Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction

Size: px
Start display at page:

Download "Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction"

Transcription

1 Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Marc Pollefeys Joined work with Nikolay Savinov, Christian Haene, Lubor Ladicky

2 2 Comparison to Volumetric Fusion

3 Higher-order ray potentials to model visibility Volumetric formulation (Savinov et al, CVPR15) Ray potentials Pairwise regularizer Cost based on the first occupied voxel along the ray freespace depth label

4 Higher-order ray potentials to model visibility Discrete formulation using QPBO relaxation (Savinov et al, CVPR15) x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 0 x 1 x 2 x 3 x 4 x 5 x 6 Our goal is to find : such that is : 1) A pairwise function 2) Number of edges grows linearly with the length for a ray 3) Symmetric to inherit QPBO properties

5 Two-label problem (Savinov et al, CVPR15) To find we do these steps: 1) Polynomial representation of the ray potential 2) Transformation into submodular function over x and x 3) Pairwise construction using auxiliary variables z 4) Merging variables [Ramalingam12] for linear complexity 5) Symmetrization of the graph

6 Symmetric graph construction for higher-order ray potential (Savinov et al, CVPR15)

7 Multi-label problem (Savinov et al, CVPR15) Standard alpha-expansion Multi-label ray potential projects into 2-label ray potential expansion expansion expansion Variables not labelled by QPBO labelled using ICM

8 Implementation details (Savinov et al, CVPR15) Semantic cost Depth cost Semantic classifier [Ladický ICCV09] Multi-view stereo depth matches using zero-mean NCC For the top n matches : 0-1 Use [GoldbergAlgo11] for graphcut

9 Results inference generative 9 (Savinov et al, CVPR15)

10 Results Input Depth Semantics 3D model (Savinov et al, CVPR15)

11 Results Input Depth Semantics 3D model (Savinov et al, CVPR15)

12 Results (Savinov et al, CVPR15)

13 13 Joint depth-semantic cost?

14

15 Single-View Depth using a Joint Depth-Semantic Classifier Marc Pollefeys Joint work with Ľubor Ladický and Jianbo Shi (Upenn)

16 Single-View Depth Estimation

17 Single-View Depth Estimation Standard approaches : 1. Model fitting [Barinova et al. ECCV08]

18 Single-View Depth Estimation Standard approaches : 1. Model fitting [Barinova et al. ECCV08] Requires strong prior knowledge Ignores small objects

19 Single-View Depth Estimation Standard approaches : 1. Model fitting [Barinova et al. ECCV08] 2. 3D-Detection based [Hoiem et al. CVPR06]

20 Single-View Depth Estimation Standard approaches : 1. Model fitting [Barinova et al. ECCV08] 2. 3D-Detection based [Hoiem et al. CVPR06] Works only for foreground objects (things)

21 Single-View Depth Estimation Standard approaches : 1. Model fitting [Barinova et al. ECCV08] 2. 3D-Detection based [Hoiem et al. CVPR06] 3. Depth from semantic labels [Liu et al. CVPR10]

22 Single-View Depth Estimation Standard approaches : 1. Model fitting [Barinova et al. ECCV08] 2. 3D-Detection based [Hoiem et al. CVPR06] 3. Depth from semantic labels [Liu et al. CVPR10] Requires strong priors for semantic classes

23 Single-View Depth Estimation Standard approaches : 1. Model fitting [Barinova et al. ECCV08] 2. 3D-Detection based [Hoiem et al. CVPR06] 3. Depth from semantic labels [Liu et al. CVPR10] 4. Data driven [Saxena et al. NIPS05]

24 Single-View Depth Estimation Standard approaches : 1. Model fitting [Barinova et al. ECCV08] 2. 3D-Detection based [Hoiem et al. CVPR06] 3. Depth from semantic labels [Liu et al. CVPR10] 4. Data driven [Saxena et al. NIPS05] Requires lots of data (depth does not generalizes across classes) A problem with balancing data

25 Data-driven Depth Estimation Impossible?

26 Data-driven Depth Estimation No common structure of the scene Ground plane not always visible Large variation of viewpoints and of objects in the scene Both things and stuff in the scene

27 Data-driven Depth Estimation Desired properties :

28 Data-driven Depth Estimation Desired properties : 1. Pixel-wise classifier Super-pixels not necessarily planar

29 Data-driven Depth Estimation Desired properties : 1. Pixel-wise classifier 2. Translation invariant Classifier response for x and at a depth d window w h around the point x I

30 Data-driven Depth Estimation Desired properties : 1. Pixel-wise classifier 2. Translation invariant 3. Depth transforms with inverse scaling

31 Data-driven Depth Estimation Desired properties : 1. Pixel-wise classifier 2. Translation invariant 3. Depth transforms with inverse scaling d C Sufficient to train a binary classifier predicting a single

32 Data-driven Depth Estimation Desired properties : 1. Pixel-wise classifier 2. Translation invariant 3. Depth transforms with inverse scaling d C Sufficient to train a binary classifier predicting a single For other depths d :

33 Data-driven Depth Estimation Desired properties : 1. Pixel-wise classifier 2. Translation invariant 3. Depth transforms with inverse scaling

34 Data-driven Depth Estimation Desired properties : 1. Pixel-wise classifier 2. Translation invariant 3. Depth transforms with inverse scaling Generalized to multiple semantic classes semantic label

35 1. Image pyramid is built Training the classifier

36 Training the classifier 1. Image pyramid is built 2. Training data randomly sampled

37 Training the classifier 1. Image pyramid is built 2. Training data randomly sampled 3. Samples of each class at d C used as positives

38 Training the classifier 1. Image pyramid is built 2. Training data randomly sampled 3. Samples of each class at d C used as positives 4. Samples of other classes or at d d C used as negatives

39 Training the classifier 1. Image pyramid is built 2. Training data randomly sampled 3. Samples of each class at d C used as positives 4. Samples of other classes or at d d C used as negatives 5. Multi-class classifier trained

40 Classifying the patch Dense Features SIFT, LBP, Self Similarity, Texton

41 Classifying the patch Dense Features SIFT, LBP, Self Similarity, Texton Representation rectangles Soft BOW representations in the set of random

42 Classifying the patch Dense Features SIFT, LBP, Self Similarity, Texton Representation rectangles Classifier Soft BOW representations in the set of random AdaBoost

43 Experiments KITTI dataset 30 training & 30 test images (1382 x 512) 12 semantic labels, depth 2-50m (except sky) ratio of neighbouring depths d i+1 / d i = 1.25 NYU2 dataset 725 training & 724 test images (640 x 480) 40 semantic labels, depth in the range 1-10 m ratio of neighbouring depths d i+1 / d i = 1.25

44 KITTI results

45 NYU2 results

46 NYU2 results

47 Quantitative results (semantic) Quantitative results on the KITTI dataset (recall) Quantitative results on the NYU2 dataset (frequency-weighted I / U)

48 Quantitative results (depth) The ratio of pixels below the relative error

49 Quantitative results (depth) The distribution of the relative errors of an estimated depth in the log 1.25 space

50 Single-View Depth: Conclusions Things and stuff have intrinsic visual scale Depth can be recovered from a single image Classification improves with scale normalized classifier Data does not need to be balanced over scale

51 Discriminatively Trained Dense Surface Normal Estimation Marc Pollefeys Joint work with Ľubor Ladický and Bernhard Zeisl

52 Surface Normal Estimation Not explored much in the literature so how to approach it?

53 Surface Normal Estimation Not explored much in the literature so how to approach it? Pixels or Super-pixels?

54 Pixel-based Classifiers Input image Feature representation Context-based (context pixels or rectangles) feature representations [Shotton06, Shotton08]

55 Pixel-based Classifiers Input image Feature representation Context-based (context pixels or rectangles) feature representations [Shotton06, Shotton08] Classifier typically noisy and does not follow object boundaries

56 Segment-based Classifiers Input image Feature representation Based on feature statistics in segments

57 Segment-based Classifiers Input image Feature representation Based on feature statistics in segments Segments expected to be label-consistent

58 Segment-based Classifiers Input image Feature representation Based on feature statistics in segments Segments expected to be label-consistent One particular segmentation has to be chosen

59 Joint Regularization Input image Independent classifiers Existing optimization methods (Ladicky09) designed for discrete labels

60 Joint Regularization Input image Independent classifiers Existing optimization methods (Ladicky09) designed for discrete labels Not obvious how to generalize for continuous problems

61 Joint Regularization Input image Independent classifiers Existing optimization methods (Ladicky09) designed for discrete labels Not obvious how to generalize for continuous problems Maybe we can directly learn joint classifier

62 Joint Learning Input image Segment representation How to convert segment representation into pixel representation?

63 Joint Learning Input image Segment representation How to convert segment representation into pixel representation? Representation of a pixel the same as of the segment it belongs to

64 Joint Learning Input image Segment representation How to convert segment representation into pixel representation? Representation of a pixel the same as of the segment it belongs to Equivalent to weighted segment based approach

65 Joint Learning How to convert segment representation into pixel representation? Representation of a pixel the same as of the segment it belongs to Equivalent to weighted segment based approach Concatenation to combine pixel and multiple segment representations

66 Joint Learning To simplify regression problem Normals clustered using K-means clustering Each represented as weighted sums of cluster centres using local coding

67 Joint Learning To simplify regression problem Normals clustered using K-means clustering Each represented as weighted sums of cluster centres using local coding Learning formulated as a regression into local coding coordinates

68 Pipeline of our Method

69 AdaBoost Regression Response for each cluster centre l

70 AdaBoost Regression Response for each cluster centre l Learning optimizes weighted expected loss

71 AdaBoost Regression Response for each cluster centre l Learning optimizes weighted expected loss Empirical risk minimization in each iteration

72 AdaBoost Regression Introducing two sets of weights the problem transforms into recursive problem:

73 AdaBoost Regression Introducing two sets of weights the problem transforms into recursive problem: Closed-form solution for parameters of the weak classifier (see the paper)

74 Test-time Evaluation The most probable triangle found by maximizing:

75 Test-time Evaluation The most probable triangle found by maximizing: The local coding coefficients found as an expected value of probabilistic interpretation:

76 Test-time Evaluation The most probable triangle found by maximizing: The local coding coefficients found as an expected value of probabilistic interpretation: Normal recovered by projecting weighted sum to the unit sphere

77 Results Input image err = Input image err = Input image err = Input image err = Input image err = Input image err = Input image err = Input image err = Input image err =

78 Results Input image err = Input image err = Input image err = Input image err = Input image err = Input image err = Input image err = Input image err = Input image err =

79 Normal segmentation: conclusions Normal estimation might not be as hard as it seems Proposed joint pixel & segment learning useful for other recognition tasks Results improvable by incorporating regularization (potentially joint with depth)

80 Conclusion Volumetric multi-view approach which performs joint reconstruction, recognition and segmentation Strong coupling between geometry and appearance via classdependent anisotropic smoothness term Clean energy formulation (with tight convex relaxation) Significant qualitative improvement with respect to state of the art (regularized solution make more sense) Semantic reconstruction is more useful

81 Challenges and future research Scale to many classes leverage sparsity of semantic interactions, class hierarchies Scale to large volumes adaptive space discretization and basis representation Dynamic scenes Spatio-temporal interactions, extensions to 4D volumes and Wulff shapes Exploration and robotics Enable real-time navigation and exploration Predict information gain of perception actions

82 Thank you for your attention! Questions?

Geometric and Semantic 3D Reconstruction: Part 4A: Volumetric Semantic 3D Reconstruction. CVPR 2017 Tutorial Christian Häne UC Berkeley

Geometric and Semantic 3D Reconstruction: Part 4A: Volumetric Semantic 3D Reconstruction. CVPR 2017 Tutorial Christian Häne UC Berkeley Geometric and Semantic 3D Reconstruction: Part 4A: Volumetric Semantic 3D Reconstruction CVPR 2017 Tutorial Christian Häne UC Berkeley Dense Multi-View Reconstruction Goal: 3D Model from Images (Depth

More information

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009 Learning and Inferring Depth from Monocular Images Jiyan Pan April 1, 2009 Traditional ways of inferring depth Binocular disparity Structure from motion Defocus Given a single monocular image, how to infer

More information

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009 Analysis: TextonBoost and Semantic Texton Forests Daniel Munoz 16-721 Februrary 9, 2009 Papers [shotton-eccv-06] J. Shotton, J. Winn, C. Rother, A. Criminisi, TextonBoost: Joint Appearance, Shape and Context

More information

CS381V Experiment Presentation. Chun-Chen Kuo

CS381V Experiment Presentation. Chun-Chen Kuo CS381V Experiment Presentation Chun-Chen Kuo The Paper Indoor Segmentation and Support Inference from RGBD Images. N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. ECCV 2012. 50 100 150 200 250 300 350

More information

Segmentation. Bottom up Segmentation Semantic Segmentation

Segmentation. Bottom up Segmentation Semantic Segmentation Segmentation Bottom up Segmentation Semantic Segmentation Semantic Labeling of Street Scenes Ground Truth Labels 11 classes, almost all occur simultaneously, large changes in viewpoint, scale sky, road,

More information

Data-driven Depth Inference from a Single Still Image

Data-driven Depth Inference from a Single Still Image Data-driven Depth Inference from a Single Still Image Kyunghee Kim Computer Science Department Stanford University kyunghee.kim@stanford.edu Abstract Given an indoor image, how to recover its depth information

More information

A Patch Prior for Dense 3D Reconstruction in Man-Made Environments

A Patch Prior for Dense 3D Reconstruction in Man-Made Environments A Patch Prior for Dense 3D Reconstruction in Man-Made Environments Christian Häne 1, Christopher Zach 2, Bernhard Zeisl 1, Marc Pollefeys 1 1 ETH Zürich 2 MSR Cambridge October 14, 2012 A Patch Prior for

More information

Estimating Human Pose in Images. Navraj Singh December 11, 2009

Estimating Human Pose in Images. Navraj Singh December 11, 2009 Estimating Human Pose in Images Navraj Singh December 11, 2009 Introduction This project attempts to improve the performance of an existing method of estimating the pose of humans in still images. Tasks

More information

Semantic 3D Reconstruction of Heads Supplementary Material

Semantic 3D Reconstruction of Heads Supplementary Material Semantic 3D Reconstruction of Heads Supplementary Material Fabio Maninchedda1, Christian Ha ne2,?, Bastien Jacquet3,?, Amae l Delaunoy?, Marc Pollefeys1,4 1 ETH Zurich 2 UC Berkeley 3 Kitware SAS 4 Microsoft

More information

Learning Semantic Environment Perception for Cognitive Robots

Learning Semantic Environment Perception for Cognitive Robots Learning Semantic Environment Perception for Cognitive Robots Sven Behnke University of Bonn, Germany Computer Science Institute VI Autonomous Intelligent Systems Some of Our Cognitive Robots Equipped

More information

Multi-View 3D Object Detection Network for Autonomous Driving

Multi-View 3D Object Detection Network for Autonomous Driving Multi-View 3D Object Detection Network for Autonomous Driving Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, Tian Xia CVPR 2017 (Spotlight) Presented By: Jason Ku Overview Motivation Dataset Network Architecture

More information

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Nikolay Savinov 1, L ubor Ladický 1, Christian Häne and Marc Pollefeys ETH Zürich, Switzerland nikolay.savinov,lubor.ladicky,christian.haene,marc.pollefeys}@inf.ethz.ch

More information

Automatic Photo Popup

Automatic Photo Popup Automatic Photo Popup Derek Hoiem Alexei A. Efros Martial Hebert Carnegie Mellon University What Is Automatic Photo Popup Introduction Creating 3D models from images is a complex process Time-consuming

More information

Layered Scene Decomposition via the Occlusion-CRF Supplementary material

Layered Scene Decomposition via the Occlusion-CRF Supplementary material Layered Scene Decomposition via the Occlusion-CRF Supplementary material Chen Liu 1 Pushmeet Kohli 2 Yasutaka Furukawa 1 1 Washington University in St. Louis 2 Microsoft Research Redmond 1. Additional

More information

Multi-view stereo. Many slides adapted from S. Seitz

Multi-view stereo. Many slides adapted from S. Seitz Multi-view stereo Many slides adapted from S. Seitz Beyond two-view stereo The third eye can be used for verification Multiple-baseline stereo Pick a reference image, and slide the corresponding window

More information

Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus

Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus Presented by: Rex Ying and Charles Qi Input: A Single RGB Image Estimate

More information

Multi-view Stereo. Ivo Boyadzhiev CS7670: September 13, 2011

Multi-view Stereo. Ivo Boyadzhiev CS7670: September 13, 2011 Multi-view Stereo Ivo Boyadzhiev CS7670: September 13, 2011 What is stereo vision? Generic problem formulation: given several images of the same object or scene, compute a representation of its 3D shape

More information

Structured Models in. Dan Huttenlocher. June 2010

Structured Models in. Dan Huttenlocher. June 2010 Structured Models in Computer Vision i Dan Huttenlocher June 2010 Structured Models Problems where output variables are mutually dependent or constrained E.g., spatial or temporal relations Such dependencies

More information

Robotics Programming Laboratory

Robotics Programming Laboratory Chair of Software Engineering Robotics Programming Laboratory Bertrand Meyer Jiwon Shin Lecture 8: Robot Perception Perception http://pascallin.ecs.soton.ac.uk/challenges/voc/databases.html#caltech car

More information

Decomposing a Scene into Geometric and Semantically Consistent Regions

Decomposing a Scene into Geometric and Semantically Consistent Regions Decomposing a Scene into Geometric and Semantically Consistent Regions Stephen Gould sgould@stanford.edu Richard Fulton rafulton@cs.stanford.edu Daphne Koller koller@cs.stanford.edu IEEE International

More information

String distance for automatic image classification

String distance for automatic image classification String distance for automatic image classification Nguyen Hong Thinh*, Le Vu Ha*, Barat Cecile** and Ducottet Christophe** *University of Engineering and Technology, Vietnam National University of HaNoi,

More information

CS395T paper review. Indoor Segmentation and Support Inference from RGBD Images. Chao Jia Sep

CS395T paper review. Indoor Segmentation and Support Inference from RGBD Images. Chao Jia Sep CS395T paper review Indoor Segmentation and Support Inference from RGBD Images Chao Jia Sep 28 2012 Introduction What do we want -- Indoor scene parsing Segmentation and labeling Support relationships

More information

Markov Networks in Computer Vision

Markov Networks in Computer Vision Markov Networks in Computer Vision Sargur Srihari srihari@cedar.buffalo.edu 1 Markov Networks for Computer Vision Some applications: 1. Image segmentation 2. Removal of blur/noise 3. Stereo reconstruction

More information

Markov Networks in Computer Vision. Sargur Srihari

Markov Networks in Computer Vision. Sargur Srihari Markov Networks in Computer Vision Sargur srihari@cedar.buffalo.edu 1 Markov Networks for Computer Vision Important application area for MNs 1. Image segmentation 2. Removal of blur/noise 3. Stereo reconstruction

More information

Direction Matters: Depth Estimation with a Surface Normal Classifier

Direction Matters: Depth Estimation with a Surface Normal Classifier Direction Matters: Depth Estimation with a Surface Normal Classifier Christian Häne, L ubor Ladický, Marc Pollefeys Department of Computer Science ETH Zürich, Switzerland {christian.haene, lubor.ladicky,

More information

3D Photography: Stereo Matching

3D Photography: Stereo Matching 3D Photography: Stereo Matching Kevin Köser, Marc Pollefeys Spring 2012 http://cvg.ethz.ch/teaching/2012spring/3dphoto/ Stereo & Multi-View Stereo Tsukuba dataset http://cat.middlebury.edu/stereo/ Stereo

More information

08 An Introduction to Dense Continuous Robotic Mapping

08 An Introduction to Dense Continuous Robotic Mapping NAVARCH/EECS 568, ROB 530 - Winter 2018 08 An Introduction to Dense Continuous Robotic Mapping Maani Ghaffari March 14, 2018 Previously: Occupancy Grid Maps Pose SLAM graph and its associated dense occupancy

More information

Dense 3D Reconstruction. Christiano Gava

Dense 3D Reconstruction. Christiano Gava Dense 3D Reconstruction Christiano Gava christiano.gava@dfki.de Outline Previous lecture: structure and motion II Structure and motion loop Triangulation Today: dense 3D reconstruction The matching problem

More information

Joint Inference in Image Databases via Dense Correspondence. Michael Rubinstein MIT CSAIL (while interning at Microsoft Research)

Joint Inference in Image Databases via Dense Correspondence. Michael Rubinstein MIT CSAIL (while interning at Microsoft Research) Joint Inference in Image Databases via Dense Correspondence Michael Rubinstein MIT CSAIL (while interning at Microsoft Research) My work Throughout the year (and my PhD thesis): Temporal Video Analysis

More information

Pulling Things out of Perspective

Pulling Things out of Perspective Pulling Things out of Perspective L ubor Ladický ETH Zürich, Switzerland lubor.ladicky@inf.ethz.ch Jianbo Shi University of Pennsylvania, USA jshi@seas.upenn.edu Marc Pollefeys ETH Zürich, Switzerland

More information

IDE-3D: Predicting Indoor Depth Utilizing Geometric and Monocular Cues

IDE-3D: Predicting Indoor Depth Utilizing Geometric and Monocular Cues 2016 International Conference on Computational Science and Computational Intelligence IDE-3D: Predicting Indoor Depth Utilizing Geometric and Monocular Cues Taylor Ripke Department of Computer Science

More information

Can Similar Scenes help Surface Layout Estimation?

Can Similar Scenes help Surface Layout Estimation? Can Similar Scenes help Surface Layout Estimation? Santosh K. Divvala, Alexei A. Efros, Martial Hebert Robotics Institute, Carnegie Mellon University. {santosh,efros,hebert}@cs.cmu.edu Abstract We describe

More information

Markov Random Fields and Segmentation with Graph Cuts

Markov Random Fields and Segmentation with Graph Cuts Markov Random Fields and Segmentation with Graph Cuts Computer Vision Jia-Bin Huang, Virginia Tech Many slides from D. Hoiem Administrative stuffs Final project Proposal due Oct 27 (Thursday) HW 4 is out

More information

CRF Based Point Cloud Segmentation Jonathan Nation

CRF Based Point Cloud Segmentation Jonathan Nation CRF Based Point Cloud Segmentation Jonathan Nation jsnation@stanford.edu 1. INTRODUCTION The goal of the project is to use the recently proposed fully connected conditional random field (CRF) model to

More information

Contexts and 3D Scenes

Contexts and 3D Scenes Contexts and 3D Scenes Computer Vision Jia-Bin Huang, Virginia Tech Many slides from D. Hoiem Administrative stuffs Final project presentation Nov 30 th 3:30 PM 4:45 PM Grading Three senior graders (30%)

More information

Combining Appearance and Structure from Motion Features for Road Scene Understanding

Combining Appearance and Structure from Motion Features for Road Scene Understanding STURGESS et al.: COMBINING APPEARANCE AND SFM FEATURES 1 Combining Appearance and Structure from Motion Features for Road Scene Understanding Paul Sturgess paul.sturgess@brookes.ac.uk Karteek Alahari karteek.alahari@brookes.ac.uk

More information

Discovering Visual Hierarchy through Unsupervised Learning Haider Razvi

Discovering Visual Hierarchy through Unsupervised Learning Haider Razvi Discovering Visual Hierarchy through Unsupervised Learning Haider Razvi hrazvi@stanford.edu 1 Introduction: We present a method for discovering visual hierarchy in a set of images. Automatically grouping

More information

3D Scene Understanding by Voxel-CRF

3D Scene Understanding by Voxel-CRF 3D Scene Understanding by Voxel-CRF Byung-soo Kim University of Michigan bsookim@umich.edu Pushmeet Kohli Microsoft Research Cambridge pkohli@microsoft.com Silvio Savarese Stanford University ssilvio@stanford.edu

More information

Single Image Depth Estimation via Deep Learning

Single Image Depth Estimation via Deep Learning Single Image Depth Estimation via Deep Learning Wei Song Stanford University Stanford, CA Abstract The goal of the project is to apply direct supervised deep learning to the problem of monocular depth

More information

Part-Based Models for Object Class Recognition Part 3

Part-Based Models for Object Class Recognition Part 3 High Level Computer Vision! Part-Based Models for Object Class Recognition Part 3 Bernt Schiele - schiele@mpi-inf.mpg.de Mario Fritz - mfritz@mpi-inf.mpg.de! http://www.d2.mpi-inf.mpg.de/cv ! State-of-the-Art

More information

Contexts and 3D Scenes

Contexts and 3D Scenes Contexts and 3D Scenes Computer Vision Jia-Bin Huang, Virginia Tech Many slides from D. Hoiem Administrative stuffs Final project presentation Dec 1 st 3:30 PM 4:45 PM Goodwin Hall Atrium Grading Three

More information

COMPUTER AND ROBOT VISION

COMPUTER AND ROBOT VISION VOLUME COMPUTER AND ROBOT VISION Robert M. Haralick University of Washington Linda G. Shapiro University of Washington T V ADDISON-WESLEY PUBLISHING COMPANY Reading, Massachusetts Menlo Park, California

More information

Large-Scale Point Cloud Classification Benchmark

Large-Scale Point Cloud Classification Benchmark Large-Scale Point Cloud Classification Benchmark www.semantic3d.net IGP & CVG, ETH Zürich www.semantic3d.net, info@semantic3d.net 7/6/2016 1 Timo Hackel Nikolay Savinov Ľubor Ladický Jan Dirk Wegner Konrad

More information

Semantic Classification of Boundaries from an RGBD Image

Semantic Classification of Boundaries from an RGBD Image MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Semantic Classification of Boundaries from an RGBD Image Soni, N.; Namboodiri, A.; Ramalingam, S.; Jawahar, C.V. TR2015-102 September 2015

More information

Learning Articulated Skeletons From Motion

Learning Articulated Skeletons From Motion Learning Articulated Skeletons From Motion Danny Tarlow University of Toronto, Machine Learning with David Ross and Richard Zemel (and Brendan Frey) August 6, 2007 Point Light Displays It's easy for humans

More information

Fast Edge Detection Using Structured Forests

Fast Edge Detection Using Structured Forests Fast Edge Detection Using Structured Forests Piotr Dollár, C. Lawrence Zitnick [1] Zhihao Li (zhihaol@andrew.cmu.edu) Computer Science Department Carnegie Mellon University Table of contents 1. Introduction

More information

Volumetric stereo with silhouette and feature constraints

Volumetric stereo with silhouette and feature constraints Volumetric stereo with silhouette and feature constraints Jonathan Starck, Gregor Miller and Adrian Hilton Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, GU2 7XH, UK.

More information

Day 3 Lecture 1. Unsupervised Learning

Day 3 Lecture 1. Unsupervised Learning Day 3 Lecture 1 Unsupervised Learning Semi-supervised and transfer learning Myth: you can t do deep learning unless you have a million labelled examples for your problem. Reality You can learn useful representations

More information

Geometry based Repetition Detection for Urban Scene

Geometry based Repetition Detection for Urban Scene Geometry based Repetition Detection for Urban Scene Changchang Wu University of Washington Jan Michael Frahm UNC Chapel Hill Marc Pollefeys ETH Zürich Related Work Sparse Feature Matching [Loy et al. 06,

More information

Image Segmentation. Srikumar Ramalingam School of Computing University of Utah. Slides borrowed from Ross Whitaker

Image Segmentation. Srikumar Ramalingam School of Computing University of Utah. Slides borrowed from Ross Whitaker Image Segmentation Srikumar Ramalingam School of Computing University of Utah Slides borrowed from Ross Whitaker Segmentation Semantic Segmentation Indoor layout estimation What is Segmentation? Partitioning

More information

Dense 3D Reconstruction. Christiano Gava

Dense 3D Reconstruction. Christiano Gava Dense 3D Reconstruction Christiano Gava christiano.gava@dfki.de Outline Previous lecture: structure and motion II Structure and motion loop Triangulation Wide baseline matching (SIFT) Today: dense 3D reconstruction

More information

Graph Cuts. Srikumar Ramalingam School of Computing University of Utah

Graph Cuts. Srikumar Ramalingam School of Computing University of Utah Graph Cuts Srikumar Ramalingam School o Computing University o Utah Outline Introduction Pseudo-Boolean Functions Submodularity Max-low / Min-cut Algorithm Alpha-Expansion Segmentation Problem [Boykov

More information

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Si Chen The George Washington University sichen@gwmail.gwu.edu Meera Hahn Emory University mhahn7@emory.edu Mentor: Afshin

More information

Seeing the unseen. Data-driven 3D Understanding from Single Images. Hao Su

Seeing the unseen. Data-driven 3D Understanding from Single Images. Hao Su Seeing the unseen Data-driven 3D Understanding from Single Images Hao Su Image world Shape world 3D perception from a single image Monocular vision a typical prey a typical predator Cited from https://en.wikipedia.org/wiki/binocular_vision

More information

Real-World Material Recognition for Scene Understanding

Real-World Material Recognition for Scene Understanding Real-World Material Recognition for Scene Understanding Abstract Sam Corbett-Davies Department of Computer Science Stanford University scorbett@stanford.edu In this paper we address the problem of recognizing

More information

Multiple Kernel Learning for Emotion Recognition in the Wild

Multiple Kernel Learning for Emotion Recognition in the Wild Multiple Kernel Learning for Emotion Recognition in the Wild Karan Sikka, Karmen Dykstra, Suchitra Sathyanarayana, Gwen Littlewort and Marian S. Bartlett Machine Perception Laboratory UCSD EmotiW Challenge,

More information

Graph Cuts. Srikumar Ramalingam School of Computing University of Utah

Graph Cuts. Srikumar Ramalingam School of Computing University of Utah Graph Cuts Srikumar Ramalingam School o Computing University o Utah Outline Introduction Pseudo-Boolean Functions Submodularity Max-low / Min-cut Algorithm Alpha-Expansion Segmentation Problem [Boykov

More information

Robot Learning. There are generally three types of robot learning: Learning from data. Learning by demonstration. Reinforcement learning

Robot Learning. There are generally three types of robot learning: Learning from data. Learning by demonstration. Reinforcement learning Robot Learning 1 General Pipeline 1. Data acquisition (e.g., from 3D sensors) 2. Feature extraction and representation construction 3. Robot learning: e.g., classification (recognition) or clustering (knowledge

More information

Depth from Stereo. Dominic Cheng February 7, 2018

Depth from Stereo. Dominic Cheng February 7, 2018 Depth from Stereo Dominic Cheng February 7, 2018 Agenda 1. Introduction to stereo 2. Efficient Deep Learning for Stereo Matching (W. Luo, A. Schwing, and R. Urtasun. In CVPR 2016.) 3. Cascade Residual

More information

Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL)

Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL) Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL) http://chrischoy.org Stanford CS231A 1 Understanding a Scene Objects Chairs, Cups, Tables,

More information

Object Localization, Segmentation, Classification, and Pose Estimation in 3D Images using Deep Learning

Object Localization, Segmentation, Classification, and Pose Estimation in 3D Images using Deep Learning Allan Zelener Dissertation Proposal December 12 th 2016 Object Localization, Segmentation, Classification, and Pose Estimation in 3D Images using Deep Learning Overview 1. Introduction to 3D Object Identification

More information

Separating Objects and Clutter in Indoor Scenes

Separating Objects and Clutter in Indoor Scenes Separating Objects and Clutter in Indoor Scenes Salman H. Khan School of Computer Science & Software Engineering, The University of Western Australia Co-authors: Xuming He, Mohammed Bennamoun, Ferdous

More information

Region-based Segmentation and Object Detection

Region-based Segmentation and Object Detection Region-based Segmentation and Object Detection Stephen Gould Tianshi Gao Daphne Koller Presented at NIPS 2009 Discussion and Slides by Eric Wang April 23, 2010 Outline Introduction Model Overview Model

More information

OCCLUSION BOUNDARIES ESTIMATION FROM A HIGH-RESOLUTION SAR IMAGE

OCCLUSION BOUNDARIES ESTIMATION FROM A HIGH-RESOLUTION SAR IMAGE OCCLUSION BOUNDARIES ESTIMATION FROM A HIGH-RESOLUTION SAR IMAGE Wenju He, Marc Jäger, and Olaf Hellwich Berlin University of Technology FR3-1, Franklinstr. 28, 10587 Berlin, Germany {wenjuhe, jaeger,

More information

Learning to generate 3D shapes

Learning to generate 3D shapes Learning to generate 3D shapes Subhransu Maji College of Information and Computer Sciences University of Massachusetts, Amherst http://people.cs.umass.edu/smaji August 10, 2018 @ Caltech Creating 3D shapes

More information

Superpixel Segmentation using Depth

Superpixel Segmentation using Depth Superpixel Segmentation using Depth Information Superpixel Segmentation using Depth Information David Stutz June 25th, 2014 David Stutz June 25th, 2014 01 Introduction - Table of Contents 1 Introduction

More information

What have we leaned so far?

What have we leaned so far? What have we leaned so far? Camera structure Eye structure Project 1: High Dynamic Range Imaging What have we learned so far? Image Filtering Image Warping Camera Projection Model Project 2: Panoramic

More information

4/13/ Introduction. 1. Introduction. 2. Formulation. 2. Formulation. 2. Formulation

4/13/ Introduction. 1. Introduction. 2. Formulation. 2. Formulation. 2. Formulation 1. Introduction Motivation: Beijing Jiaotong University 1 Lotus Hill Research Institute University of California, Los Angeles 3 CO 3 for Ultra-fast and Accurate Interactive Image Segmentation This paper

More information

Topics to be Covered in the Rest of the Semester. CSci 4968 and 6270 Computational Vision Lecture 15 Overview of Remainder of the Semester

Topics to be Covered in the Rest of the Semester. CSci 4968 and 6270 Computational Vision Lecture 15 Overview of Remainder of the Semester Topics to be Covered in the Rest of the Semester CSci 4968 and 6270 Computational Vision Lecture 15 Overview of Remainder of the Semester Charles Stewart Department of Computer Science Rensselaer Polytechnic

More information

Image Segmentation continued Graph Based Methods. Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book

Image Segmentation continued Graph Based Methods. Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book Image Segmentation continued Graph Based Methods Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book Previously Binary segmentation Segmentation by thresholding

More information

Incremental Learning of Object Detectors Using a Visual Shape Alphabet

Incremental Learning of Object Detectors Using a Visual Shape Alphabet Incremental Learning of Object Detectors Using a Visual Shape Alphabet A. Opelt, A. Pinz & A. Zisserman CVPR 06 Presented by Medha Bhargava* * Several slides adapted from authors presentation, CVPR 06

More information

Support surfaces prediction for indoor scene understanding

Support surfaces prediction for indoor scene understanding 2013 IEEE International Conference on Computer Vision Support surfaces prediction for indoor scene understanding Anonymous ICCV submission Paper ID 1506 Abstract In this paper, we present an approach to

More information

Geometric Reconstruction Dense reconstruction of scene geometry

Geometric Reconstruction Dense reconstruction of scene geometry Lecture 5. Dense Reconstruction and Tracking with Real-Time Applications Part 2: Geometric Reconstruction Dr Richard Newcombe and Dr Steven Lovegrove Slide content developed from: [Newcombe, Dense Visual

More information

Contents I IMAGE FORMATION 1

Contents I IMAGE FORMATION 1 Contents I IMAGE FORMATION 1 1 Geometric Camera Models 3 1.1 Image Formation............................. 4 1.1.1 Pinhole Perspective....................... 4 1.1.2 Weak Perspective.........................

More information

Optical flow and tracking

Optical flow and tracking EECS 442 Computer vision Optical flow and tracking Intro Optical flow and feature tracking Lucas-Kanade algorithm Motion segmentation Segments of this lectures are courtesy of Profs S. Lazebnik S. Seitz,

More information

Gesture Recognition: Hand Pose Estimation. Adrian Spurr Ubiquitous Computing Seminar FS

Gesture Recognition: Hand Pose Estimation. Adrian Spurr Ubiquitous Computing Seminar FS Gesture Recognition: Hand Pose Estimation Adrian Spurr Ubiquitous Computing Seminar FS2014 27.05.2014 1 What is hand pose estimation? Input Computer-usable form 2 Augmented Reality Gaming Robot Control

More information

Multiple View Geometry

Multiple View Geometry Multiple View Geometry Martin Quinn with a lot of slides stolen from Steve Seitz and Jianbo Shi 15-463: Computational Photography Alexei Efros, CMU, Fall 2007 Our Goal The Plenoptic Function P(θ,φ,λ,t,V

More information

The Kinect Sensor. Luís Carriço FCUL 2014/15

The Kinect Sensor. Luís Carriço FCUL 2014/15 Advanced Interaction Techniques The Kinect Sensor Luís Carriço FCUL 2014/15 Sources: MS Kinect for Xbox 360 John C. Tang. Using Kinect to explore NUI, Ms Research, From Stanford CS247 Shotton et al. Real-Time

More information

Cluster Analysis. Angela Montanari and Laura Anderlucci

Cluster Analysis. Angela Montanari and Laura Anderlucci Cluster Analysis Angela Montanari and Laura Anderlucci 1 Introduction Clustering a set of n objects into k groups is usually moved by the aim of identifying internally homogenous groups according to a

More information

3D Computer Vision. Dense 3D Reconstruction II. Prof. Didier Stricker. Christiano Gava

3D Computer Vision. Dense 3D Reconstruction II. Prof. Didier Stricker. Christiano Gava 3D Computer Vision Dense 3D Reconstruction II Prof. Didier Stricker Christiano Gava Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

Segmentation Based Stereo. Michael Bleyer LVA Stereo Vision

Segmentation Based Stereo. Michael Bleyer LVA Stereo Vision Segmentation Based Stereo Michael Bleyer LVA Stereo Vision What happened last time? Once again, we have looked at our energy function: E ( D) = m( p, dp) + p I < p, q > We have investigated the matching

More information

LEARNING BOUNDARIES WITH COLOR AND DEPTH. Zhaoyin Jia, Andrew Gallagher, Tsuhan Chen

LEARNING BOUNDARIES WITH COLOR AND DEPTH. Zhaoyin Jia, Andrew Gallagher, Tsuhan Chen LEARNING BOUNDARIES WITH COLOR AND DEPTH Zhaoyin Jia, Andrew Gallagher, Tsuhan Chen School of Electrical and Computer Engineering, Cornell University ABSTRACT To enable high-level understanding of a scene,

More information

Is 2D Information Enough For Viewpoint Estimation? Amir Ghodrati, Marco Pedersoli, Tinne Tuytelaars BMVC 2014

Is 2D Information Enough For Viewpoint Estimation? Amir Ghodrati, Marco Pedersoli, Tinne Tuytelaars BMVC 2014 Is 2D Information Enough For Viewpoint Estimation? Amir Ghodrati, Marco Pedersoli, Tinne Tuytelaars BMVC 2014 Problem Definition Viewpoint estimation: Given an image, predicting viewpoint for object of

More information

CS 4495 Computer Vision Motion and Optic Flow

CS 4495 Computer Vision Motion and Optic Flow CS 4495 Computer Vision Aaron Bobick School of Interactive Computing Administrivia PS4 is out, due Sunday Oct 27 th. All relevant lectures posted Details about Problem Set: You may *not* use built in Harris

More information

Viewpoint Invariant Features from Single Images Using 3D Geometry

Viewpoint Invariant Features from Single Images Using 3D Geometry Viewpoint Invariant Features from Single Images Using 3D Geometry Yanpeng Cao and John McDonald Department of Computer Science National University of Ireland, Maynooth, Ireland {y.cao,johnmcd}@cs.nuim.ie

More information

Automatic Dense Semantic Mapping From Visual Street-level Imagery

Automatic Dense Semantic Mapping From Visual Street-level Imagery Automatic Dense Semantic Mapping From Visual Street-level Imagery Sunando Sengupta [1], Paul Sturgess [1], Lubor Ladicky [2], Phillip H.S. Torr [1] [1] Oxford Brookes University [2] Visual Geometry Group,

More information

Deep learning for object detection. Slides from Svetlana Lazebnik and many others

Deep learning for object detection. Slides from Svetlana Lazebnik and many others Deep learning for object detection Slides from Svetlana Lazebnik and many others Recent developments in object detection 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before deep

More information

Development in Object Detection. Junyuan Lin May 4th

Development in Object Detection. Junyuan Lin May 4th Development in Object Detection Junyuan Lin May 4th Line of Research [1] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection, CVPR 2005. HOG Feature template [2] P. Felzenszwalb,

More information

Multiple cosegmentation

Multiple cosegmentation Armand Joulin, Francis Bach and Jean Ponce. INRIA -Ecole Normale Supérieure April 25, 2012 Segmentation Introduction Segmentation Supervised and weakly-supervised segmentation Cosegmentation Segmentation

More information

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching Stereo Matching Fundamental matrix Let p be a point in left image, p in right image l l Epipolar relation p maps to epipolar line l p maps to epipolar line l p p Epipolar mapping described by a 3x3 matrix

More information

Regionlet Object Detector with Hand-crafted and CNN Feature

Regionlet Object Detector with Hand-crafted and CNN Feature Regionlet Object Detector with Hand-crafted and CNN Feature Xiaoyu Wang Research Xiaoyu Wang Research Ming Yang Horizon Robotics Shenghuo Zhu Alibaba Group Yuanqing Lin Baidu Overview of this section Regionlet

More information

Image Analysis Lecture Segmentation. Idar Dyrdal

Image Analysis Lecture Segmentation. Idar Dyrdal Image Analysis Lecture 9.1 - Segmentation Idar Dyrdal Segmentation Image segmentation is the process of partitioning a digital image into multiple parts The goal is to divide the image into meaningful

More information

Image Processing, Analysis and Machine Vision

Image Processing, Analysis and Machine Vision Image Processing, Analysis and Machine Vision Milan Sonka PhD University of Iowa Iowa City, USA Vaclav Hlavac PhD Czech Technical University Prague, Czech Republic and Roger Boyle DPhil, MBCS, CEng University

More information

Recognition of Animal Skin Texture Attributes in the Wild. Amey Dharwadker (aap2174) Kai Zhang (kz2213)

Recognition of Animal Skin Texture Attributes in the Wild. Amey Dharwadker (aap2174) Kai Zhang (kz2213) Recognition of Animal Skin Texture Attributes in the Wild Amey Dharwadker (aap2174) Kai Zhang (kz2213) Motivation Patterns and textures are have an important role in object description and understanding

More information

Beyond Bags of Features

Beyond Bags of Features : for Recognizing Natural Scene Categories Matching and Modeling Seminar Instructed by Prof. Haim J. Wolfson School of Computer Science Tel Aviv University December 9 th, 2015

More information

Modeling 3D viewpoint for part-based object recognition of rigid objects

Modeling 3D viewpoint for part-based object recognition of rigid objects Modeling 3D viewpoint for part-based object recognition of rigid objects Joshua Schwartz Department of Computer Science Cornell University jdvs@cs.cornell.edu Abstract Part-based object models based on

More information

Self Lane Assignment Using Smart Mobile Camera For Intelligent GPS Navigation and Traffic Interpretation

Self Lane Assignment Using Smart Mobile Camera For Intelligent GPS Navigation and Traffic Interpretation For Intelligent GPS Navigation and Traffic Interpretation Tianshi Gao Stanford University tianshig@stanford.edu 1. Introduction Imagine that you are driving on the highway at 70 mph and trying to figure

More information

Segmentation and Tracking of Partial Planar Templates

Segmentation and Tracking of Partial Planar Templates Segmentation and Tracking of Partial Planar Templates Abdelsalam Masoud William Hoff Colorado School of Mines Colorado School of Mines Golden, CO 800 Golden, CO 800 amasoud@mines.edu whoff@mines.edu Abstract

More information

Texton Clustering for Local Classification using Scene-Context Scale

Texton Clustering for Local Classification using Scene-Context Scale Texton Clustering for Local Classification using Scene-Context Scale Yousun Kang Tokyo Polytechnic University Atsugi, Kanakawa, Japan 243-0297 Email: yskang@cs.t-kougei.ac.jp Sugimoto Akihiro National

More information

Feature Tracking and Optical Flow

Feature Tracking and Optical Flow Feature Tracking and Optical Flow Prof. D. Stricker Doz. G. Bleser Many slides adapted from James Hays, Derek Hoeim, Lana Lazebnik, Silvio Saverse, who 1 in turn adapted slides from Steve Seitz, Rick Szeliski,

More information