(s in, S out ) (2) S G David Stutz June 25th,

48 Appendix - Compactness Compactness Let G be a ground truth segmentation, S be a superpixel segmentation and N be the total number of pixels. The isoperimetric quotient Q(S) for a superpixel S S with area A S and perimeter L S is defined as Q(S) = 4πA S L 2 S (3) Then the compactness measure is given as CO(S) = 1 Q(S) S (4) N S S David Stutz June 25th,

49 R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Süsstrunk, SLIC Superpixels, Technical report, EPFL, Lausanne, X. Ren, J. Malik, Learning a classification model for segmentation, ICCV, P. F. Felzenswalb, D. P. Huttenlocher, Efficient graph-based image segmentation, International Journal of Computer Vision, Volume 59, Number 2, M. Van den Bergh, X. Boix, G. Roig, B. de Capitani, L. van Gool, SEEDS: superpixels extracted via energy-driven sampling, ECCV, P. Arbelaez, M. Maire, C. Fowlkes, J. Malik, Contour Detection and Hierarchical Image Segmentation, PAMI, A. Schick, M. Fischer, R. Stiefelhagen, Measuring and evaluating the compactness of superpixels, ICPR, P. Neubert, P. Protzel, Superpixel benchmark and comparison, Forum Bildverarbeitung, Regensburg, David Stutz June 25th,

50 R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Süsstrunk, SLIC superpixels compared to state-of-the-art superpixel methods, PAMI, A. P. Moore, J. D. Prince, J. Warrell, U. Mohammed, G. Jones, Superpixel lattices, CVPR, D. Weikersdorfer, D. Gossow, M. Beetz, Depth-adaptive superpixels, ICPR, C. Conrad, M. Mertz, R. Mester, Contour-relaxed superpixels, Lecture Notes in Computer Science, Volume 8081, M.-Y. Li, O. Tuzel, S. Ramalingam, R. Chellappa, Entropy rate superpixel segmentation, CVPR, A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, K. Siddiqi, Turbopixels: fast superpixels using geometric flows, PAMI, Y. Zhang, R. Hartley, J. Mashford, S. Burn, Superpixels via pseudo-boolean optimization, ICCV, David Stutz June 25th,

51 J. Papon, A. Abramov, M. Schoeler, F. Worgotter, Voxel cloud connectivity segmentation - supervoxels for point clouds, CVPR, A. Vedaldi, S. Soatto, Quick shift and kernel methods for mode seeking, ECCV, N. Silberman, D. Hoiem, P. Kohli, R. Fergus, Indoor segmentation and support inference from RGBD images, ECCV, R. B. Rusu, N. Blodow, M. Beetz, Fast point feature histograms (FPFH) for 3D registration, ICRA, David Stutz June 25th,

Superpixel Segmentation: An Evaluation

Superpixel Segmentation: An Evaluation Superpixel Segmentation: An Evaluation David Stutz Computer Vision Group, RWTH Aachen University david.stutz@rwth-aachen.de Abstract. In recent years, superpixel algorithms have become a standard tool

More information

arxiv: v1 [cs.cv] 14 Sep 2015

arxiv: v1 [cs.cv] 14 Sep 2015 gslicr: SLIC superpixels at over 250Hz Carl Yuheng Ren carl@robots.ox.ac.uk University of Oxford Ian D Reid ian.reid@adelaide.edu.au University of Adelaide September 15, 2015 Victor Adrian Prisacariu victor@robots.ox.ac.uk

More information

Generating Object Candidates from RGB-D Images and Point Clouds

Generating Object Candidates from RGB-D Images and Point Clouds Generating Object Candidates from RGB-D Images and Point Clouds Helge Wrede 11.05.2017 1 / 36 Outline Introduction Methods Overview The Data RGB-D Images Point Clouds Microsoft Kinect Generating Object

More information

Superpixel Segmentation Based Gradient Maps on RGB-D Dataset

Superpixel Segmentation Based Gradient Maps on RGB-D Dataset Superpixel Segmentation Based Gradient Maps on RGB-D Dataset Lixing Jiang, Huimin Lu, Vo Duc My, Artur Koch and Andreas Zell Abstract Superpixels aim to group homogenous pixels by a series of characteristics

More information

DEPTH-ADAPTIVE SUPERVOXELS FOR RGB-D VIDEO SEGMENTATION. Alexander Schick. Fraunhofer IOSB Karlsruhe

DEPTH-ADAPTIVE SUPERVOXELS FOR RGB-D VIDEO SEGMENTATION. Alexander Schick. Fraunhofer IOSB Karlsruhe DEPTH-ADAPTIVE SUPERVOXELS FOR RGB-D VIDEO SEGMENTATION David Weikersdorfer Neuroscientific System Theory Technische Universität München Alexander Schick Fraunhofer IOSB Karlsruhe Daniel Cremers Computer

More information

Voxel Cloud Connectivity Segmentation - Supervoxels for Point Clouds

Voxel Cloud Connectivity Segmentation - Supervoxels for Point Clouds 2013 IEEE Conference on Computer Vision and Pattern Recognition Voxel Cloud Connectivity Segmentation - Supervoxels for Point Clouds Jeremie Papon Alexey Abramov Markus Schoeler Florentin Wörgötter Bernstein

More information

SCALP: Superpixels with Contour Adherence using Linear Path

SCALP: Superpixels with Contour Adherence using Linear Path SCALP: Superpixels with Contour Adherence using Linear Path Rémi Giraud 1,2 remi.giraud@labri.fr with Vinh-Thong Ta 1 and Nicolas Papadakis 2 1 LaBRI CNRS UMR 5800 - University of Bordeaux, FRANCE PICTURA

More information

Resolution-independent superpixels based on convex constrained meshes without small angles

Resolution-independent superpixels based on convex constrained meshes without small angles 1 2 Resolution-independent superpixels based on convex constrained meshes without small angles 3 4 5 6 7 Jeremy Forsythe 1,2, Vitaliy Kurlin 3, Andrew Fitzgibbon 4 1 Vienna University of Technology, Favoritenstr.

More information

SCALP: Superpixels with Contour Adherence using Linear Path

SCALP: Superpixels with Contour Adherence using Linear Path : Superpixels with Contour Adherence using Linear Path Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis To cite this version: Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis. : Superpixels with Contour Adherence

More information

Content-based Image and Video Retrieval. Image Segmentation

Content-based Image and Video Retrieval. Image Segmentation Content-based Image and Video Retrieval Vorlesung, SS 2011 Image Segmentation 2.5.2011 / 9.5.2011 Image Segmentation One of the key problem in computer vision Identification of homogenous region in the

More information

This is an author-deposited version published in : Eprints ID : 15223

This is an author-deposited version published in :   Eprints ID : 15223 Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited

More information

SUPERPIXELS: THE END OF PIXELS IN OBIA. A COMPARISON OF STATE-OF-THE- ART SUPERPIXEL METHODS FOR REMOTE SENSING DATA

SUPERPIXELS: THE END OF PIXELS IN OBIA. A COMPARISON OF STATE-OF-THE- ART SUPERPIXEL METHODS FOR REMOTE SENSING DATA SUPERPIXELS: THE END OF PIXELS IN OBIA. A COMPARISON OF STATE-OF-THE- ART SUPERPIXEL METHODS FOR REMOTE SENSING DATA O. Csillik * Department of Geoinformatics Z_GIS, University of Salzburg, 5020, Salzburg,

More information

Compact Watershed and Preemptive SLIC: On improving trade-offs of superpixel segmentation algorithms

Compact Watershed and Preemptive SLIC: On improving trade-offs of superpixel segmentation algorithms To appear in Proc. of International Conference on Pattern Recognition (ICPR), 2014. DOI: not yet available c 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained

More information

Superpixel Segmentation using Linear Spectral Clustering

Superpixel Segmentation using Linear Spectral Clustering Superpixel Segmentation using Linear Spectral Clustering Zhengqin Li Jiansheng Chen Department of Electronic Engineering, Tsinghua University, Beijing, China li-zq12@mails.tsinghua.edu.cn jschenthu@mail.tsinghua.edu.cn

More information

Cluster Sensing Superpixel and Grouping

Cluster Sensing Superpixel and Grouping Cluster Sensing Superpixel and Grouping Rui Li Lu Fang Abstract Superpixel algorithms have shown significant potential in computer vision applications since they can be used to accelerate other computationally

More information

Superpixels and Polygons using Simple Non-Iterative Clustering

Superpixels and Polygons using Simple Non-Iterative Clustering Superpixels and Polygons using Simple Non-Iterative Clustering Radhakrishna Achanta and Sabine Süsstrunk School of Computer and Communication Sciences (IC) École Polytechnique Fédérale de Lausanne (EPFL)

More information

Accelerated gslic for Superpixel Generation used in Object Segmentation

Accelerated gslic for Superpixel Generation used in Object Segmentation Accelerated gslic for Superpixel Generation used in Object Segmentation Robert Birkus Supervised by: Ing. Wanda Benesova, PhD. Institute of Applied Informatics Faculty of Informatics and Information Technologies

More information

Growing Depth Image Superpixels for Foliage Modeling

Growing Depth Image Superpixels for Foliage Modeling z Growing Depth Image Superpixels for Foliage Modeling Daniel Morris, Saif Imran Dept. of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA Jin Chen, David M.

More information

Image Segmentation. Lecture14: Image Segmentation. Sample Segmentation Results. Use of Image Segmentation

Image Segmentation. Lecture14: Image Segmentation. Sample Segmentation Results. Use of Image Segmentation Image Segmentation CSED441:Introduction to Computer Vision (2015S) Lecture14: Image Segmentation What is image segmentation? Process of partitioning an image into multiple homogeneous segments Process

More information

Edge-Based Split-and-Merge Superpixel Segmentation

Edge-Based Split-and-Merge Superpixel Segmentation Proceeding of the 2015 IEEE International Conference on Information and Automation Lijing, China, August 2015 Edge-Based Split-and-Merge Superpixel Segmentation Li Li, Jian Yao, Jinge Tu, Xiaohu Lu, Kai

More information

SMURFS: Superpixels from Multi-scale Refinement of Super-regions

SMURFS: Superpixels from Multi-scale Refinement of Super-regions LUENGO, BASHAM, FRENCH: SMURFS SUPERPIXELS 1 SMURFS: Superpixels from Multi-scale Refinement of Super-regions Imanol Luengo 1 imanol.luengo@nottingham.ac.uk Mark Basham 2 mark.basham@diamond.ac.uk Andrew

More information

Superpixels Generating from the Pixel-based K-Means Clustering

Superpixels Generating from the Pixel-based K-Means Clustering Superpixels Generating from the Pixel-based K-Means Clustering Shang-Chia Wei, Tso-Jung Yen Institute of Statistical Science Academia Sinica Taipei, Taiwan 11529, R.O.C. wsc@stat.sinica.edu.tw, tjyen@stat.sinica.edu.tw

More information

Depth SEEDS: Recovering Incomplete Depth Data using Superpixels

Depth SEEDS: Recovering Incomplete Depth Data using Superpixels Depth SEEDS: Recovering Incomplete Depth Data using Superpixels Michael Van den Bergh 1 1 ETH Zurich Zurich, Switzerland vamichae@vision.ee.ethz.ch Daniel Carton 2 2 TU München Munich, Germany carton@lsr.ei.tum.de

More information

Graph based Image Segmentation using improved SLIC Superpixel algorithm

Graph based Image Segmentation using improved SLIC Superpixel algorithm Graph based Image Segmentation using improved SLIC Superpixel algorithm Prasanna Regmi 1, B.J.M. Ravi Kumar 2 1 Computer Science and Systems Engineering, Andhra University, AP, India 2 Computer Science

More information

CRF Based Point Cloud Segmentation Jonathan Nation

CRF Based Point Cloud Segmentation Jonathan Nation CRF Based Point Cloud Segmentation Jonathan Nation jsnation@stanford.edu 1. INTRODUCTION The goal of the project is to use the recently proposed fully connected conditional random field (CRF) model to

More information

Segmentation in electron microscopy images

Segmentation in electron microscopy images Segmentation in electron microscopy images Aurelien Lucchi, Kevin Smith, Yunpeng Li Bohumil Maco, Graham Knott, Pascal Fua. http://cvlab.epfl.ch/research/medical/neurons/ Outline Automated Approach to

More information

Discrete-Continuous Gradient Orientation Estimation for Faster Image Segmentation

Discrete-Continuous Gradient Orientation Estimation for Faster Image Segmentation Discrete-Continuous Gradient Orientation Estimation for Faster Image Segmentation Michael Donoser and Dieter Schmalstieg Institute for Computer Graphics and Vision Graz University of Technology {donoser,schmalstieg}@icg.tugraz.at

More information

Superpixels: An Evaluation of the State-of-the-Art

Superpixels: An Evaluation of the State-of-the-Art Superpixels: An Evaluation of the State-of-the-Art David Stutz, Alexander Hermans, Bastian Leibe Visual Computing Institute, RWTH Aachen University, Germany Since the introduction of the first superpixel

More information

Superpixels via Pseudo-Boolean Optimization

Superpixels via Pseudo-Boolean Optimization Superpixels via Pseudo-Boolean Optimization Yuhang Zhang, Richard Hartley The Australian National University {yuhang.zhang, richard.hartley}@anu.edu.au John Mashford, Stewart Burn CSIRO {john.mashford,

More information

Superpixels: An Evaluation of the State-of-the-Art

Superpixels: An Evaluation of the State-of-the-Art Superpixels: An Evaluation of the State-of-the-Art David Stutz, Alexander Hermans, Bastian Leibe Visual Computing Institute, RWTH Aachen University, Germany the introduction of the first superpixel algorithms

More information

Towards Spatio-Temporally Consistent Semantic Mapping

Towards Spatio-Temporally Consistent Semantic Mapping Towards Spatio-Temporally Consistent Semantic Mapping Zhe Zhao, Xiaoping Chen University of Science and Technology of China, zhaozhe@mail.ustc.edu.cn,xpchen@ustc.edu.cn Abstract. Intelligent robots require

More information

Multiscale Superpixels and Supervoxels Based on Hierarchical Edge-Weighted Centroidal Voronoi Tessellation

Multiscale Superpixels and Supervoxels Based on Hierarchical Edge-Weighted Centroidal Voronoi Tessellation 2015 IEEE Winter Conference on Applications of Computer Vision Multiscale Superpixels and Supervoxels Based on Hierarchical Edge-Weighted Centroidal Voronoi Tessellation Youjie Zhou 1, Lili Ju 2 and Song

More information

Manifold SLIC: A Fast Method to Compute Content-Sensitive Superpixels

Manifold SLIC: A Fast Method to Compute Content-Sensitive Superpixels Manifold IC: A Fast Method to Compute Content-Sensitive Superpixels Yong-Jin Liu, Cheng-Chi Yu, Min-Jing Yu Tsinghua University, China {liuyongjin,ycc13,yumj14}@tsinghua.edu.cn Ying He Nanyang Technological

More information

Temporal Superpixels Based on Proximity-Weighted Patch Matching

Temporal Superpixels Based on Proximity-Weighted Patch Matching Temporal Superpixels Based on Proximity-Weighted Patch Matching Se-Ho ee Korea University seholee@mcl.korea.ac.kr Won-Dong Jang Korea University wdjang@mcl.korea.ac.kr Chang-Su Kim Korea University changsukim@korea.ac.kr

More information

IFT-SLIC: A general framework for superpixel generation based on simple linear iterative clustering and image foresting transform

IFT-SLIC: A general framework for superpixel generation based on simple linear iterative clustering and image foresting transform IFT-: A general framework for superpixel generation based on simple linear iterative clustering and image foresting transform Eduardo Barreto Alexandre, Ananda Shankar Chowdhury, Alexandre Xavier Falcão,

More information

Superpixels and Supervoxels in an Energy Optimization Framework

Superpixels and Supervoxels in an Energy Optimization Framework Superpixels and Supervoxels in an Energy Optimization Framework Olga Veksler, Yuri Boykov, and Paria Mehrani Computer Science Department, University of Western Ontario London, Canada {olga,yuri,pmehrani}@uwo.ca

More information

Grouping and Segmentation

Grouping and Segmentation 03/17/15 Grouping and Segmentation Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Today s class Segmentation and grouping Gestalt cues By clustering (mean-shift) By boundaries (watershed)

More information

arxiv: v1 [cs.cv] 16 Sep 2013

arxiv: v1 [cs.cv] 16 Sep 2013 Noname manuscript No. (will be inserted by the editor) SEEDS: Superpixels Extracted via Energy-Driven Sampling Michael Van den Bergh Xavier Boix Gemma Roig Luc Van Gool arxiv:1309.3848v1 [cs.cv] 16 Sep

More information

Image partitioning into convex polygons

Image partitioning into convex polygons Image partitioning into convex polygons Liuyun Duan, Florent Lafarge To cite this version: Liuyun Duan, Florent Lafarge. Image partitioning into convex polygons. IEEE conference on Computer Vision and

More information

Maximum Cohesive Grid of Superpixels for Fast Object Localization

Maximum Cohesive Grid of Superpixels for Fast Object Localization 2013 IEEE Conference on Computer Vision and Pattern Recognition Maximum Cohesive Grid of Superpixels for Fast Object Localization Liang Li 1,2, Wei Feng 1,2,, Liang Wan 3, Jiawan Zhang 3 1 Tianjin Key

More information

EIKONAL-BASED VERTICES GROWING AND ITERATIVE SEEDING FOR EFFICIENT GRAPH-BASED SEGMENTATION. P. Buyssens, M. Toutain, A. Elmoataz, O.

EIKONAL-BASED VERTICES GROWING AND ITERATIVE SEEDING FOR EFFICIENT GRAPH-BASED SEGMENTATION. P. Buyssens, M. Toutain, A. Elmoataz, O. EIKONAL-BASED VERTICES GROWING AND ITERATIVE SEEDING FOR EFFICIENT GRAPH-BASED SEGMENTATION P. Buyssens, M. Toutain, A. Elmoataz, O. Lézoray GREYC (UMR 6072) - CNRS, Université de Caen Basse-Normandie,

More information

Recap from Monday. Visualizing Networks Caffe overview Slides are now online

Recap from Monday. Visualizing Networks Caffe overview Slides are now online Recap from Monday Visualizing Networks Caffe overview Slides are now online Today Edges and Regions, GPB Fast Edge Detection Using Structured Forests Zhihao Li Holistically-Nested Edge Detection Yuxin

More information

Keywords Image Segmentation, Pixels, Superpixels, Superpixel Segmentation Methods

Keywords Image Segmentation, Pixels, Superpixels, Superpixel Segmentation Methods Volume 4, Issue 9, September 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Superpixel

More information

CS381V Experiment Presentation. Chun-Chen Kuo

CS381V Experiment Presentation. Chun-Chen Kuo CS381V Experiment Presentation Chun-Chen Kuo The Paper Indoor Segmentation and Support Inference from RGBD Images. N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. ECCV 2012. 50 100 150 200 250 300 350

More information

Object Recognition and Segmentation in Indoor Scenes from RGB-D Images

Object Recognition and Segmentation in Indoor Scenes from RGB-D Images Object Recognition and Segmentation in Indoor Scenes from RGB-D Images Md. Alimoor Reza Department of Computer Science George Mason University mreza@masonlive.gmu.edu Jana Kosecka Department of Computer

More information

CS395T paper review. Indoor Segmentation and Support Inference from RGBD Images. Chao Jia Sep

CS395T paper review. Indoor Segmentation and Support Inference from RGBD Images. Chao Jia Sep CS395T paper review Indoor Segmentation and Support Inference from RGBD Images Chao Jia Sep 28 2012 Introduction What do we want -- Indoor scene parsing Segmentation and labeling Support relationships

More information

Learning Superpixels with Segmentation-Aware Affinity Loss

Learning Superpixels with Segmentation-Aware Affinity Loss Learning Superpixels with Segmentation-Aware Affinity Loss Wei-Chih Tu 1 Ming-Yu Liu 2 Varun Jampani 2 Deqing Sun 2 Shao-Yi Chien 1 Ming-Hsuan Yang 2,3 Jan Kautz 2 1 National Taiwan University 2 NVIDIA

More information

Superpixel Optimization using Higher-Order Energy

Superpixel Optimization using Higher-Order Energy JOURNAL OF L A TEX CLASS FILES Superpixel Optimization using Higher-Order Energy Jianteng Peng, Jianbing Shen, Senior Member, IEEE, Angela Yao, and Xuelong Li, Fellow, IEEE Abstract A novel superpixel

More information

3D Point Cloud Segmentation Using a Fully Connected Conditional Random Field

3D Point Cloud Segmentation Using a Fully Connected Conditional Random Field 07 5th European Signal Processing Conference (EUSIPCO) 3D Point Cloud Segmentation Using a Fully Connected Conditional Random Field Xiao Lin Josep R.Casas Montse Pardás Abstract Traditional image segmentation

More information

PAPER Special Section on Machine Vision and its Applications Homogeneous Superpixels from Markov Random Walks

PAPER Special Section on Machine Vision and its Applications Homogeneous Superpixels from Markov Random Walks 1 PAPER Special Section on Machine Vision and its Applications Homogeneous Superpixels from Markov Random Walks Frank PERBET, Björn STENGER, and Atsuto MAKI a), SUMMARY This paper presents a novel algorithm

More information

3D Point Cloud Segmentation Using a Fully Connected Conditional Random Field

3D Point Cloud Segmentation Using a Fully Connected Conditional Random Field 3D Point Cloud Segmentation Using a Fully Connected Conditional Random Field Xiao Lin Image Processing Group Technical University of Catalonia (UPC) Barcelona, Spain Josep R.Casas Image Processing Group

More information

FAST 3D POINT CLOUD SEGMENTATION USING SUPERVOXELS WITH GEOMETRY AND COLOR FOR 3D SCENE UNDERSTANDING

FAST 3D POINT CLOUD SEGMENTATION USING SUPERVOXELS WITH GEOMETRY AND COLOR FOR 3D SCENE UNDERSTANDING Proceedings of the IEEE International Conference on Multimedia and Expo (ICME) 217 1-14 July 217 FAST 3D POINT CLOUD SEGMENTATION USING SUPERVOXELS WITH GEOMETRY AND COLOR FOR 3D SCENE UNDERSTANDING Francesco

More information

Semantic Instance Labeling Leveraging Hierarchical Segmentation

Semantic Instance Labeling Leveraging Hierarchical Segmentation 2015 IEEE Winter Conference on Applications of Computer Vision Semantic Instance Labeling Leveraging Hierarchical Segmentation Steven Hickson Georgia Institute of Technology shickson@gatech.edu Irfan Essa

More information

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Marc Pollefeys Joined work with Nikolay Savinov, Christian Haene, Lubor Ladicky 2 Comparison to Volumetric Fusion Higher-order ray

More information

Learning Depth-Sensitive Conditional Random Fields for Semantic Segmentation of RGB-D Images

Learning Depth-Sensitive Conditional Random Fields for Semantic Segmentation of RGB-D Images Learning Depth-Sensitive Conditional Random Fields for Semantic Segmentation of RGB-D Images Andreas C. Müller and Sven Behnke Abstract We present a structured learning approach to semantic annotation

More information

Real-time Stereo and Flow-based Video Segmentation with Superpixels

Real-time Stereo and Flow-based Video Segmentation with Superpixels Real-time Stereo and Flow-based Video Segmentation with Superpixels Michael Van den Bergh 1 1 ET HZurich Zurich, Switzerland vamichae@vision.ee.ethz.ch Luc Van Gool 1,2 2 KULeuven Leuven, Belgium vangool@esat.kuleuven.be

More information

Robotics Programming Laboratory

Robotics Programming Laboratory Chair of Software Engineering Robotics Programming Laboratory Bertrand Meyer Jiwon Shin Lecture 8: Robot Perception Perception http://pascallin.ecs.soton.ac.uk/challenges/voc/databases.html#caltech car

More information

SymmSLIC: Symmetry Aware Superpixel Segmentation

SymmSLIC: Symmetry Aware Superpixel Segmentation SymmSLIC: Symmetry Aware Superpixel Segmentation Rajendra Nagar, Shanmuganathan Raman Indian Institute of Technology Gandhinagar, Gujarat, India, 382355 {rajendra.nagar,shanmuga}@iitgn.ac.in Abstract Over-segmentation

More information

LEARNING BOUNDARIES WITH COLOR AND DEPTH. Zhaoyin Jia, Andrew Gallagher, Tsuhan Chen

LEARNING BOUNDARIES WITH COLOR AND DEPTH. Zhaoyin Jia, Andrew Gallagher, Tsuhan Chen LEARNING BOUNDARIES WITH COLOR AND DEPTH Zhaoyin Jia, Andrew Gallagher, Tsuhan Chen School of Electrical and Computer Engineering, Cornell University ABSTRACT To enable high-level understanding of a scene,

More information

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009 Learning and Inferring Depth from Monocular Images Jiyan Pan April 1, 2009 Traditional ways of inferring depth Binocular disparity Structure from motion Defocus Given a single monocular image, how to infer

More information

Robot localization method based on visual features and their geometric relationship

Robot localization method based on visual features and their geometric relationship , pp.46-50 http://dx.doi.org/10.14257/astl.2015.85.11 Robot localization method based on visual features and their geometric relationship Sangyun Lee 1, Changkyung Eem 2, and Hyunki Hong 3 1 Department

More information

Medial Features for Superpixel Segmentation

Medial Features for Superpixel Segmentation Medial Features for Superpixel Segmentation David Engel Luciano Spinello Rudolph Triebel Roland Siegwart Heinrich H. Bülthoff Cristóbal Curio Max Planck Institute for Biological Cybernetics Spemannstr.

More information

Structure-sensitive Superpixels via Geodesic Distance

Structure-sensitive Superpixels via Geodesic Distance Structure-sensitive Superpixels via Geodesic Distance Gang Zeng Peng Wang Jingdong Wang Rui Gan Hongbin Zha Key Laboratory on Machine Perception, Peking University Microsoft Research Asia {gang.zeng,jerrywang,raygan}@pku.edu.cn

More information

A Video Representation Using Temporal Superpixels

A Video Representation Using Temporal Superpixels A Video Representation Using Temporal Superpixels Jason Chang CSAIL, MIT jchang7@csail.mit.edu Donglai Wei CSAIL, MIT donglai@csail.mit.edu John W. Fisher III CSAIL, MIT fisher@csail.mit.edu Abstract We

More information

Sparse Point Cloud Densification by Using Redundant Semantic Information

Sparse Point Cloud Densification by Using Redundant Semantic Information Sparse Point Cloud Densification by Using Redundant Semantic Information Michael Hödlmoser CVL, Vienna University of Technology ken@caa.tuwien.ac.at Branislav Micusik AIT Austrian Institute of Technology

More information

Fusion of colour and depth partitions for depth map coding

Fusion of colour and depth partitions for depth map coding Fusion of colour and depth partitions for depth map coding M. Maceira, J.R. Morros, J. Ruiz-Hidalgo Department of Signal Theory and Communications Universitat Polite cnica de Catalunya (UPC) Barcelona,

More information

Segmentation and Grouping

Segmentation and Grouping CS 1699: Intro to Computer Vision Segmentation and Grouping Prof. Adriana Kovashka University of Pittsburgh September 24, 2015 Goals: Grouping in vision Gather features that belong together Obtain an intermediate

More information

Title: Adaptive Region Merging Segmentation of Airborne Imagery for Roof Condition Assessment. Abstract:

Title: Adaptive Region Merging Segmentation of Airborne Imagery for Roof Condition Assessment. Abstract: Title: Adaptive Region Merging Segmentation of Airborne Imagery for Roof Condition Assessment Abstract: In order to perform residential roof condition assessment with very-high-resolution airborne imagery,

More information

Semantic Parsing for Priming Object Detection in RGB-D Scenes

Semantic Parsing for Priming Object Detection in RGB-D Scenes Semantic Parsing for Priming Object Detection in RGB-D Scenes César Cadena and Jana Košecka Abstract The advancements in robot autonomy and capabilities for carrying out more complex tasks in unstructured

More information

Video Segmentation. Jason J. Corso! Chenliang Xu! Irfan Essa! Matthias Grundmann! Google Research! Georgia Tech! University of Michigan!

Video Segmentation. Jason J. Corso! Chenliang Xu! Irfan Essa! Matthias Grundmann! Google Research! Georgia Tech! University of Michigan! 1! Video Segmentation CVPR 2014 Tutorial! http://www.supervoxel.com/cvpr14_videoseg/! Jason J. Corso! Chenliang Xu! University of Michigan! jjcorso@eecs.umich.edu! Matthias Grundmann! Google Research!

More information

Joint Color and Depth Segmentation Based on Region Merging and Surface Fitting

Joint Color and Depth Segmentation Based on Region Merging and Surface Fitting Joint Color and Depth Segmentation Based on Region Merging and Surface Fitting Giampaolo Pagnutti and Pietro Zanuttigh Department of Information Engineering, University of Padova, Via Gradenigo 6B, Padova,

More information

What Happened to the Representations of Perception? Cornelia Fermüller Computer Vision Laboratory University of Maryland

What Happened to the Representations of Perception? Cornelia Fermüller Computer Vision Laboratory University of Maryland What Happened to the Representations of Perception? Cornelia Fermüller Computer Vision Laboratory University of Maryland Why we study manipulation actions? 2. Learning from humans to teach robots Y Yang,

More information

GLASS OBJECT SEGMENTATION BY LABEL TRANSFER ON JOINT DEPTH AND APPEARANCE MANIFOLDS. Tao Wang, Xuming He, Nick Barnes

GLASS OBJECT SEGMENTATION BY LABEL TRANSFER ON JOINT DEPTH AND APPEARANCE MANIFOLDS. Tao Wang, Xuming He, Nick Barnes GLASS OBJECT SEGMENTATION BY LABEL TRANSFER ON JOINT DEPTH AND APPEARANCE MANIFOLDS Tao Wang, Xuming He, Nick Barnes NICTA & Australian National University, Canberra, ACT, Australia ABSTRACT feature manifold

More information

A Survey on Segmentation of Spine MR Images Using Superpixels

A Survey on Segmentation of Spine MR Images Using Superpixels A Survey on Segmentation of Spine MR Images Using Superpixels 1 Reena S. Sahane, 2 Prof. J. V. Shinde 1 ME Student, 2 Asst. Professor, 1,2 Dept. of Computer Engg. Late G. N. Sapkal COE, Nashik, Maharashtra,

More information

Segmentation and Grouping

Segmentation and Grouping 02/23/10 Segmentation and Grouping Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Last week Clustering EM Today s class More on EM Segmentation and grouping Gestalt cues By boundaries

More information

Object Partitioning using Local Convexity

Object Partitioning using Local Convexity Object Partitioning using Local Convexity Simon Christoph Stein, Markus Schoeler, Jeremie Papon and Florentin Wörgötter Bernstein Center for Computational Neuroscience (BCCN) III Physikalisches Institut

More information

Superframes, A Temporal Video Segmentation

Superframes, A Temporal Video Segmentation Superframes, A Temporal Video Segmentation Hajar Sadeghi Sokeh, Vasileios Argyriou, Dorothy Monekosso, Paolo Remagnino The Robot Vision Team, Faculty of Science, Engineering, and Computing Kingston University,

More information

Separating Objects and Clutter in Indoor Scenes

Separating Objects and Clutter in Indoor Scenes Separating Objects and Clutter in Indoor Scenes Salman H. Khan School of Computer Science & Software Engineering, The University of Western Australia Co-authors: Xuming He, Mohammed Bennamoun, Ferdous

More information

Segmentation and Grouping April 19 th, 2018

Segmentation and Grouping April 19 th, 2018 Segmentation and Grouping April 19 th, 2018 Yong Jae Lee UC Davis Features and filters Transforming and describing images; textures, edges 2 Grouping and fitting [fig from Shi et al] Clustering, segmentation,

More information

SymmSLIC: Symmetry Aware Superpixel Segmentation and its Applications

SymmSLIC: Symmetry Aware Superpixel Segmentation and its Applications 1 SymmSLIC: Symmetry Aware Superpixel Segmentation and its Applications Rajendra Nagar and Shanmuganathan Raman arxiv:185.93v [cs.cv] 1 Aug 18 Abstract Over-segmentation of an image into superpixels has

More information

Joint Semantic and Geometric Segmentation of Videos with a Stage Model

Joint Semantic and Geometric Segmentation of Videos with a Stage Model Joint Semantic and Geometric Segmentation of Videos with a Stage Model Buyu Liu ANU and NICTA Canberra, ACT, Australia buyu.liu@anu.edu.au Xuming He NICTA and ANU Canberra, ACT, Australia xuming.he@nicta.com.au

More information

Lecture 16 Segmentation and Scene understanding

Lecture 16 Segmentation and Scene understanding Lecture 16 Segmentation and Scene understanding Introduction! Mean-shift! Graph-based segmentation! Top-down segmentation! Silvio Savarese Lecture 15 -! 3-Mar-14 Segmentation Silvio Savarese Lecture 15

More information

Robust Segmentation of Cluttered Scenes Using RGB-Z Images

Robust Segmentation of Cluttered Scenes Using RGB-Z Images Robust Segmentation of Cluttered Scenes Using RGB-Z Images Navneet Kapur Stanford University Stanford, CA - 94305 nkapur@stanford.edu Subodh Iyengar Stanford University Stanford, CA - 94305 subodh@stanford.edu

More information

Closing the Loop for Edge Detection and Object Proposals

Closing the Loop for Edge Detection and Object Proposals Closing the Loop for Edge Detection and Object Proposals Yao Lu and Linda Shapiro University of Washington {luyao, shapiro}@cs.washington.edu Abstract Edge grouping and object perception are unified procedures

More information

A Feature Clustering Approach Based on Histogram of Oriented Optical Flow and Superpixels

A Feature Clustering Approach Based on Histogram of Oriented Optical Flow and Superpixels A Feature Clustering Approach Based on Histogram of Oriented Optical Flow and Superpixels A.M.R.R. Bandara, L. Ranathunga Department of Information Technology Faculty of Information Technology, University

More information

Semantic Classification of Boundaries from an RGBD Image

Semantic Classification of Boundaries from an RGBD Image MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Semantic Classification of Boundaries from an RGBD Image Soni, N.; Namboodiri, A.; Ramalingam, S.; Jawahar, C.V. TR2015-102 September 2015

More information

Segmentation & Clustering

Segmentation & Clustering EECS 442 Computer vision Segmentation & Clustering Segmentation in human vision K-mean clustering Mean-shift Graph-cut Reading: Chapters 14 [FP] Some slides of this lectures are courtesy of prof F. Li,

More information

Direction Matters: Depth Estimation with a Surface Normal Classifier

Direction Matters: Depth Estimation with a Surface Normal Classifier Direction Matters: Depth Estimation with a Surface Normal Classifier Christian Häne, L ubor Ladický, Marc Pollefeys Department of Computer Science ETH Zürich, Switzerland {christian.haene, lubor.ladicky,

More information

Superpixel-based Color Transfer

Superpixel-based Color Transfer Superpixel-based Color Transfer Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis To cite this version: Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis. Superpixel-based Color Transfer. IEEE International Conference

More information

Saliency Detection in Aerial Imagery

Saliency Detection in Aerial Imagery Saliency Detection in Aerial Imagery using Multi-scale SLIC Segmentation Samir Sahli 1, Daniel A. Lavigne 2 and Yunlong Sheng 1 1- COPL, Image Science group, Laval University, Quebec, Canada 2- Defence

More information

ECSE 626 Course Project : A Study in the Efficient Graph-Based Image Segmentation

ECSE 626 Course Project : A Study in the Efficient Graph-Based Image Segmentation ECSE 626 Course Project : A Study in the Efficient Graph-Based Image Segmentation Chu Wang Center for Intelligent Machines chu.wang@mail.mcgill.ca Abstract In this course project, I will investigate into

More information

CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu. Lectures 21 & 22 Segmentation and clustering

CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu. Lectures 21 & 22 Segmentation and clustering CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu Lectures 21 & 22 Segmentation and clustering 1 Schedule Last class We started on segmentation Today Segmentation continued Readings

More information

Martian lava field, NASA, Wikipedia

Martian lava field, NASA, Wikipedia Martian lava field, NASA, Wikipedia Old Man of the Mountain, Franconia, New Hampshire Pareidolia http://smrt.ccel.ca/203/2/6/pareidolia/ Reddit for more : ) https://www.reddit.com/r/pareidolia/top/ Pareidolia

More information

Homogeneous Superpixels from Random Walks

Homogeneous Superpixels from Random Walks 3-2 MVA2011 IAPR Conference on Machine Vision Applications, June 13-15, 2011, Nara, JAPAN Homogeneous Superpixels from Random Walks Frank Perbet and Atsuto Maki Toshiba Research Europe, Cambridge Research

More information

Improving an Object Detector and Extracting Regions using Superpixels

Improving an Object Detector and Extracting Regions using Superpixels Improving an Object Detector and Extracting Regions using Superpixels Guang Shu, Afshin Dehghan, Mubarak Shah Computer Vision Lab, University of Central Florida {gshu, adehghan, shah}@eecs.ucf.edu Abstract

More information

Fast Border Ownership Assignment with Bio-Inspired Features

Fast Border Ownership Assignment with Bio-Inspired Features Fast Border Ownership Assignment with Bio-Inspired Features Ching L. Teo, Cornelia Fermüller, Yiannis Aloimonos Computer Vision Lab and UMIACS University of Maryland College Park What is Border Ownership?

More information

Human Upper Body Pose Estimation in Static Images

Human Upper Body Pose Estimation in Static Images 1. Research Team Human Upper Body Pose Estimation in Static Images Project Leader: Graduate Students: Prof. Isaac Cohen, Computer Science Mun Wai Lee 2. Statement of Project Goals This goal of this project

More information

Urban Scene Segmentation, Recognition and Remodeling. Part III. Jinglu Wang 11/24/2016 ACCV 2016 TUTORIAL

Urban Scene Segmentation, Recognition and Remodeling. Part III. Jinglu Wang 11/24/2016 ACCV 2016 TUTORIAL Part III Jinglu Wang Urban Scene Segmentation, Recognition and Remodeling 102 Outline Introduction Related work Approaches Conclusion and future work o o - - ) 11/7/16 103 Introduction Motivation Motivation

More information

Estimating the 3D Layout of Indoor Scenes and its Clutter from Depth Sensors

Estimating the 3D Layout of Indoor Scenes and its Clutter from Depth Sensors Estimating the 3D Layout of Indoor Scenes and its Clutter from Depth Sensors Jian Zhang Tsingua University jizhang@ethz.ch Chen Kan Tsingua University chenkan0007@gmail.com Alexander G. Schwing ETH Zurich

More information

Object Tracking using Superpixel Confidence Map in Centroid Shifting Method

Object Tracking using Superpixel Confidence Map in Centroid Shifting Method Indian Journal of Science and Technology, Vol 9(35), DOI: 10.17485/ijst/2016/v9i35/101783, September 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Object Tracking using Superpixel Confidence

More information