Visualization and VR for the Grid

Size: px
Start display at page:

Download "Visualization and VR for the Grid"

Transcription

1 Visualization and VR for the Grid Chris Johnson Scientific Computing and Imaging Institute University of Utah

2 Computational Science Pipeline Construct a model of the physical domain (Mesh Generation, CAD) Apply boundary conditions Numerically approximate governing equations (FE, FD, BE) Compute (Preconditioners, Solvers) Visualize (Isosurfaces, Vector Fields, Volume Rendering) Think about the BIG PICTURE!

3 Computational Science Pipeline Think about Pipeline Complexity! Modeling Simulation Integration! Visualization

4 Interactive Interactive Large-Scale Large-Scale Visualization Visualization Medical Scientific Computing GeoScience

5 An HPV Success Story

6 Why Parallel Visualization? Terabyte P4

7 Why Parallel Visualization? Large Amounts of Data Compute Intensive Rendering Need Interactivity!

8 Visualization Algorithm Classification The visualization rendering pipeline: Geometry Database Geometry Transformation Per Vertex Rasterization Per Pixel Image

9 Parallel Visualization Taxonomy Sort-First Database Traversal Sort-Middle Database Traversal Sort-Last Database Traversal Preprocessing 3D Primitives Preprocessing Preprocessing G G G G G G G G G G G G 2D Primitives R R R R R R R R R R R R Rendered Pixels Display Display Display [Molnar et al. `94]

10 Parallel Visualization 1995 CM-5 Sort Last Molecular Dynamics Visualization

11 Parallel Visualization T3D NOISE Sort-Middle 10 FPS HIPPI-FB

12 Parallel Visualization Origin New Paradigm NUMA DSM Multiple- Graphics HW

13 Real-Time Ray Tracer (RTRT) Implemented on SGI Origin 3000 ccnuma architecture - up to 512 processors (now working on a distributed version) Approximately linear speedup Load balancing and memory coherence are key to performance

14 Real-Time Ray Tracer

15 Real-Time Ray Tracer - Scalability

16 Molecular Simulation and Visualization Protein Molecules Klaus Schulten Theoretical Biophysics Group, UIUC

17 Real-time Surface Rendering

18 Real-time Volume Rendering

19 Hardware Multipipe Partition Image using Hilbert Curve IR1 IR2 IR3 IR4 IR1 IR2 IR3

20 Multi-pipe Volume Rendering Requires 5GB/sec of disk I/O bandwidth for 3-5 Hz interaction rate - Impedance match to pipe texture download speed - 96 fibre channel interfaces, 6 per pipe RAM IR IR IR IR TRex:LANL/Utah

21 TRex: Multipipe Volume Rendering

22 Hardware Multipipe Results Average FPS for 3GB 512x512 Image Avg FPS IR 2 IR 4 IR 8 IR Number of Tiles

23 Overview of Parallel Visualization Techniques Rendering Features Global Illumination Multipipe Global Illumination Multipipe Rendering Polygon rendering RTRT Scalability / Interactivity

24 What s Next? Cluster and Grid Visualization Why? Current high end visualization hardware is expensive Current high end hardware not flexible But the real reason is: Clusters and the Grid are: cool, hot fashionable, the in thing

25 Cluster and Grid Visualization So, why are there ZERO papers on visualization in CCGrid? Maybe visualization isn t important? 66% of your brain is for visualization Visualization on clusters and grids is HARD!

26 Current Grid Based Visualization Non-interactive Visualization

27 Grid Visualization?

28 SGI RealityMonster "Mural Server" (8 processor SGI Origin) Client Thread Master Thread... Client Thread Pipe Thread Pipe Thread InfiniteReality Graphics InfiniteReality Graphics Projector Projector Projector Projector Projector Projector Projector Projector Network Client App... Client App OpenGL Protocol G. Humphreys, P. Hanrahan, A distributed graphics system for large tiled displays, Vis99

29 PC RealityMonster "Mural Server" (PC Cluster Version) Network Pipe Server Pipe Server Pipe Server GFX HW GFX HW GFX HW Projector Projector Projector Master Thread Pipe Server Pipe Server GFX HW GFX HW Projector Projector Pipe Server GFX HW Projector Client Thread... Client Thread Pipe Server Pipe Server GFX HW GFX HW Projector Projector Network Client App... Client App OpenGL Protocol G. Humphreys, I. Buck, P. Hanrahan, Distributed rendering for large tiled displays, Supercomputing 2000

30 Visualization on Clusters Sort-First Database Traversal G Preprocessing 3D Primitives G G G Parallelize R R R R Display Parallelize (Custom HW)

31 Stanford Cluster Multi-projector Based Sort First Parallel Rendering Custom DVI Compositing Network Similar in spirit to Sepia (Compaq) WireGL Software

32 Chromium Cr(Cluster Renderer) Cluster: 32 graphics nodes, 4 server nodes Computer: Compaq SP750 2 processors (800 Mhz, 133Mhz FSB) i840 core logic (biggest issue for vis-clusters) 256 MB memory 18GB disk (+ 3*36GB on servers) 64-bit, 66 Mhz PCI AGP-4X Pro Graphics NVIDIA GeForce3 Network Myrinet 64-bit, 66 Mhz

33 Princeton - Cluster Commodity Clustering

34 UT Austin Cluster Compaq Cluster Multi-Projector Custom Compositing Network

35 Utah Visualization Cluster 64 CPUs (1.7 GHz P4, 1 Gb memory each) Nvidia GeForce 3 Switch connected GigE network Heavy duty cooling racks

36 Cluster Visualization Clusters (basically multipipe rendering) -Compaq - Princeton - Stanford -UT Austin - Cal Tech -etc... Sort First Sort Last

37 Adding Clusters to the Picture Rendering Features Global Illumination Multipipe Global Illumination Multipipe Rendering Polygon Clusters rendering RTRT Scalability / Interactivity

38 Grid Visualization Service Approaches Do everything on the remote server Pros: simple to grid enable existing packages Cons: high latency, eliminates possibility of proxying and caching at local site. Very high-end remote server Moderate Bandwidth Link Local machine

39 Grid Visualization Service Approaches Do everything but the rendering on the remote server Pros: fairly simply to grid-enable existing packages, removes some load from the remote site. Cons: requires every local site to have good rendering power. Moderate bandwidth Link High-end remote server Computer with good rendering power

40 Grid Visualization Service Approaches Use a local proxy for the rendering Pros: offloads work from the remote site, allows local sites to contribute additional resources. Cons: local sites may not have sufficiently powerful proxy resources, application is more complex, requires high bandwidth between local and remote sites. High bandwidth link Moderate bandwidth link High-end remote server Powerful local proxy server Low-end local PC

41 Grid Visualization Service Approaches Do everything at the local site. Pros: low latency, easy to grid-enable existing packages. Cons: requires high-bandwidth link between sites, requires powerful compute and graphics resources at the local site. Low-end remote server Ultrahigh Bandwidth Link Powerful local server

42 Grid Visualization Needs Assertion: static application partitions are not appropriate for heavyweight grid services Need a uniform framework for grid-enabling and partitioning heavyweight services such as remote visualization.

43 Challenges to Providing Heavyweight Grid Services Grid visualization resources are limited We must find an easy way to grid-enable existing packages. Grid resources are wildly heterogeneous wrt to Visualization (graphics, displays, I/O, plus usual) Programs should be performance-portable (sense resources at load time) and configure themselves in some optimal way. Grid resources are dynamic Programs need be adaptive to dynamical adjust to changing resources might need user decision (e.g. accuracy versus frame rate) Applications that provide heavyweight grid services must be resource-aware.

44 Active Frames - CMU Dv is a flexible framework that allows one to schedule and partition heavyweight services, based on the notion of a active frame. Active Frame Server Input Active Frame Frame data Frame program Active frame interpreter Application libraries e.g, vtk Output Active Frame Frame data Frame program Host David O Hallaron, CMU

45 Grid-Enabling vtk with Dv request frame [request server, scheduler, flowgraph, data reader ] local Dv client result request server reader scheduler local Dv response frames (to other Dv servers) server [appl. data, scheduler, flowgraph,control ] remote machine local machine (Dv client) David O Hallaron, CMU

46 Cactus Ed Seidel

47 Grid Visualization Algorithms Compression (wavelets, multiresolution, mpeg, etc.) Importance Based Rendering View Dependent Image Based Rendering Adaptive (Resource Aware) Parallel/Distributed Techniques

48 Point-Cloud Rendering - ISI Thiebaux/Czajkowski/Kesselman - ISI

49 Volume Browsing Path - ISI Parallel I/O Reduction Sorting Transport Rendering TCP/IP Receive Buffer Volume time-series (3D time scalar) Parallel search/sort converts to OpenGL geom. Double-buffered frame reassembly Thiebaux/Czajkowski/Kesselman - ISI

50 The Visualization Pipeline Reduce the amount of data Reduce during the search... View point Preprocess Search O(V(k)) O(k) construct O(k) O(V(k)) Render Isovalue Offline Online

51 A View-dependent Approach Attractive for: Grid visualization Large data sets Sub-pixel polygons

52 View Dependent - Visible Woman Full View Isosurface depend Polys 2,246, ,000 Create 177 sec 72 sec Render 2.32 sec 0.25 sec

53 Parallel Image Based Rendering Size of the reconstruction image per pixel cost Complexity Modeling Complexity Polygon Count Lighting Complexity

54 Parallel IBR Part of Distributed Visualization

55 Immersive Interactive Visualization

56 Multiple Fields - Haptics

57 Immersive CFD Visualization

58 Future for Grid Visualization New Algorithms Rendering Features Global Illumination Multipipe Global Illumination Adaptive/Aware Importance Based IBR methods Clusters Polygon rendering View Dependent Grid Visualization Multiresolution RTRT Scalability / Interactivity

59 Future of Grid Visualization? GAMES!!!!! 16-way parallel 2GB RAMBUS 1G Polys per sec 50GB/sec memory bus 1920x1080 resolution

60 Future of Grid Visualization?

61 Acknowledgements DOE ASCI and SciDAC NSF NIH NCRR and BISTI SGI Visual Supercomputing Center Visual Influence

62 Scientific Computing and Imaging

63

64 More Information

Multi-Graphics. Multi-Graphics Project. Scalable Graphics using Commodity Graphics Systems

Multi-Graphics. Multi-Graphics Project. Scalable Graphics using Commodity Graphics Systems Multi-Graphics Scalable Graphics using Commodity Graphics Systems VIEWS PI Meeting May 17, 2000 Pat Hanrahan Stanford University http://www.graphics.stanford.edu/ Multi-Graphics Project Scalable and Distributed

More information

Parallel Visualization in the ASCI Program

Parallel Visualization in the ASCI Program AA220/CS238 - Parallel Methods in Numerical Analysis Parallel Visualization in the ASCI Program Lecture 27 November 26, 2003 Overview Visualization of large-scale datasets generated with massively parallel

More information

Parallelizing Graphics Pipeline Execution (+ Basics of Characterizing a Rendering Workload)

Parallelizing Graphics Pipeline Execution (+ Basics of Characterizing a Rendering Workload) Lecture 2: Parallelizing Graphics Pipeline Execution (+ Basics of Characterizing a Rendering Workload) Visual Computing Systems Analyzing a 3D Graphics Workload Where is most of the work done? Memory Vertex

More information

Parallelizing Graphics Pipeline Execution (+ Basics of Characterizing a Rendering Workload)

Parallelizing Graphics Pipeline Execution (+ Basics of Characterizing a Rendering Workload) Lecture 2: Parallelizing Graphics Pipeline Execution (+ Basics of Characterizing a Rendering Workload) Visual Computing Systems Today Finishing up from last time Brief discussion of graphics workload metrics

More information

Out-Of-Core Sort-First Parallel Rendering for Cluster-Based Tiled Displays

Out-Of-Core Sort-First Parallel Rendering for Cluster-Based Tiled Displays Out-Of-Core Sort-First Parallel Rendering for Cluster-Based Tiled Displays Wagner T. Corrêa James T. Klosowski Cláudio T. Silva Princeton/AT&T IBM OHSU/AT&T EG PGV, Germany September 10, 2002 Goals Render

More information

CS427 Multicore Architecture and Parallel Computing

CS427 Multicore Architecture and Parallel Computing CS427 Multicore Architecture and Parallel Computing Lecture 6 GPU Architecture Li Jiang 2014/10/9 1 GPU Scaling A quiet revolution and potential build-up Calculation: 936 GFLOPS vs. 102 GFLOPS Memory Bandwidth:

More information

CSE 591/392: GPU Programming. Introduction. Klaus Mueller. Computer Science Department Stony Brook University

CSE 591/392: GPU Programming. Introduction. Klaus Mueller. Computer Science Department Stony Brook University CSE 591/392: GPU Programming Introduction Klaus Mueller Computer Science Department Stony Brook University First: A Big Word of Thanks! to the millions of computer game enthusiasts worldwide Who demand

More information

Real-Time Graphics Architecture

Real-Time Graphics Architecture Real-Time Graphics Architecture Lecture 4: Parallelism and Communication Kurt Akeley Pat Hanrahan http://graphics.stanford.edu/cs448-07-spring/ Topics 1. Frame buffers 2. Types of parallelism 3. Communication

More information

SCIENTIFIC VISUALIZATION ON GPU CLUSTERS PETER MESSMER, NVIDIA

SCIENTIFIC VISUALIZATION ON GPU CLUSTERS PETER MESSMER, NVIDIA SCIENTIFIC VISUALIZATION ON GPU CLUSTERS PETER MESSMER, NVIDIA Visualization Rendering Visualization Isosurfaces, Isovolumes Field Operators (Gradient, Curl,.. ) Coordinate transformations Feature extraction

More information

A Data-Parallel Genealogy: The GPU Family Tree. John Owens University of California, Davis

A Data-Parallel Genealogy: The GPU Family Tree. John Owens University of California, Davis A Data-Parallel Genealogy: The GPU Family Tree John Owens University of California, Davis Outline Moore s Law brings opportunity Gains in performance and capabilities. What has 20+ years of development

More information

Parallel Computing Platforms. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Parallel Computing Platforms. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Parallel Computing Platforms Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Elements of a Parallel Computer Hardware Multiple processors Multiple

More information

Tracking Graphics State for Network Rendering

Tracking Graphics State for Network Rendering Tracking Graphics State for Network Rendering Ian Buck Greg Humphreys Pat Hanrahan Computer Science Department Stanford University Distributed Graphics How to manage distributed graphics applications,

More information

A Data-Parallel Genealogy: The GPU Family Tree

A Data-Parallel Genealogy: The GPU Family Tree A Data-Parallel Genealogy: The GPU Family Tree Department of Electrical and Computer Engineering Institute for Data Analysis and Visualization University of California, Davis Outline Moore s Law brings

More information

Spring 2009 Prof. Hyesoon Kim

Spring 2009 Prof. Hyesoon Kim Spring 2009 Prof. Hyesoon Kim Application Geometry Rasterizer CPU Each stage cane be also pipelined The slowest of the pipeline stage determines the rendering speed. Frames per second (fps) Executes on

More information

Parallel Computing Platforms

Parallel Computing Platforms Parallel Computing Platforms Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE3054: Multicore Systems, Spring 2017, Jinkyu Jeong (jinkyu@skku.edu)

More information

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller Entertainment Graphics: Virtual Realism for the Masses CSE 591: GPU Programming Introduction Computer games need to have: realistic appearance of characters and objects believable and creative shading,

More information

Computing architectures Part 2 TMA4280 Introduction to Supercomputing

Computing architectures Part 2 TMA4280 Introduction to Supercomputing Computing architectures Part 2 TMA4280 Introduction to Supercomputing NTNU, IMF January 16. 2017 1 Supercomputing What is the motivation for Supercomputing? Solve complex problems fast and accurately:

More information

Interactive Isosurface Ray Tracing of Large Octree Volumes

Interactive Isosurface Ray Tracing of Large Octree Volumes Interactive Isosurface Ray Tracing of Large Octree Volumes Aaron Knoll, Ingo Wald, Steven Parker, and Charles Hansen Scientific Computing and Imaging Institute University of Utah 2006 IEEE Symposium on

More information

Spring 2011 Prof. Hyesoon Kim

Spring 2011 Prof. Hyesoon Kim Spring 2011 Prof. Hyesoon Kim Application Geometry Rasterizer CPU Each stage cane be also pipelined The slowest of the pipeline stage determines the rendering speed. Frames per second (fps) Executes on

More information

Indirect Volume Rendering

Indirect Volume Rendering Indirect Volume Rendering Visualization Torsten Möller Weiskopf/Machiraju/Möller Overview Contour tracing Marching cubes Marching tetrahedra Optimization octree-based range query Weiskopf/Machiraju/Möller

More information

Convergence of Parallel Architecture

Convergence of Parallel Architecture Parallel Computing Convergence of Parallel Architecture Hwansoo Han History Parallel architectures tied closely to programming models Divergent architectures, with no predictable pattern of growth Uncertainty

More information

Scheduling the Graphics Pipeline on a GPU

Scheduling the Graphics Pipeline on a GPU Lecture 20: Scheduling the Graphics Pipeline on a GPU Visual Computing Systems Today Real-time 3D graphics workload metrics Scheduling the graphics pipeline on a modern GPU Quick aside: tessellation Triangle

More information

Cornell University CS 569: Interactive Computer Graphics. Introduction. Lecture 1. [John C. Stone, UIUC] NASA. University of Calgary

Cornell University CS 569: Interactive Computer Graphics. Introduction. Lecture 1. [John C. Stone, UIUC] NASA. University of Calgary Cornell University CS 569: Interactive Computer Graphics Introduction Lecture 1 [John C. Stone, UIUC] 2008 Steve Marschner 1 2008 Steve Marschner 2 NASA University of Calgary 2008 Steve Marschner 3 2008

More information

A Bandwidth Effective Rendering Scheme for 3D Texture-based Volume Visualization on GPU

A Bandwidth Effective Rendering Scheme for 3D Texture-based Volume Visualization on GPU for 3D Texture-based Volume Visualization on GPU Won-Jong Lee, Tack-Don Han Media System Laboratory (http://msl.yonsei.ac.k) Dept. of Computer Science, Yonsei University, Seoul, Korea Contents Background

More information

Enabling immersive gaming experiences Intro to Ray Tracing

Enabling immersive gaming experiences Intro to Ray Tracing Enabling immersive gaming experiences Intro to Ray Tracing Overview What is Ray Tracing? Why Ray Tracing? PowerVR Wizard Architecture Example Content Unity Hybrid Rendering Demonstration 3 What is Ray

More information

GeForce4. John Montrym Henry Moreton

GeForce4. John Montrym Henry Moreton GeForce4 John Montrym Henry Moreton 1 Architectural Drivers Programmability Parallelism Memory bandwidth 2 Recent History: GeForce 1&2 First integrated geometry engine & 4 pixels/clk Fixed-function transform,

More information

GPU ARCHITECTURE Chris Schultz, June 2017

GPU ARCHITECTURE Chris Schultz, June 2017 GPU ARCHITECTURE Chris Schultz, June 2017 MISC All of the opinions expressed in this presentation are my own and do not reflect any held by NVIDIA 2 OUTLINE CPU versus GPU Why are they different? CUDA

More information

GPGPU, 1st Meeting Mordechai Butrashvily, CEO GASS

GPGPU, 1st Meeting Mordechai Butrashvily, CEO GASS GPGPU, 1st Meeting Mordechai Butrashvily, CEO GASS Agenda Forming a GPGPU WG 1 st meeting Future meetings Activities Forming a GPGPU WG To raise needs and enhance information sharing A platform for knowledge

More information

Visualization Computer Graphics I Lecture 20

Visualization Computer Graphics I Lecture 20 15-462 Computer Graphics I Lecture 20 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] November 20, 2003 Doug James Carnegie Mellon University http://www.cs.cmu.edu/~djames/15-462/fall03

More information

Immersive Out-of-Core Visualization of Large-Size and Long-Timescale Molecular Dynamics Trajectories

Immersive Out-of-Core Visualization of Large-Size and Long-Timescale Molecular Dynamics Trajectories Immersive Out-of-Core Visualization of Large-Size and Long-Timescale Molecular Dynamics Trajectories J. Stone, K. Vandivort, K. Schulten Theoretical and Computational Biophysics Group Beckman Institute

More information

GPU ARCHITECTURE Chris Schultz, June 2017

GPU ARCHITECTURE Chris Schultz, June 2017 Chris Schultz, June 2017 MISC All of the opinions expressed in this presentation are my own and do not reflect any held by NVIDIA 2 OUTLINE Problems Solved Over Time versus Why are they different? Complex

More information

Simplifying Applications Use of Wall-Sized Tiled Displays. Espen Skjelnes Johnsen, Otto J. Anshus, John Markus Bjørndalen, Tore Larsen

Simplifying Applications Use of Wall-Sized Tiled Displays. Espen Skjelnes Johnsen, Otto J. Anshus, John Markus Bjørndalen, Tore Larsen Simplifying Applications Use of Wall-Sized Tiled Displays Espen Skjelnes Johnsen, Otto J. Anshus, John Markus Bjørndalen, Tore Larsen Abstract Computer users increasingly work with multiple displays that

More information

Hardware Accelerated Volume Visualization. Leonid I. Dimitrov & Milos Sramek GMI Austrian Academy of Sciences

Hardware Accelerated Volume Visualization. Leonid I. Dimitrov & Milos Sramek GMI Austrian Academy of Sciences Hardware Accelerated Volume Visualization Leonid I. Dimitrov & Milos Sramek GMI Austrian Academy of Sciences A Real-Time VR System Real-Time: 25-30 frames per second 4D visualization: real time input of

More information

Parallel Rendering. Johns Hopkins Department of Computer Science Course : Rendering Techniques, Professor: Jonathan Cohen

Parallel Rendering. Johns Hopkins Department of Computer Science Course : Rendering Techniques, Professor: Jonathan Cohen Parallel Rendering Molnar, Cox, Ellsworth, and Fuchs. A Sorting Classification of Parallel Rendering. IEEE Computer Graphics and Applications. July, 1994. Why Parallelism Applications need: High frame

More information

Computing on GPUs. Prof. Dr. Uli Göhner. DYNAmore GmbH. Stuttgart, Germany

Computing on GPUs. Prof. Dr. Uli Göhner. DYNAmore GmbH. Stuttgart, Germany Computing on GPUs Prof. Dr. Uli Göhner DYNAmore GmbH Stuttgart, Germany Summary: The increasing power of GPUs has led to the intent to transfer computing load from CPUs to GPUs. A first example has been

More information

Current Trends in Computer Graphics Hardware

Current Trends in Computer Graphics Hardware Current Trends in Computer Graphics Hardware Dirk Reiners University of Louisiana Lafayette, LA Quick Introduction Assistant Professor in Computer Science at University of Louisiana, Lafayette (since 2006)

More information

GPU Architecture and Function. Michael Foster and Ian Frasch

GPU Architecture and Function. Michael Foster and Ian Frasch GPU Architecture and Function Michael Foster and Ian Frasch Overview What is a GPU? How is a GPU different from a CPU? The graphics pipeline History of the GPU GPU architecture Optimizations GPU performance

More information

Evolution of GPUs Chris Seitz

Evolution of GPUs Chris Seitz Evolution of GPUs Chris Seitz Overview Concepts: Real-time rendering Hardware graphics pipeline Evolution of the PC hardware graphics pipeline: 1995-1998: Texture mapping and z-buffer 1998: Multitexturing

More information

Mattan Erez. The University of Texas at Austin

Mattan Erez. The University of Texas at Austin EE382V (17325): Principles in Computer Architecture Parallelism and Locality Fall 2007 Lecture 12 GPU Architecture (NVIDIA G80) Mattan Erez The University of Texas at Austin Outline 3D graphics recap and

More information

NVIDIA nforce IGP TwinBank Memory Architecture

NVIDIA nforce IGP TwinBank Memory Architecture NVIDIA nforce IGP TwinBank Memory Architecture I. Memory Bandwidth and Capacity There s Never Enough With the recent advances in PC technologies, including high-speed processors, large broadband pipelines,

More information

A MATLAB Interface to the GPU

A MATLAB Interface to the GPU Introduction Results, conclusions and further work References Department of Informatics Faculty of Mathematics and Natural Sciences University of Oslo June 2007 Introduction Results, conclusions and further

More information

2.11 Particle Systems

2.11 Particle Systems 2.11 Particle Systems 320491: Advanced Graphics - Chapter 2 152 Particle Systems Lagrangian method not mesh-based set of particles to model time-dependent phenomena such as snow fire smoke 320491: Advanced

More information

Robert Jamieson. Robs Techie PP Everything in this presentation is at your own risk!

Robert Jamieson. Robs Techie PP Everything in this presentation is at your own risk! Robert Jamieson Robs Techie PP Everything in this presentation is at your own risk! PC s Today Basic Setup Hardware pointers PCI Express How will it effect you Basic Machine Setup Set the swap space Min

More information

Communication has significant impact on application performance. Interconnection networks therefore have a vital role in cluster systems.

Communication has significant impact on application performance. Interconnection networks therefore have a vital role in cluster systems. Cluster Networks Introduction Communication has significant impact on application performance. Interconnection networks therefore have a vital role in cluster systems. As usual, the driver is performance

More information

Ray Tracing with Multi-Core/Shared Memory Systems. Abe Stephens

Ray Tracing with Multi-Core/Shared Memory Systems. Abe Stephens Ray Tracing with Multi-Core/Shared Memory Systems Abe Stephens Real-time Interactive Massive Model Visualization Tutorial EuroGraphics 2006. Vienna Austria. Monday September 4, 2006 http://www.sci.utah.edu/~abe/massive06/

More information

COMP 4801 Final Year Project. Ray Tracing for Computer Graphics. Final Project Report FYP Runjing Liu. Advised by. Dr. L.Y.

COMP 4801 Final Year Project. Ray Tracing for Computer Graphics. Final Project Report FYP Runjing Liu. Advised by. Dr. L.Y. COMP 4801 Final Year Project Ray Tracing for Computer Graphics Final Project Report FYP 15014 by Runjing Liu Advised by Dr. L.Y. Wei 1 Abstract The goal of this project was to use ray tracing in a rendering

More information

Windowing System on a 3D Pipeline. February 2005

Windowing System on a 3D Pipeline. February 2005 Windowing System on a 3D Pipeline February 2005 Agenda 1.Overview of the 3D pipeline 2.NVIDIA software overview 3.Strengths and challenges with using the 3D pipeline GeForce 6800 220M Transistors April

More information

A distributed rendering architecture for ray tracing large scenes on commodity hardware. FlexRender. Bob Somers Zoe J.

A distributed rendering architecture for ray tracing large scenes on commodity hardware. FlexRender. Bob Somers Zoe J. FlexRender A distributed rendering architecture for ray tracing large scenes on commodity hardware. GRAPP 2013 Bob Somers Zoe J. Wood Increasing Geometric Complexity Normal Maps artifacts on silhouette

More information

Appendix B - Unpublished papers

Appendix B - Unpublished papers Chapter 9 9.1 gtiledvnc - a 22 Mega-pixel Display Wall Desktop Using GPUs and VNC This paper is unpublished. 111 Unpublished gtiledvnc - a 22 Mega-pixel Display Wall Desktop Using GPUs and VNC Yong LIU

More information

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Outline History & Motivation Architecture Core architecture Network Topology Memory hierarchy Brief comparison to GPU & Tilera Programming Applications

More information

What are Clusters? Why Clusters? - a Short History

What are Clusters? Why Clusters? - a Short History What are Clusters? Our definition : A parallel machine built of commodity components and running commodity software Cluster consists of nodes with one or more processors (CPUs), memory that is shared by

More information

Serial. Parallel. CIT 668: System Architecture 2/14/2011. Topics. Serial and Parallel Computation. Parallel Computing

Serial. Parallel. CIT 668: System Architecture 2/14/2011. Topics. Serial and Parallel Computation. Parallel Computing CIT 668: System Architecture Parallel Computing Topics 1. What is Parallel Computing? 2. Why use Parallel Computing? 3. Types of Parallelism 4. Amdahl s Law 5. Flynn s Taxonomy of Parallel Computers 6.

More information

Visualization of Very Large Oceanography Time-Varying Volume Datasets

Visualization of Very Large Oceanography Time-Varying Volume Datasets Visualization of Very Large Oceanography Time-Varying Volume Datasets Sanghun Park 1, Chandrajit Bajaj 2, and Insung Ihm 3 1 School of Comp. & Info. Comm. Engineering, Catholic University of Daegu Gyungbuk

More information

Monday Morning. Graphics Hardware

Monday Morning. Graphics Hardware Monday Morning Department of Computer Engineering Graphics Hardware Ulf Assarsson Skärmen består av massa pixlar 3D-Rendering Objects are often made of triangles x,y,z- coordinate for each vertex Y X Z

More information

Graphics Processing Unit Architecture (GPU Arch)

Graphics Processing Unit Architecture (GPU Arch) Graphics Processing Unit Architecture (GPU Arch) With a focus on NVIDIA GeForce 6800 GPU 1 What is a GPU From Wikipedia : A specialized processor efficient at manipulating and displaying computer graphics

More information

Course Recap + 3D Graphics on Mobile GPUs

Course Recap + 3D Graphics on Mobile GPUs Lecture 18: Course Recap + 3D Graphics on Mobile GPUs Interactive Computer Graphics Q. What is a big concern in mobile computing? A. Power Two reasons to save power Run at higher performance for a fixed

More information

Silicon Graphics Prism TM : A Platform for Scalable Graphics

Silicon Graphics Prism TM : A Platform for Scalable Graphics Silicon Graphics, Inc. Silicon Graphics Prism TM : A Platform for Scalable Graphics Presented by: Alpana Kaulgud Engineering Director, Visual Systems Bruno Stefanizzi Applications Engineering Silicon Graphics

More information

Portland State University ECE 588/688. Graphics Processors

Portland State University ECE 588/688. Graphics Processors Portland State University ECE 588/688 Graphics Processors Copyright by Alaa Alameldeen 2018 Why Graphics Processors? Graphics programs have different characteristics from general purpose programs Highly

More information

CS8803SC Software and Hardware Cooperative Computing GPGPU. Prof. Hyesoon Kim School of Computer Science Georgia Institute of Technology

CS8803SC Software and Hardware Cooperative Computing GPGPU. Prof. Hyesoon Kim School of Computer Science Georgia Institute of Technology CS8803SC Software and Hardware Cooperative Computing GPGPU Prof. Hyesoon Kim School of Computer Science Georgia Institute of Technology Why GPU? A quiet revolution and potential build-up Calculation: 367

More information

Multi-Frame Rate Rendering for Standalone Graphics Systems

Multi-Frame Rate Rendering for Standalone Graphics Systems Multi-Frame Rate Rendering for Standalone Graphics Systems Jan P. Springer Stephan Beck Felix Weiszig Bernd Fröhlich Bauhaus-Universität Weimar Abstract: Multi-frame rate rendering is a technique for improving

More information

NVIDIA DESIGNWORKS Ankit Patel - Prerna Dogra -

NVIDIA DESIGNWORKS Ankit Patel - Prerna Dogra - NVIDIA DESIGNWORKS Ankit Patel - ankitp@nvidia.com Prerna Dogra - pdogra@nvidia.com 1 Autonomous Driving Deep Learning Visual Effects Virtual Desktops Visual Computing is our singular mission Gaming Product

More information

What s New with GPGPU?

What s New with GPGPU? What s New with GPGPU? John Owens Assistant Professor, Electrical and Computer Engineering Institute for Data Analysis and Visualization University of California, Davis Microprocessor Scaling is Slowing

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theory, Algorithms, and Applications Hong Qin State University of New York at Stony Brook (Stony Brook University) Stony Brook, New York 11794--4400 Tel: (631)632-8450; Fax: (631)632-8334

More information

Threading Hardware in G80

Threading Hardware in G80 ing Hardware in G80 1 Sources Slides by ECE 498 AL : Programming Massively Parallel Processors : Wen-Mei Hwu John Nickolls, NVIDIA 2 3D 3D API: API: OpenGL OpenGL or or Direct3D Direct3D GPU Command &

More information

Outline. Execution Environments for Parallel Applications. Supercomputers. Supercomputers

Outline. Execution Environments for Parallel Applications. Supercomputers. Supercomputers Outline Execution Environments for Parallel Applications Master CANS 2007/2008 Departament d Arquitectura de Computadors Universitat Politècnica de Catalunya Supercomputers OS abstractions Extended OS

More information

Graphics and Interaction Rendering pipeline & object modelling

Graphics and Interaction Rendering pipeline & object modelling 433-324 Graphics and Interaction Rendering pipeline & object modelling Department of Computer Science and Software Engineering The Lecture outline Introduction to Modelling Polygonal geometry The rendering

More information

! Readings! ! Room-level, on-chip! vs.!

! Readings! ! Room-level, on-chip! vs.! 1! 2! Suggested Readings!! Readings!! H&P: Chapter 7 especially 7.1-7.8!! (Over next 2 weeks)!! Introduction to Parallel Computing!! https://computing.llnl.gov/tutorials/parallel_comp/!! POSIX Threads

More information

ECE 571 Advanced Microprocessor-Based Design Lecture 20

ECE 571 Advanced Microprocessor-Based Design Lecture 20 ECE 571 Advanced Microprocessor-Based Design Lecture 20 Vince Weaver http://www.eece.maine.edu/~vweaver vincent.weaver@maine.edu 12 April 2016 Project/HW Reminder Homework #9 was posted 1 Raspberry Pi

More information

Performance OpenGL Programming (for whatever reason)

Performance OpenGL Programming (for whatever reason) Performance OpenGL Programming (for whatever reason) Mike Bailey Oregon State University Performance Bottlenecks In general there are four places a graphics system can become bottlenecked: 1. The computer

More information

Large Scale Data Visualization. CSC 7443: Scientific Information Visualization

Large Scale Data Visualization. CSC 7443: Scientific Information Visualization Large Scale Data Visualization Large Datasets Large datasets: D >> 10 M D D: Hundreds of gigabytes to terabytes and even petabytes M D : 1 to 4 GB of RAM Examples: Single large data set Time-varying data

More information

Chikai J. Ohazama, Ph.D.

Chikai J. Ohazama, Ph.D. OpenGL Volumizer & Large Data Visualization Chikai J. Ohazama, Ph.D. AGD Applied Engineering Overview Topics OpenGL Volumizer Parallel Volume Rendering Volume Roaming Performance Determination OpenGL Volumizer

More information

CS 563 Advanced Topics in Computer Graphics QSplat. by Matt Maziarz

CS 563 Advanced Topics in Computer Graphics QSplat. by Matt Maziarz CS 563 Advanced Topics in Computer Graphics QSplat by Matt Maziarz Outline Previous work in area Background Overview In-depth look File structure Performance Future Point Rendering To save on setup and

More information

The NVIDIA GeForce 8800 GPU

The NVIDIA GeForce 8800 GPU The NVIDIA GeForce 8800 GPU August 2007 Erik Lindholm / Stuart Oberman Outline GeForce 8800 Architecture Overview Streaming Processor Array Streaming Multiprocessor Texture ROP: Raster Operation Pipeline

More information

Tesla GPU Computing A Revolution in High Performance Computing

Tesla GPU Computing A Revolution in High Performance Computing Tesla GPU Computing A Revolution in High Performance Computing Mark Harris, NVIDIA Agenda Tesla GPU Computing CUDA Fermi What is GPU Computing? Introduction to Tesla CUDA Architecture Programming & Memory

More information

Profiling and Debugging Games on Mobile Platforms

Profiling and Debugging Games on Mobile Platforms Profiling and Debugging Games on Mobile Platforms Lorenzo Dal Col Senior Software Engineer, Graphics Tools Gamelab 2013, Barcelona 26 th June 2013 Agenda Introduction to Performance Analysis with ARM DS-5

More information

CMSC 611: Advanced. Parallel Systems

CMSC 611: Advanced. Parallel Systems CMSC 611: Advanced Computer Architecture Parallel Systems Parallel Computers Definition: A parallel computer is a collection of processing elements that cooperate and communicate to solve large problems

More information

About Phoenix FD PLUGIN FOR 3DS MAX AND MAYA. SIMULATING AND RENDERING BOTH LIQUIDS AND FIRE/SMOKE. USED IN MOVIES, GAMES AND COMMERCIALS.

About Phoenix FD PLUGIN FOR 3DS MAX AND MAYA. SIMULATING AND RENDERING BOTH LIQUIDS AND FIRE/SMOKE. USED IN MOVIES, GAMES AND COMMERCIALS. About Phoenix FD PLUGIN FOR 3DS MAX AND MAYA. SIMULATING AND RENDERING BOTH LIQUIDS AND FIRE/SMOKE. USED IN MOVIES, GAMES AND COMMERCIALS. Phoenix FD core SIMULATION & RENDERING. SIMULATION CORE - GRID-BASED

More information

CMPE 665:Multiple Processor Systems CUDA-AWARE MPI VIGNESH GOVINDARAJULU KOTHANDAPANI RANJITH MURUGESAN

CMPE 665:Multiple Processor Systems CUDA-AWARE MPI VIGNESH GOVINDARAJULU KOTHANDAPANI RANJITH MURUGESAN CMPE 665:Multiple Processor Systems CUDA-AWARE MPI VIGNESH GOVINDARAJULU KOTHANDAPANI RANJITH MURUGESAN Graphics Processing Unit Accelerate the creation of images in a frame buffer intended for the output

More information

Performance Analysis of Cluster based Interactive 3D Visualisation

Performance Analysis of Cluster based Interactive 3D Visualisation Performance Analysis of Cluster based Interactive 3D Visualisation P.D. MASELINO N. KALANTERY S.WINTER Centre for Parallel Computing University of Westminster 115 New Cavendish Street, London UNITED KINGDOM

More information

Node Hardware. Performance Convergence

Node Hardware. Performance Convergence Node Hardware Improved microprocessor performance means availability of desktop PCs with performance of workstations (and of supercomputers of 10 years ago) at significanty lower cost Parallel supercomputers

More information

GPU Memory Model Overview

GPU Memory Model Overview GPU Memory Model Overview John Owens University of California, Davis Department of Electrical and Computer Engineering Institute for Data Analysis and Visualization SciDAC Institute for Ultrascale Visualization

More information

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline sequence of operations to generate an image using object-order processing primitives processed one-at-a-time

More information

BlueGene/L. Computer Science, University of Warwick. Source: IBM

BlueGene/L. Computer Science, University of Warwick. Source: IBM BlueGene/L Source: IBM 1 BlueGene/L networking BlueGene system employs various network types. Central is the torus interconnection network: 3D torus with wrap-around. Each node connects to six neighbours

More information

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline sequence of operations to generate an image using object-order processing primitives processed one-at-a-time

More information

GPGPU introduction and network applications. PacketShaders, SSLShader

GPGPU introduction and network applications. PacketShaders, SSLShader GPGPU introduction and network applications PacketShaders, SSLShader Agenda GPGPU Introduction Computer graphics background GPGPUs past, present and future PacketShader A GPU-Accelerated Software Router

More information

Multimedia in Mobile Phones. Architectures and Trends Lund

Multimedia in Mobile Phones. Architectures and Trends Lund Multimedia in Mobile Phones Architectures and Trends Lund 091124 Presentation Henrik Ohlsson Contact: henrik.h.ohlsson@stericsson.com Working with multimedia hardware (graphics and displays) at ST- Ericsson

More information

Overview and Introduction to Scientific Visualization. Texas Advanced Computing Center The University of Texas at Austin

Overview and Introduction to Scientific Visualization. Texas Advanced Computing Center The University of Texas at Austin Overview and Introduction to Scientific Visualization Texas Advanced Computing Center The University of Texas at Austin Scientific Visualization The purpose of computing is insight not numbers. -- R. W.

More information

A New Bandwidth Reduction Method for Distributed Rendering Systems

A New Bandwidth Reduction Method for Distributed Rendering Systems A New Bandwidth Reduction Method for Distributed Rendering Systems Won-Jong Lee, Hyung-Rae Kim, Woo-Chan Park, Jung-Woo Kim, Tack-Don Han, and Sung-Bong Yang Media System Laboratory, Department of Computer

More information

Mali-400 MP: A Scalable GPU for Mobile Devices Tom Olson

Mali-400 MP: A Scalable GPU for Mobile Devices Tom Olson Mali-400 MP: A Scalable GPU for Mobile Devices Tom Olson Director, Graphics Research, ARM Outline ARM and Mobile Graphics Design Constraints for Mobile GPUs Mali Architecture Overview Multicore Scaling

More information

Introduction to Modern GPU Hardware

Introduction to Modern GPU Hardware The following content are extracted from the material in the references on last page. If any wrong citation or reference missing, please contact ldvan@cs.nctu.edu.tw. I will correct the error asap. This

More information

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI 6.6 - End Today s Contents GPU Cluster and its network topology The Roofline performance

More information

ACGV 2008, Lecture 1 Tuesday January 22, 2008

ACGV 2008, Lecture 1 Tuesday January 22, 2008 Advanced Computer Graphics and Visualization Spring 2008 Ch 1: Introduction Ch 4: The Visualization Pipeline Ch 5: Basic Data Representation Organization, Spring 2008 Stefan Seipel Filip Malmberg Mats

More information

PC I/O. May 7, Howard Huang 1

PC I/O. May 7, Howard Huang 1 PC I/O Today wraps up the I/O material with a little bit about PC I/O systems. Internal buses like PCI and ISA are critical. External buses like USB and Firewire are becoming more important. Today also

More information

Sparse Fluid Simulation in DirectX. Alex Dunn Dev. Tech. NVIDIA

Sparse Fluid Simulation in DirectX. Alex Dunn Dev. Tech. NVIDIA Sparse Fluid Simulation in DirectX Alex Dunn Dev. Tech. NVIDIA adunn@nvidia.com Eulerian Simulation Grid based. Great for simulating gaseous fluid; smoke, flame, clouds. It just works-> Basic Algorithm

More information

Architectures. Michael Doggett Department of Computer Science Lund University 2009 Tomas Akenine-Möller and Michael Doggett 1

Architectures. Michael Doggett Department of Computer Science Lund University 2009 Tomas Akenine-Möller and Michael Doggett 1 Architectures Michael Doggett Department of Computer Science Lund University 2009 Tomas Akenine-Möller and Michael Doggett 1 Overview of today s lecture The idea is to cover some of the existing graphics

More information

Beyond Programmable Shading Course ACM SIGGRAPH 2010 Panel: Fixed-Function Hardware

Beyond Programmable Shading Course ACM SIGGRAPH 2010 Panel: Fixed-Function Hardware Beyond Programmable Shading Course ACM SIGGRAPH 2010 Panel: Fixed-Function Hardware What role will it play in future graphics architectures? Fixed-Function Hardware GPU programmers love to hate it Its

More information

Graphics Hardware. Graphics Processing Unit (GPU) is a Subsidiary hardware. With massively multi-threaded many-core. Dedicated to 2D and 3D graphics

Graphics Hardware. Graphics Processing Unit (GPU) is a Subsidiary hardware. With massively multi-threaded many-core. Dedicated to 2D and 3D graphics Why GPU? Chapter 1 Graphics Hardware Graphics Processing Unit (GPU) is a Subsidiary hardware With massively multi-threaded many-core Dedicated to 2D and 3D graphics Special purpose low functionality, high

More information

CS GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1. Markus Hadwiger, KAUST

CS GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1. Markus Hadwiger, KAUST CS 380 - GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1 Markus Hadwiger, KAUST Reading Assignment #2 (until Feb. 17) Read (required): GLSL book, chapter 4 (The OpenGL Programmable

More information

Using GPUs to compute the multilevel summation of electrostatic forces

Using GPUs to compute the multilevel summation of electrostatic forces Using GPUs to compute the multilevel summation of electrostatic forces David J. Hardy Theoretical and Computational Biophysics Group Beckman Institute for Advanced Science and Technology University of

More information

Vector Engine Processor of SX-Aurora TSUBASA

Vector Engine Processor of SX-Aurora TSUBASA Vector Engine Processor of SX-Aurora TSUBASA Shintaro Momose, Ph.D., NEC Deutschland GmbH 9 th October, 2018 WSSP 1 NEC Corporation 2018 Contents 1) Introduction 2) VE Processor Architecture 3) Performance

More information