Corrected/Updated References

Size: px
Start display at page:

Download "Corrected/Updated References"

Transcription

1 K. Kashiyama, H. Ito, M. Behr and T. Tezduyar, "Massively Parallel Finite Element Strategies for Large-Scale Computation of Shallow Water Flows and Contaminant Transport", Extended Abstracts of the Second Japan-US Symposium on Finite Element Methods in Large-Scale Computational Fluid Dynamics, Tokyo, Japan (1994). Corrected/Updated References 1. T.E. Tezduyar, M. Behr, S. Mittal and A.A. Johnson, "Computation of Unsteady Incompressible Flows with the Stabilized Finite Element Methods: Space-Time Formulations, Iterative Strategies and Massively Parallel Implementations", New Methods in Transient Analysis, PVP-Vol.246/AMD-Vol.143, ASME, New York (1992) T.E. Tezduyar and T.J.R. Hughes, "Finite Element Formulations for Convection Dominated Flows with Particular Emphasis on the Compressible Euler Equations", AIAA Paper , Proceedings of AIAA 21st Aerospace Sciences Meeting, Reno, Nevada (1983). 5. K. Kashiyama, H. Ito, M. Behr and T. Tezduyar, "Three-step Explicit Finite Element Computation of Shallow Water Flows on a Massively Parallel Computer", International Journal for Numerical Methods in Fluids, 21 (1995) M. Behr and T.E. Tezduyar, "Finite Element Solution Strategies for Large-Scale Flow Simulations", Computer Methods in Applied Mechanics and Engineering, 112 (1994) 3-24.

2 To appear in the pre-conference proceedings of the Second US-Japan Symposium on Finite Element Methods in Large-Scale Computational Fluid Dynamics, Tokyo, Japan, March 14-16, 1993 MASSIVELY PARALLEL FINITE ELEMENT STRATEGIES FOR LARGE SCALE COMPUTATION OF SHALLOW WATER FLOWS AND CONTAMINANT TRANSPORT Kazuo Kashiyama 1, Hanae Ito 1, Marek Behr 2 and Tayfun Tezduyar 2 1 Chuo University, Tokyo, JAPAN 2 University of Minnesota, Minneapolis, MN, USA 1. INTRODUCTION Finite element computations of shallow water flows and contaminant transport can be applied to many practical problems: design of river, coastal and offshore structures, disaster prediction and other applications related to hydrodynamic, thermal and chemical transport behavior in oceans, lakes, and rivers. In this context, the finite element method is applicable to complicated water and land configurations. In practical computation of this type of problems, it is essential to use methods which are as efficient and fast as the available hardware allows. Also, in this type of problems, computations need to be carried out over long time durations to properly simulate and predict the phenomena of interest. In recent years, massively parallel finite element computations have been successfully applied to several large-scale compressible and incompressible flow problems, including those involving moving boundaries and interfaces and those in 3D [1]. These computations demonstrated the availability of a new level of finite element computational capability to solve practical flow problems. With the need for a high-performance computing environment to carry out simulations for practical problems in shallow water flows and contaminant transport, in this paper we present and employ a parallel explicit finite element method for computations based on unstructured grids. The finite element discretizations are based on a three-step explicit formulation both for the shallow water equations and the advection-diffusion equation governing the contaminant transport. In these discretizations, for numerical stabilization, we use selective lumping [2] for the shallow water equations and the streamline-upwind/petrov-galerkin (SUPG) technique [3] for the advectiondiffusion equation. Parallel implementation of these unstructured grid-based formulations are carried out on the Connection Machine CM-5. As an example, we carry out simulation of the effect of tidal waves on the Tokyo Bay and the spread of a pollutant injected into the Tokyo Bay. 2. GOVERNING EQUATIONS The governing equations of shallow water flo~s are oui Cb Tt + UjUi,j + g~,i + h+zui- AI(Ui,j+Uj,i),j + fi = 0, (1) ~~ + { (h+~)ui },i = 0, (2) where Ui is the mean horizontal velocity, ~is the water elevation, his the water depth, g is the gravitational acceleration, Cb is the coefficient of bottom friction, AI is the eddy

3 viscosity and fi is the Coriolis force. The Coriolis force can be given as: fi=-ku2, f2=ku1, in which k denotes the Coriolis acceleration. Transport of the contaminant, on the other hand, is governed by an advection-diffusion equation: ~~ + (<j>ui),i- K<j>,ii = 0, (3) where <1> is the concentration, Ui is the current velocity and K is the diffusion coefficient. 3. THREE-STEP EXPLICIT FINITE ELEMENT METHOD For the finite element spatial discretization of the governing equations, the selective lumping Galerkin and SUPG methods are used, respectively, for the shallow water and advection-diffusion equations. The three-node linear triangular element is employed for the spatial discretization For discretization in time, the three-step explicit time-integration scheme is employed [4]. This method contains the benefit of the conventional Taylor-Galerkin method. The numerical accuracy and stability of this scheme are di cus ed in reference [5]. Applying this procedure to the governing equations, the discretized equations in time can be obtained. 4. PARALLEL IMPLEMENTATION The data-parallel implementation has been carried out on the Connection Machine CM-5. For the implementation, two types of data arrays are used; element-level and equation-level [6]. The element-level arrays store the data with one element and its degrees of freedom associated with exactly one virtual proce or. On the other band, the equation-level arrays keep variables at the level of global equation system. The nodal data, coordinates, element level properties and element-level matrix and vector are tared in array of element-level type. The global increment variables are kept in an array of equation-level type. Communication operation from equation-level to element-level is called as a gather, while movement of the data from element-level to equation-level is called as a scatter. Both gather and. catter may be implemented efficiently on the Connection Machine computer. In order to ave the communication time the mesh partitioning [7] of Connection Machine Scientific Software Library (CMSSL) is used. The discretized element~level equation can be expressed as (4) where (Ma~L)e is the element-level lumped mass matrix, (x~)e is the element-level unknown vector and (f~)e is the element-level known vector. The computation of the element-level lumped mass matrix and the element-level known vector is performed on element level. Then, these values are assembled to nodal values by a scatter operation. The unknown variables x~ are solved by: and the introduction of the boundary conditions is taken care of at equation level. (5)

4 5. NUMERICAL EXAMPLE As a numerical example, simulation of tidal flow and contaminant transport in Tokyo Bay is carried out. Figure 1 shows the finite element idealization of Tokyo Bay which is partitioned for 128 processing nodes. The total number of elements and nodes are 56,893 and 30,105 respectively. This mesh is designed to keep the element Courant number is constant in the entire domain [8]. Figure 2 shows the computed current velocity distribution around Uraga-Suido. Figure 3 shows the contaminant spread. It can be seen that the contaminant is spread in accordance with the periodic oscillation due to tidal waves. The computational speed using 128 processing nodes is sec/step and 11.9 micsec/step/node. 6. CONCLUSION A three step explicit finite element solver applicable to unstructured meshes is successfully implemented on a massively parallel supercomputer. Present method can be usefully applied to large-scale computation of various shallow water flow problems. As an example, we have presented results from a simulation of tidal wave effects in the Tokyo Bay. The simulation also accounted for the spread of the contaminant due to tidal flows. ACKNOWLEDGMENT This research was supported by NSF under grant ASC Partial support for this work has also come from the ARO Contract Number DAAL03-89-C-0038 with the Army High Performance Computing Research Center at the University of Minnesota. REFERENCE [1] T.E. Tezduyar, M. Behr, S. Mittal and A.A. Johnson, Computation of unsteady incompressible flows with the stabilized finite element methods - Space-time formulations, iterative strategies and massively parallel implementations, New Methods in Transient Analysis, in P. Smolinski, W.K. Liu, G. Hulbert and K. Tamma (eds.), AMD-Vol.143, ASME, New York (1992) [2] M. Kawahara, H. Hirano, K. Tsubota and K. Inagaki, Selective lumping finite element method for shallow water flow, Int. J. Numer. Methods Fluids, Vol.2 (1982), [3] T.E. Tezduyar and T.J.R. Hughes, Finite element formulations for convection dominated flows with particular emphasis on the Euler equations, AIAA paper , Proceedings of AIAA 21st Aerospace Science Meeting, Reno, Nevada. (1983). [4] C.B.Jiang, M. Kawahara, K. Hatanaka and K. Kashiyama, A three-step finite element method for convection dominated incompressible flow, Comp. Fluid Dyn. Journal, Vol.l (1993), [5] K. Kashiyama, H. Ito, M. Behr and T.E. Tezduyar, Three step explicit finite element computation of tidal flow involving moving boundary on Connection machine, (in preparation) [6] M. Behr and T.E. Tezduyar, Finite element solution strategies for large-scale flow simulations, Comp. Meth. Appl. Mech. Eng., (in press). [7] Z. Johan, K.K. Mathur, K.K., S.L. Johnsson and T.J.R. Hughes, An efficient communication strategy for finite element methods on the connection machine CM-5 system, Thinking Machine Technical Report, Cambridge, MA, 1993 and Comp. Meth. Appl. Mech. Eng. (in press) [8] K. Kashiyama and T. Okada, Automatic mesh generation method for shallow water flow analysis, Int. J. Numer. Methods Fluids, Vol.l5, (1992)

5 Figure 1. Mesh partitioning for 128 processing nodes High Tide Figure 2. Computed tidal velocity distribution Low Tide Figure 3. Computed contaminant spread

THREE-STEP EXPLICIT FINITE ELEMENT COMPUTATION OF SHALLOW WATER FLOWS ON A MASSIVELY PARALLEL COMPUTER

THREE-STEP EXPLICIT FINITE ELEMENT COMPUTATION OF SHALLOW WATER FLOWS ON A MASSIVELY PARALLEL COMPUTER INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 21, 885-900 (1995) THREE-STEP EXPLICIT FINITE ELEMENT COMPUTATION OF SHALLOW WATER FLOWS ON A MASSIVELY PARALLEL COMPUTER KAZUO KASHIYAMA AND

More information

Corrected/Updated References

Corrected/Updated References K. Kashiyama, Y. Ohba, T. Takagi, M. Behr, and T. Tezduyar, Parallel finite element method utilizing the mode splitting and sigma coordinate for shallow water flows, Computational Mechanics, 23 (1999)

More information

COMPUTATIONAL METHODS FOR ENVIRONMENTAL FLUID MECHANICS

COMPUTATIONAL METHODS FOR ENVIRONMENTAL FLUID MECHANICS COMPUTATIONAL METHODS FOR ENVIRONMENTAL FLUID MECHANICS Tayfun Tezduyar tezduyar@rice.edu Team for Advanced Flow Simulation and Modeling (T*AFSM) Mechanical Engineering and Materials Science Rice University

More information

COMPUTATIONAL FLUIDAND SOLID MECHANICS

COMPUTATIONAL FLUIDAND SOLID MECHANICS COMPUTATIONAL FLUIDAND SOLID MECHANICS K.J. Bathe, editor Proceedings First MIT Conference on ComDutational Fluid and Solid Mechanics June t2.t5,2oot ElSeVief 968 Aerodynamic interaction between multiple

More information

A NEW MIXED PRECONDITIONING METHOD BASED ON THE CLUSTERED ELEMENT -BY -ELEMENT PRECONDITIONERS

A NEW MIXED PRECONDITIONING METHOD BASED ON THE CLUSTERED ELEMENT -BY -ELEMENT PRECONDITIONERS Contemporary Mathematics Volume 157, 1994 A NEW MIXED PRECONDITIONING METHOD BASED ON THE CLUSTERED ELEMENT -BY -ELEMENT PRECONDITIONERS T.E. Tezduyar, M. Behr, S.K. Aliabadi, S. Mittal and S.E. Ray ABSTRACT.

More information

EDICT for 3D computation of two- uid interfaces q

EDICT for 3D computation of two- uid interfaces q Comput. Methods Appl. Mech. Engrg. 190 (2000) 403±410 www.elsevier.com/locate/cma EDICT for 3D computation of two- uid interfaces q Tayfun E. Tezduyar a, *, Shahrouz Aliabadi b a Mechanical Engineering

More information

STABILIZED FINITE ELEMENT METHODS FOR INCOMPRESSIBLE FLOWS WITH EMPHASIS ON MOVING BOUNDARIES AND INTERFACES

STABILIZED FINITE ELEMENT METHODS FOR INCOMPRESSIBLE FLOWS WITH EMPHASIS ON MOVING BOUNDARIES AND INTERFACES STABILIZED FINITE ELEMENT METHODS FOR INCOMPRESSIBLE FLOWS WITH EMPHASIS ON MOVING BOUNDARIES AND INTERFACES A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Marek

More information

Parallel edge-based implementation of the finite element method for shallow water equations

Parallel edge-based implementation of the finite element method for shallow water equations Parallel edge-based implementation of the finite element method for shallow water equations I. Slobodcicov, F.L.B. Ribeiro, & A.L.G.A. Coutinho Programa de Engenharia Civil, COPPE / Universidade Federal

More information

Advanced Mesh Update Techniques for Problems Involving Large Displacements

Advanced Mesh Update Techniques for Problems Involving Large Displacements WCCM V Fifth World Congress on Computational Mechanics July 7,, Vienna, Austria Eds.: H.A. Mang, F.G. Rammerstorfer, J. Eberhardsteiner Advanced Mesh Update Techniques for Problems Involving Large Displacements

More information

Incompressible Viscous Flow Simulations Using the Petrov-Galerkin Finite Element Method

Incompressible Viscous Flow Simulations Using the Petrov-Galerkin Finite Element Method Copyright c 2007 ICCES ICCES, vol.4, no.1, pp.11-18, 2007 Incompressible Viscous Flow Simulations Using the Petrov-Galerkin Finite Element Method Kazuhiko Kakuda 1, Tomohiro Aiso 1 and Shinichiro Miura

More information

Modeling Khowr-e Musa Multi-Branch Estuary Currents due to the Persian Gulf Tides Using NASIR Depth Average Flow Solver

Modeling Khowr-e Musa Multi-Branch Estuary Currents due to the Persian Gulf Tides Using NASIR Depth Average Flow Solver Journal of the Persian Gulf (Marine Science)/Vol.1/No.1/September 2010/6/45-50 Modeling Khowr-e Musa Multi-Branch Estuary Currents due to the Persian Gulf Tides Using NASIR Depth Average Flow Solver Sabbagh-Yazdi,

More information

PARALLEL COMPUTING. Tayfun E. Tezduyar. Ahmed Sameh

PARALLEL COMPUTING. Tayfun E. Tezduyar. Ahmed Sameh 1 FINITE ELEMENT METHODS: 1970 s AND BEYOND L.P. Franca, T.E. Tezduyar and A. Masud (Eds.) c CIMNE, Barcelona, Spain 2004 PARALLEL COMPUTING Tayfun E. Tezduyar Mechanical Engineering Rice University MS

More information

MODELLING THE FLOW AROUND AN ISLAND AND A HEADLAND: APPLICATION OF A TWO MIXING LENGTH MODEL WITH TELEMAC3D. Nicolas Chini 1 and Peter K.

MODELLING THE FLOW AROUND AN ISLAND AND A HEADLAND: APPLICATION OF A TWO MIXING LENGTH MODEL WITH TELEMAC3D. Nicolas Chini 1 and Peter K. MODELLING THE FLOW AROUND AN ISLAND AND A HEADLAND: APPLICATION OF A TWO MIXING LENGTH MODEL WITH TELEMAC3D Nicolas Chini 1 and Peter K. Stansby 2 Numerical modelling of the circulation around islands

More information

Mesh Decomposition and Communication Procedures for Finite Element Applications on the Connection Machine CM-5 System

Mesh Decomposition and Communication Procedures for Finite Element Applications on the Connection Machine CM-5 System Mesh Decomposition and Communication Procedures for Finite Element Applications on the Connection Machine CM-5 System The Harvard community has made this article openly available. Please share how this

More information

QUASI-3D SOLVER OF MEANDERING RIVER FLOWS BY CIP-SOROBAN SCHEME IN CYLINDRICAL COORDINATES WITH SUPPORT OF BOUNDARY FITTED COORDINATE METHOD

QUASI-3D SOLVER OF MEANDERING RIVER FLOWS BY CIP-SOROBAN SCHEME IN CYLINDRICAL COORDINATES WITH SUPPORT OF BOUNDARY FITTED COORDINATE METHOD QUASI-3D SOLVER OF MEANDERING RIVER FLOWS BY CIP-SOROBAN SCHEME IN CYLINDRICAL COORDINATES WITH SUPPORT OF BOUNDARY FITTED COORDINATE METHOD Keisuke Yoshida, Tadaharu Ishikawa Dr. Eng., Tokyo Institute

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 3, 2012

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 3, 2012 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 3, 2012 Copyright 2010 All rights reserved Integrated Publishing services Research article ISSN 0976 4399 Efficiency and performances

More information

MIKE 21 & MIKE 3 FLOW MODEL FM. Transport Module. Short Description

MIKE 21 & MIKE 3 FLOW MODEL FM. Transport Module. Short Description MIKE 21 & MIKE 3 FLOW MODEL FM Short Description MIKE213_TR_FM_Short_Description.docx/AJS/EBR/2011Short_Descriptions.lsm//2011-06-17 MIKE 21 & MIKE 3 FLOW MODEL FM Agern Allé 5 DK-2970 Hørsholm Denmark

More information

Available online at ScienceDirect. Procedia Engineering 90 (2014 )

Available online at  ScienceDirect. Procedia Engineering 90 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 90 (2014 ) 288 293 10th International Conference on Mechanical Engineering, ICME 2013 Parallelization of enriched free mesh

More information

Investigation of cross flow over a circular cylinder at low Re using the Immersed Boundary Method (IBM)

Investigation of cross flow over a circular cylinder at low Re using the Immersed Boundary Method (IBM) Computational Methods and Experimental Measurements XVII 235 Investigation of cross flow over a circular cylinder at low Re using the Immersed Boundary Method (IBM) K. Rehman Department of Mechanical Engineering,

More information

MIKE 21 & MIKE 3 Flow Model FM. Transport Module. Short Description

MIKE 21 & MIKE 3 Flow Model FM. Transport Module. Short Description MIKE 21 & MIKE 3 Flow Model FM Transport Module Short Description DHI headquarters Agern Allé 5 DK-2970 Hørsholm Denmark +45 4516 9200 Telephone +45 4516 9333 Support +45 4516 9292 Telefax mike@dhigroup.com

More information

Possibility of Implicit LES for Two-Dimensional Incompressible Lid-Driven Cavity Flow Based on COMSOL Multiphysics

Possibility of Implicit LES for Two-Dimensional Incompressible Lid-Driven Cavity Flow Based on COMSOL Multiphysics Possibility of Implicit LES for Two-Dimensional Incompressible Lid-Driven Cavity Flow Based on COMSOL Multiphysics Masanori Hashiguchi 1 1 Keisoku Engineering System Co., Ltd. 1-9-5 Uchikanda, Chiyoda-ku,

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

Development of Simulation System for Tsunami Evacuation Using Virtual Reality Technology

Development of Simulation System for Tsunami Evacuation Using Virtual Reality Technology APCOM & ISCM 11-14 th December, 2013, Singapore Development of Simulation System for Tsunami Evacuation Using Virtual Reality Technology *Takeshi Kawabe 1, Kazuo Kashiyama 1, Hiroshi Okawa 2 and Hideo

More information

High quality triangular grid generation for the risk analysis of a special lagoon

High quality triangular grid generation for the risk analysis of a special lagoon Advances in Fluid Mechanics VIII 31 High quality triangular grid generation for the risk analysis of a special lagoon B. Tansel Istanbul Technical University, Maritime Faculty, Turkey Abstract Much of

More information

CGT 581 G Fluids. Overview. Some terms. Some terms

CGT 581 G Fluids. Overview. Some terms. Some terms CGT 581 G Fluids Bedřich Beneš, Ph.D. Purdue University Department of Computer Graphics Technology Overview Some terms Incompressible Navier-Stokes Boundary conditions Lagrange vs. Euler Eulerian approaches

More information

Application of Finite Volume Method for Structural Analysis

Application of Finite Volume Method for Structural Analysis Application of Finite Volume Method for Structural Analysis Saeed-Reza Sabbagh-Yazdi and Milad Bayatlou Associate Professor, Civil Engineering Department of KNToosi University of Technology, PostGraduate

More information

2.2 Weighting function

2.2 Weighting function Annual Report (23) Kawahara Lab. On Shape Function of Element-Free Galerkin Method for Flow Analysis Daigo NAKAI and Mutsuto KAWAHARA Department of Civil Engineering, Chuo University, Kasuga 3 27, Bunkyo

More information

2D 3D hybrid stabilized finite element method for tsunami runup simulations

2D 3D hybrid stabilized finite element method for tsunami runup simulations Comput Mech (016 58:411 4 DOI 10.1007/s00466-016-1300-4 ORIGINAL PAPER D 3D hybrid stabilized finite element method for tsunami runup simulations S. Takase 1 S. Moriguchi K. Terada J. Kato 1 T. Kyoya 1

More information

Collapse of a liquid column: numerical simulation and experimental validation

Collapse of a liquid column: numerical simulation and experimental validation Comput. Mech. (2007) 39: 453 476 DOI 10.1007/s00466-006-0043-z ORIGINAL PAPER Marcela A. Cruchaga Diego J. Celentano Tayfun E. Tezduyar Collapse of a liquid column: numerical simulation and experimental

More information

NUMERICAL SIMULATION OF THE SHALLOW WATER EQUATIONS USING A TIME-CENTERED SPLIT-IMPLICIT METHOD

NUMERICAL SIMULATION OF THE SHALLOW WATER EQUATIONS USING A TIME-CENTERED SPLIT-IMPLICIT METHOD 18th Engineering Mechanics Division Conference (EMD007) NUMERICAL SIMULATION OF THE SHALLOW WATER EQUATIONS USING A TIME-CENTERED SPLIT-IMPLICIT METHOD Abstract S. Fu University of Texas at Austin, Austin,

More information

ALE Seamless Immersed Boundary Method with Overset Grid System for Multiple Moving Objects

ALE Seamless Immersed Boundary Method with Overset Grid System for Multiple Moving Objects Tenth International Conference on Computational Fluid Dynamics (ICCFD10), Barcelona,Spain, July 9-13, 2018 ICCFD10-047 ALE Seamless Immersed Boundary Method with Overset Grid System for Multiple Moving

More information

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Vol. 12, Issue 1/2016, 63-68 DOI: 10.1515/cee-2016-0009 MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Juraj MUŽÍK 1,* 1 Department of Geotechnics, Faculty of Civil Engineering, University

More information

COMPLETE DERIVATION OF 2D SHALLOW-WATER MODEL FROM THE PRIMITIVE EQUATIONS GOVERNING GEOPHYSICAL FLOWS

COMPLETE DERIVATION OF 2D SHALLOW-WATER MODEL FROM THE PRIMITIVE EQUATIONS GOVERNING GEOPHYSICAL FLOWS COMPLETE DERIVATION OF 2D SHALLOW-WATER MODEL FROM THE PRIMITIVE EQUATIONS GOVERNING GEOPHYSICAL FLOWS Muhammad Salihi Bin Abdul Hadi, Mohd Zaini Bin Mustapa & Shahbudin Bin Saad Institute of Oceanography

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Prediction of species transport in urban canyons using an h-adaptive finite element approach David B. Carrington and Darrell W. Pepper Department of Mechanical Engineering, University of Nevada, Las Vegas

More information

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 13: The Lecture deals with:

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 13: The Lecture deals with: The Lecture deals with: Some more Suggestions for Improvement of Discretization Schemes Some Non-Trivial Problems with Discretized Equations file:///d /chitra/nptel_phase2/mechanical/cfd/lecture13/13_1.htm[6/20/2012

More information

A substructure based parallel dynamic solution of large systems on homogeneous PC clusters

A substructure based parallel dynamic solution of large systems on homogeneous PC clusters CHALLENGE JOURNAL OF STRUCTURAL MECHANICS 1 (4) (2015) 156 160 A substructure based parallel dynamic solution of large systems on homogeneous PC clusters Semih Özmen, Tunç Bahçecioğlu, Özgür Kurç * Department

More information

Numerical and theoretical analysis of shock waves interaction and reflection

Numerical and theoretical analysis of shock waves interaction and reflection Fluid Structure Interaction and Moving Boundary Problems IV 299 Numerical and theoretical analysis of shock waves interaction and reflection K. Alhussan Space Research Institute, King Abdulaziz City for

More information

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean A Direct Simulation-Based Study of Radiance in a Dynamic Ocean Dick K.P. Yue Center for Ocean Engineering Massachusetts Institute of Technology Room 5-321, 77 Massachusetts Ave, Cambridge, MA 02139 phone:

More information

Unstructured grid modelling

Unstructured grid modelling Unstructured grid modelling Intercomparison between several finite element and finite volume approaches to model the North Sea tides Silvia Maßmann 1, Alexey Androsov 1, Sergey Danilov 1 and Jens Schröter

More information

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 First-Order Hyperbolic System Method If you have a CFD book for hyperbolic problems, you have a CFD book for all problems.

More information

Isogeometric Analysis of Fluid-Structure Interaction

Isogeometric Analysis of Fluid-Structure Interaction Isogeometric Analysis of Fluid-Structure Interaction Y. Bazilevs, V.M. Calo, T.J.R. Hughes Institute for Computational Engineering and Sciences, The University of Texas at Austin, USA e-mail: {bazily,victor,hughes}@ices.utexas.edu

More information

Partial Differential Equations

Partial Differential Equations Simulation in Computer Graphics Partial Differential Equations Matthias Teschner Computer Science Department University of Freiburg Motivation various dynamic effects and physical processes are described

More information

lecture 8 Groundwater Modelling -1

lecture 8 Groundwater Modelling -1 The Islamic University of Gaza Faculty of Engineering Civil Engineering Department Water Resources Msc. Groundwater Hydrology- ENGC 6301 lecture 8 Groundwater Modelling -1 Instructor: Dr. Yunes Mogheir

More information

LS-DYNA 980 : Recent Developments, Application Areas and Validation Process of the Incompressible fluid solver (ICFD) in LS-DYNA.

LS-DYNA 980 : Recent Developments, Application Areas and Validation Process of the Incompressible fluid solver (ICFD) in LS-DYNA. 12 th International LS-DYNA Users Conference FSI/ALE(1) LS-DYNA 980 : Recent Developments, Application Areas and Validation Process of the Incompressible fluid solver (ICFD) in LS-DYNA Part 1 Facundo Del

More information

ALE METHODS FOR DETERMINING STATIONARY SOLUTIONS OF METAL FORMING PROCESSES

ALE METHODS FOR DETERMINING STATIONARY SOLUTIONS OF METAL FORMING PROCESSES European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2000 Barcelona, 11-14 September 2000 c ECCOMAS ALE METHODS FOR DETERMINING STATIONARY SOLUTIONS OF METAL FORMING PROCESSES

More information

Transactions on Information and Communications Technologies vol 3, 1993 WIT Press, ISSN

Transactions on Information and Communications Technologies vol 3, 1993 WIT Press,   ISSN Transactions on Information and Communications Technologies vol 3, 993 WIT Press, www.witpress.com, ISSN 73-357 Solving the d shallow water equations by explicit and ADI methods on a distributed memory

More information

Continued Investigation of Small-Scale Air-Sea Coupled Dynamics Using CBLAST Data

Continued Investigation of Small-Scale Air-Sea Coupled Dynamics Using CBLAST Data Continued Investigation of Small-Scale Air-Sea Coupled Dynamics Using CBLAST Data Dick K.P. Yue Center for Ocean Engineering Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge,

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction Ibrahim Sezai Department of Mechanical Engineering Eastern Mediterranean University Fall 2009-2010 What is CFD? CFD is the simulation of fluids engineering systems using modeling

More information

Computational Flow Simulations around Circular Cylinders Using a Finite Element Method

Computational Flow Simulations around Circular Cylinders Using a Finite Element Method Copyright c 2008 ICCES ICCES, vol.5, no.4, pp.199-204 Computational Flow Simulations around Circular Cylinders Using a Finite Element Method Kazuhiko Kakuda 1, Masayuki Sakai 1 and Shinichiro Miura 2 Summary

More information

IMPROVING THE NUMERICAL ACCURACY OF HYDROTHERMAL RESERVOIR SIMULATIONS USING THE CIP SCHEME WITH THIRD-ORDER ACCURACY

IMPROVING THE NUMERICAL ACCURACY OF HYDROTHERMAL RESERVOIR SIMULATIONS USING THE CIP SCHEME WITH THIRD-ORDER ACCURACY PROCEEDINGS, Thirty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 30 - February 1, 2012 SGP-TR-194 IMPROVING THE NUMERICAL ACCURACY OF HYDROTHERMAL

More information

Efficiency of adaptive mesh algorithms

Efficiency of adaptive mesh algorithms Efficiency of adaptive mesh algorithms 23.11.2012 Jörn Behrens KlimaCampus, Universität Hamburg http://www.katrina.noaa.gov/satellite/images/katrina-08-28-2005-1545z.jpg Model for adaptive efficiency 10

More information

Parallel Computing for the Simulation of 3D Free Surface Flows in Environmental Applications

Parallel Computing for the Simulation of 3D Free Surface Flows in Environmental Applications Parallel Computing for the Simulation of 3D Free Surface Flows in Environmental Applications Paola Causin and Edie Miglio MOX - Modeling and Scientific Computing, Dipartimento di Matematica F.Brioschi

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Numerical simulation of the Humber Estuary using a non-orthogonal curvilinear coordinate system R.W. Barber, R.V. Pearson, A.P. Roberts, W.I. McKee Water Resources Research Group, Telford Institute of

More information

Coastal impact of a tsunami Review of numerical models

Coastal impact of a tsunami Review of numerical models Coastal impact of a tsunami Review of numerical models Richard Marcer 2 Content Physics to simulate Different approaches of modelling 2D depth average Full 3D Navier-Stokes 3D model Key point : free surface

More information

Developing the TELEMAC system for HECToR (phase 2b & beyond) Zhi Shang

Developing the TELEMAC system for HECToR (phase 2b & beyond) Zhi Shang Developing the TELEMAC system for HECToR (phase 2b & beyond) Zhi Shang Outline of the Talk Introduction to the TELEMAC System and to TELEMAC-2D Code Developments Data Reordering Strategy Results Conclusions

More information

Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics

Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics I. Pantle Fachgebiet Strömungsmaschinen Karlsruher Institut für Technologie KIT Motivation

More information

Coupling of CFD model and FVCOM to predict small-scale coastal flows

Coupling of CFD model and FVCOM to predict small-scale coastal flows 284 9 th International Conference on Hydrodynamics 2010, 22(5), supplement :284-289 DOI: 10.1016/S1001-6058(09)60208-0 Coupling of CFD model and FVCOM to predict small-scale coastal flows Xiu-guang Wu

More information

The Development of a Navier-Stokes Flow Solver with Preconditioning Method on Unstructured Grids

The Development of a Navier-Stokes Flow Solver with Preconditioning Method on Unstructured Grids Proceedings of the International MultiConference of Engineers and Computer Scientists 213 Vol II, IMECS 213, March 13-15, 213, Hong Kong The Development of a Navier-Stokes Flow Solver with Preconditioning

More information

The 3D DSC in Fluid Simulation

The 3D DSC in Fluid Simulation The 3D DSC in Fluid Simulation Marek K. Misztal Informatics and Mathematical Modelling, Technical University of Denmark mkm@imm.dtu.dk DSC 2011 Workshop Kgs. Lyngby, 26th August 2011 Governing Equations

More information

Chapter 6. Petrov-Galerkin Formulations for Advection Diffusion Equation

Chapter 6. Petrov-Galerkin Formulations for Advection Diffusion Equation Chapter 6 Petrov-Galerkin Formulations for Advection Diffusion Equation In this chapter we ll demonstrate the difficulties that arise when GFEM is used for advection (convection) dominated problems. Several

More information

Abstract. Introduction. Numerical Techniques for Coextrusion Simulation

Abstract. Introduction. Numerical Techniques for Coextrusion Simulation COMPARISON OF MESH PARTITIONING TECHNIQUE WITH LEVEL-SET METHOD FOR COEXTRUSION SIMULATION Mahesh Gupta 1, 2 1. Michigan Technological University, Houghton, MI 49931 2. Plastic Flow, LLC, Hancock, MI 49930

More information

Auto Injector Syringe. A Fluent Dynamic Mesh 1DOF Tutorial

Auto Injector Syringe. A Fluent Dynamic Mesh 1DOF Tutorial Auto Injector Syringe A Fluent Dynamic Mesh 1DOF Tutorial 1 2015 ANSYS, Inc. June 26, 2015 Prerequisites This tutorial is written with the assumption that You have attended the Introduction to ANSYS Fluent

More information

Homogenization and numerical Upscaling. Unsaturated flow and two-phase flow

Homogenization and numerical Upscaling. Unsaturated flow and two-phase flow Homogenization and numerical Upscaling Unsaturated flow and two-phase flow Insa Neuweiler Institute of Hydromechanics, University of Stuttgart Outline Block 1: Introduction and Repetition Homogenization

More information

Simulation in Computer Graphics. Particles. Matthias Teschner. Computer Science Department University of Freiburg

Simulation in Computer Graphics. Particles. Matthias Teschner. Computer Science Department University of Freiburg Simulation in Computer Graphics Particles Matthias Teschner Computer Science Department University of Freiburg Outline introduction particle motion finite differences system of first order ODEs second

More information

STABILIZED FINITE ELEMENT METHOD WITH AN ALE STRATEGY TO SOLVE MOVING BOUNDARIES PROBLEMS

STABILIZED FINITE ELEMENT METHOD WITH AN ALE STRATEGY TO SOLVE MOVING BOUNDARIES PROBLEMS STABILIZED FINITE ELEMENT METHOD WITH AN ALE STRATEGY TO SOLVE MOVING BOUNDARIES PROBLEMS M. Viale and N. Nigro Universidad Nacional de Rosario Pelegrini 5, () Rosario, Argentina nnigro@intec.unl.edu.ar

More information

River inundation modelling for risk analysis

River inundation modelling for risk analysis River inundation modelling for risk analysis L. H. C. Chua, F. Merting & K. P. Holz Institute for Bauinformatik, Brandenburg Technical University, Germany Abstract This paper presents the results of an

More information

Finite element solution of multi-scale transport problems using the least squares based bubble function enrichment

Finite element solution of multi-scale transport problems using the least squares based bubble function enrichment Finite element solution of multi-scale transport problems using the least squares based bubble function enrichment A. Yazdani a, V. Nassehi b1 a Cranfield University, School of Applied Sciences, Cranfield,

More information

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr.

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr. Mid-Year Report Discontinuous Galerkin Euler Equation Solver Friday, December 14, 2012 Andrey Andreyev Advisor: Dr. James Baeder Abstract: The focus of this effort is to produce a two dimensional inviscid,

More information

Uncertainty Analysis: Parameter Estimation. Jackie P. Hallberg Coastal and Hydraulics Laboratory Engineer Research and Development Center

Uncertainty Analysis: Parameter Estimation. Jackie P. Hallberg Coastal and Hydraulics Laboratory Engineer Research and Development Center Uncertainty Analysis: Parameter Estimation Jackie P. Hallberg Coastal and Hydraulics Laboratory Engineer Research and Development Center Outline ADH Optimization Techniques Parameter space Observation

More information

Parallel Computing For Finite Element Models of Surface Water Flow. Srinivas Chippada, Clint N. Dawson, Mary F. Wheeler, Monica L.

Parallel Computing For Finite Element Models of Surface Water Flow. Srinivas Chippada, Clint N. Dawson, Mary F. Wheeler, Monica L. TICAM REPORT 96-40 August 1996 Parallel Computing For Finite Element Models of Surface Water Flow Srinivas Chippada, Clint N. Dawson, Mary F. Wheeler, Monica L. Martinez PARALLEL COMPUTING FOR FINITE ELEMENT

More information

Second International Workshop on Scientific Computing and Applications. Kananaskis, Canada, May 28 - June 1, 2000

Second International Workshop on Scientific Computing and Applications. Kananaskis, Canada, May 28 - June 1, 2000 Second International Workshop on Scientific Computing and Applications. Kananaskis, Canada, May 28 - June 1, 2000 Program May 28 (Sunday) 19:00-21:00 Registration and reception Session Chairman: Y. Wong

More information

MIKE 21 FLOW MODEL FM

MIKE 21 FLOW MODEL FM MIKE 21 FLOW MODEL FM Hydrodynamic Module User Guide DHI Software 2005 Software development by : xxx Written by: AJS C:\MIKEZero\Dev\source\Manuals\MIKE_FM\HD\MIKE_FM_HD_Cover.fm 29 July 2005 10:43 am

More information

Numerical Estimation and Validation of Shallow Draft Effect on Roll Damping

Numerical Estimation and Validation of Shallow Draft Effect on Roll Damping The 14 th International Ship Stability Workshop (ISSW), 29 th September- 1 st October 2014, Kuala Lumpur, Malaysia Numerical Estimation and Validation of Shallow Draft Effect on Roll Damping Toru Katayama

More information

Comparison of Central and Upwind Flux Averaging in Overlapping Finite Volume Methods for Simulation of Super-Critical Flow with Shock Waves

Comparison of Central and Upwind Flux Averaging in Overlapping Finite Volume Methods for Simulation of Super-Critical Flow with Shock Waves Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 7, 6 (pp55665) Comparison of and Flux Averaging in Overlapping Finite Volume Methods for Simulation of

More information

Massively Parallel Computing: Unstructured Finite Element Simulations

Massively Parallel Computing: Unstructured Finite Element Simulations Massively Parallel Computing: Unstructured Finite Element Simulations The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

Numerical Modeling of Flow Around Groynes with Different Shapes Using TELEMAC-3D Software

Numerical Modeling of Flow Around Groynes with Different Shapes Using TELEMAC-3D Software American Journal of Water Science and Engineering 2016; 2(6): 43-52 http://www.sciencepublishinggroup.com/j/ajwse doi: 10.11648/j.ajwse.20160206.11 Numerical Modeling of Flow Around Groynes with Different

More information

Scalability of Finite Element Applications on Distributed-Memory Parallel Computers

Scalability of Finite Element Applications on Distributed-Memory Parallel Computers Scalability of Finite Element Applications on Distributed-Memory Parallel Computers The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

More information

3-D Wind Field Simulation over Complex Terrain

3-D Wind Field Simulation over Complex Terrain 3-D Wind Field Simulation over Complex Terrain University Institute for Intelligent Systems and Numerical Applications in Engineering Congreso de la RSME 2015 Soluciones Matemáticas e Innovación en la

More information

Computational Study of Laminar Flowfield around a Square Cylinder using Ansys Fluent

Computational Study of Laminar Flowfield around a Square Cylinder using Ansys Fluent MEGR 7090-003, Computational Fluid Dynamics :1 7 Spring 2015 Computational Study of Laminar Flowfield around a Square Cylinder using Ansys Fluent Rahul R Upadhyay Master of Science, Dept of Mechanical

More information

Global Stokes Drift and Climate Wave Modeling

Global Stokes Drift and Climate Wave Modeling Global Stokes Drift and Climate Wave Modeling Adrean Webb University of Colorado, Boulder Department of Applied Mathematics February 20, 2012 In Collaboration with: Research funded by: Baylor Fox-Kemper,

More information

Animation of Fluids. Animating Fluid is Hard

Animation of Fluids. Animating Fluid is Hard Animation of Fluids Animating Fluid is Hard Too complex to animate by hand Surface is changing very quickly Lots of small details In short, a nightmare! Need automatic simulations AdHoc Methods Some simple

More information

Computational Fluid Dynamics using OpenCL a Practical Introduction

Computational Fluid Dynamics using OpenCL a Practical Introduction 19th International Congress on Modelling and Simulation, Perth, Australia, 12 16 December 2011 http://mssanz.org.au/modsim2011 Computational Fluid Dynamics using OpenCL a Practical Introduction T Bednarz

More information

Some Benchmark Simulations for Flash Flood Modelling

Some Benchmark Simulations for Flash Flood Modelling Some Benchmark Simulations for Flash Flood Modelling E. Holzbecher, A. Hadidi Department of Applied Geosciences, German University of Technology in Oman, Muscat, Oman Introduction Flash floods are sudden

More information

Axisymmetric Viscous Flow Modeling for Meridional Flow Calculation in Aerodynamic Design of Half-Ducted Blade Rows

Axisymmetric Viscous Flow Modeling for Meridional Flow Calculation in Aerodynamic Design of Half-Ducted Blade Rows Memoirs of the Faculty of Engineering, Kyushu University, Vol.67, No.4, December 2007 Axisymmetric Viscous Flow Modeling for Meridional Flow alculation in Aerodynamic Design of Half-Ducted Blade Rows by

More information

Analysis, extensions and applications of the Finite-Volume Particle Method (FVPM) PN-II-RU-TE Synthesis of the technical report -

Analysis, extensions and applications of the Finite-Volume Particle Method (FVPM) PN-II-RU-TE Synthesis of the technical report - Analysis, extensions and applications of the Finite-Volume Particle Method (FVPM) PN-II-RU-TE-2011-3-0256 - Synthesis of the technical report - Phase 1: Preparation phase Authors: Delia Teleaga, Eliza

More information

Klima-Exzellenz in Hamburg

Klima-Exzellenz in Hamburg Klima-Exzellenz in Hamburg Adaptive triangular meshes for inundation modeling 19.10.2010, University of Maryland, College Park Jörn Behrens KlimaCampus, Universität Hamburg Acknowledging: Widodo Pranowo,

More information

Post Processing, Visualization, and Sample Output

Post Processing, Visualization, and Sample Output Chapter 7 Post Processing, Visualization, and Sample Output Upon successful execution of an ADCIRC run, a number of output files will be created. Specifically which files are created depends upon how the

More information

A higher-order finite volume method with collocated grid arrangement for incompressible flows

A higher-order finite volume method with collocated grid arrangement for incompressible flows Computational Methods and Experimental Measurements XVII 109 A higher-order finite volume method with collocated grid arrangement for incompressible flows L. Ramirez 1, X. Nogueira 1, S. Khelladi 2, J.

More information

IMPLEMENTATION OF IMPLICIT FINITE ELEMENT METHODS FOR INCOMPRESSIBLE FLOWS ON THE CM-5

IMPLEMENTATION OF IMPLICIT FINITE ELEMENT METHODS FOR INCOMPRESSIBLE FLOWS ON THE CM-5 Computer Methods in Applied Mechanics and Engineering, 119 95 111 (1994) 1 IMPLEMENTATION OF IMPLICIT FINITE ELEMENT METHODS FOR INCOMPRESSIBLE FLOWS ON THE CM-5 J.G. Kennedy Thinking Machines Corporation

More information

Extension of NHWAVE to Couple LAMMPS for Modeling Wave Interactions with Arctic Ice Floes

Extension of NHWAVE to Couple LAMMPS for Modeling Wave Interactions with Arctic Ice Floes DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Extension of NHWAVE to Couple LAMMPS for Modeling Wave Interactions with Arctic Ice Floes Fengyan Shi and James T. Kirby

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,800 116,000 120M Open access books available International authors and editors Downloads Our

More information

A STUDY ON THE UNSTEADY AERODYNAMICS OF PROJECTILES IN OVERTAKING BLAST FLOWFIELDS

A STUDY ON THE UNSTEADY AERODYNAMICS OF PROJECTILES IN OVERTAKING BLAST FLOWFIELDS HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta A STUDY ON THE UNSTEADY AERODYNAMICS OF PROJECTILES IN OVERTAKING BLAST FLOWFIELDS Muthukumaran.C.K.

More information

Numerical Modelling and Analysis of Water Free Surface Flows

Numerical Modelling and Analysis of Water Free Surface Flows EnviroInfo 2005 (Brno) Informatics for Environmental Protection - Networking Environmental Information Numerical Modelling and Analysis of Water Free Surface Flows Fadi Dabaghi 1, Abdellah El Kacimi 1,2,

More information

Ab initio NMR Chemical Shift Calculations for Biomolecular Systems Using Fragment Molecular Orbital Method

Ab initio NMR Chemical Shift Calculations for Biomolecular Systems Using Fragment Molecular Orbital Method 4 Ab initio NMR Chemical Shift Calculations for Biomolecular Systems Using Fragment Molecular Orbital Method A Large-scale Two-phase Flow Simulation Evolutive Image/ Video Coding with Massively Parallel

More information

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean 1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. A Direct Simulation-Based Study of Radiance in a Dynamic Ocean LONG-TERM GOALS Dick K.P. Yue Center for Ocean Engineering

More information

DISCONTINUOUS GALERKIN SHALLOW WATER SOLVER ON CUDA ARCHITECTURES

DISCONTINUOUS GALERKIN SHALLOW WATER SOLVER ON CUDA ARCHITECTURES 9 th International Conference on Hydroinformatics HIC 2010, Tianjin, CHINA DISCONTINUOUS GALERKIN SHALLOW WATER SOLVER ON CUDA ARCHITECTURES D. SCHWANENBERG Operational Water Management, Deltares, Rotterdamseweg

More information

Solving non-hydrostatic Navier-Stokes equations with a free surface

Solving non-hydrostatic Navier-Stokes equations with a free surface Solving non-hydrostatic Navier-Stokes equations with a free surface J.-M. Hervouet Laboratoire National d'hydraulique et Environnement, Electricite' De France, Research & Development Division, France.

More information

Artificial diffusivity/viscosity in Eulerian models. Models in intrinsic coordinate?

Artificial diffusivity/viscosity in Eulerian models. Models in intrinsic coordinate? Energetics of mixing Artificial diffusivity/viscosity in Eulerian models Models in intrinsic coordinate? Rui Xin Huang Woods Hole Oceanographic Institution Woods Hole, USA Ocean circulation is maintained

More information

An Approximate Method for Permuting Frame with Repeated Lattice Structure to Equivalent Beam

An Approximate Method for Permuting Frame with Repeated Lattice Structure to Equivalent Beam The Open Ocean Engineering Journal, 2011, 4, 55-59 55 Open Access An Approximate Method for Permuting Frame with Repeated Lattice Structure to Equivalent Beam H.I. Park a, * and C.G. Park b a Department

More information

An Overview of Computational Fluid Dynamics

An Overview of Computational Fluid Dynamics An Overview of Computational Fluid Dynamics Dr. Nor Azwadi bin Che Sidik Faculty of Mechanical Engineering Universiti Teknologi Malaysia INSPIRING CREATIVE AND INNOVATIVE MINDS 1 What is CFD? C computational

More information