Approximating the surface volume of convex bodies

Size: px
Start display at page:

Download "Approximating the surface volume of convex bodies"

Transcription

1 Approximating the surface volume of convex bodies Hariharan Narayanan Advisor: Partha Niyogi Department of Computer Science, University of Chicago Approximating the surface volume of convex bodies p.

2 Surface volumes A natural measure of the quality of a cut in binary classification is its volume. If data points are from an open set in R d, this cut is the boundary of an open set, and the computation of its volume is of interest. Approximating the surface volume of convex bodies p.

3 Complexity of surface volumes The following is known about the hardness of approximating the volume of a convex set deterministically. Theorem 1 (Bárány-Füredi) There is no polynomial time deterministic algorithm that would compute a lower bound vol(k) and an upper bound vol(k) so that vol(k) vol(k) ( c n log n ) n. Approximating the surface volume of convex bodies p.

4 Complexity of surface volumes Let K be a convex body and C(K) be the cylinder over it of height h. Then vol C(K) hvol K vol K = 2. For small h, this approximates the volume of K. So approximating the surface volume is at least as hard as approximating the volume. K C(K) Figure 1: A cylinder of height h over K Approximating the surface volume of convex bodies p.

5 Randomized algorithms for volume The volume of a convex body can be computed in randomized polynomial-time as shown by Dyer, Frieze and Kannan [2]. Their algorithm took O(d 23 ) steps. In a series of papers, this was brought down to the current best - O (d 4 ) by Lovász and Vempala. Approximating the surface volume of convex bodies p.

6 Random algorithms for surface volum Grötschel, Lovász and Schrijver (1987) mention computing the surface volume of a convex body to be an open problem. The first and to our knowledge only work on surface volumes of convex bodies is by Dyer, Gritzmann and Hufnagel (1998), who gave a randomized polynomial time algorithm for this task. Their complexity analysis is sketchy. Approximating the surface volume of convex bodies p.

7 Random algorithms for surface volum The time complexity is {time for volume} {time for a quadratic program}. This appears to be O(d 9 ) (d = dimension) with present technology. On the other hand our running time is (in a restricted setting) O ( d 4 ɛ + d3.5 R 3 2 r 2 τɛ 3 where 1/τ is a condition number. ). Approximating the surface volume of convex bodies p.

8 Diffusion and Surface Volume The heat equation u = u t. u(x, 0) = f(x). has the solution u(, t) = f(x) K t (x, ), where K t (x, y), the heat kernel is (4πt) d/2 e x y 2 /4t. Approximating the surface volume of convex bodies p.

9 Diffusion and Surface Volume Let f be the function that takes the value 1 on points in M and 0 outside, i. e.u = 1 M. Then, u(x, t) = 1 M K t (, x). Define F t (M) = π/t R d M u(y, t)dy. Approximating the surface volume of convex bodies p.

10 Diffusion and Surface Volume In other words, we are assuming that the initial heat content per unit volume of M is 1. The quantity of heat that diffuses across the boundary from time 0 to t is K t (x, y)dxdy = t/πf t (M). R d M M Approximating the surface volume of convex bodies p. 1

11 Diffusion and Surface Volume We prove that lim F t (M) = vol M. t 0 If the condition number of M is τ = 1 Theorem ( 2 ( vol M = 1 + O d 3/2 )) t ln(1/t) F t (M) + (et ln(1/t))d/2 O( t )vol M Approximating the surface volume of convex bodies p. 1

12 Condition Number The Condition Number of a submanifold X of R d is defined to be 1/τ where τ is the largest number satisfying the following property: The open normal bundle about X of radius r is imbedded in R d for every r < τ. Approximating the surface volume of convex bodies p. 1

13 Condition Number Figure 2: M and two tangent spheres of radius τ Approximating the surface volume of convex bodies p. 1

14 Condition Number Alternate Definition when X is the boundary M of an open set M: Defined to be 1/τ where τ is the largest number satisfying the following property: For any r < τ, to every point p on M it is possible to draw two tangent spheres S 1 (p, r) and S 2 (p, r) such that S 1 (p, r) M and S 2 (p, r) M =. Approximating the surface volume of convex bodies p. 1

15 vol M and F t (M) Proposition 1 Let the dimension d 3, and let t < e 1 satisfy Then, t ln( 1 t ) < ɛ 40 2d 3/2. (1 2ɛ 5 )F t(m) < M < (1 + ɛ 2 )F t(m). Approximating the surface volume of convex bodies p. 1

16 Computing vol M when M is convex Let M be a convex body in R d. Let O be a point inside M with the property that a ball B(r ) of radius r and centre O is contained entirely inside M and a concentric ball B(R ) of radius R contains M. O Approximating the surface volume of convex bodies p. 1

17 Computing vol M when M is convex Consider the random variable z defined according to the following process. Definition 1 1. Choose a random point x out of the convex body M, from the uniform distribution. 2. Add to x a Gaussian random variable n having density function K t (0, n) = e n 2 /4t (4πt) d/2. 3. If x + n is outside M, set z to 1, else set z to 0. Approximating the surface volume of convex bodies p. 1

18 Computing vol M when M is convex Lemma 1 (vol M) πe[z ] t = F t (M). Proof: E[z ] = R d M M 1 K t (x, y)( vol M )dxdy. The lemma follows, since π F t (M) := t R d M M K t (x, y)dxdy. Approximating the surface volume of convex bodies p. 1

19 Computing vol M when M is convex Unfortunately, we cannot sample exactly from the uniform distribution. So, consider the random variable z defined according to the following process. Choose a random point x out of the convex body M, out of some fixed distribution with dɛ density ρ f that is within t 10R (1+ɛ /2) π of the uniform distribution on M in variation distance. Approximating the surface volume of convex bodies p. 1

20 Computing vol M when M is convex Add to x a Gaussian random variable n having density function K t (0, n) := e n 2 /4t (4πt) d/2. If x + n is outside M, set z to 1, else set z to 0. Approximating the surface volume of convex bodies p. 2

21 Computing vol M when M is convex Lemma 2 Let z be the random variable defined above. Let the dimension d 3, and let t < e 1 satisfy 1 t ln( t ) < ɛ 40 2d 3/2. Then, 1 ɛ /10 < (vol M) πe[z] tft (M) < 1 + ɛ /10. Approximating the surface volume of convex bodies p. 2

22 Computing vol M when M is convex Compute an estimate ˆv(M), of the volume of M to within a multiplicative error of ɛ/3 with confidence 7/8. Compute an estimate Ê[z] of E[z] with error ɛ/3, confidence 7/8. Call this estimate Ê[z]. Using a form of Hoeffding s ) inequality, we find (R that this takes O d ɛ samples. 3 Output π t Ê[z]ˆv(M). Approximating the surface volume of convex bodies p. 2

23 Computing vol M when M is convex Theorem 3 Let M be a convex body in R d. Let O be a point in M such that the ball of radius r centered at O is contained in M, and the concentric ball of radius R contains it. Let the condition number of M be 1/τ. Then, it is possible to find the surface area of M in time O ( d 4 ɛ + d3.5 R 3 2 r 2 τɛ 3 within an error of ɛ with probability greater than 3/4. ), Approximating the surface volume of convex bodies p. 2

24 Upper bound for M K(x, y)dx E_1 B_1 1 O_1 A H_1 F_1 R R R^2 D_1 G_1 M C Approximating the surface volume of convex bodies p. 2

25 Upper bound M K(x, y)dx < K(x, y)dx R d B 1 K(x, y)dx H 1 R d B 1 H 1 K(x, y)dx + B c 1 K(x, y)dx Approximating the surface volume of convex bodies p. 2

26 Upper bound Choose R = 2dt ln (1/t). Let the mass outside the ball of radius R that the gaussian with density 1 e x2 /4t be ɛ.then (4πt) d/2 ) ɛ = O ((et ln(1/t)) d/2. B 1 has radius > R and so K(x, y)dx < K(x, y)dx + ɛ. M H 1 Approximating the surface volume of convex bodies p. 2

27 Lower bound for M K(x, y)dx A M H_2 F_2 R C (R^2)/2 D_2 G_2 O_2 1 B_2 E_2 Approximating the surface volume of convex bodies p. 2

28 Lower bound M K(x, y)dx = > K(x, y)dx(since B 2 M) B 2 K(x, y)dx H 2 B 2 K(x, y)dx K(x, y)dx H 2 H 2 B2 c K(x, y)dx K(x, y)dx H 2 B c 2 Approximating the surface volume of convex bodies p. 2

29 Bounds for F t (M) y r H Let H K(x, y)dx =: h(r). Approximating the surface volume of convex bodies p. 2

30 Bounds for F t (M) Then, we have shown that 1. h(r + R 2 /2) ɛ < M K(x, y)dx 2. If r > R 2, h(r R 2 /2) + ɛ > M K(x, y)dx. Approximating the surface volume of convex bodies p. 3

31 Bounds for F t (M) Definition 2 Let [M] r denote the set of points at a distance of r to the manifold M. Let π r be map from [M] r to M that takes a point P on [M] r to the foot of the perpendicular from P to M. Lemma 3 Let y [M] r. Let the Jacobian of a map f be denoted by Df. (1 r) d 1 Dπ r (y) (1 + r) d 1. Approximating the surface volume of convex bodies p. 3

32 Bounds for F t (M) tau Q P Q P M Figure 4: M and two tangent spheres of radius τ Approximating the surface volume of convex bodies p. 3

33 Bounds for F t (M) Lemma 4 R d M R M K(x, y)dxdy ɛvol M. Lemma 5 (1 e α2 /4t ) π/t α 0 h(r)dr π/t. Approximating the surface volume of convex bodies p. 3

34 References [1] M. Belkin and P. Niyogi (2004). Semi-supervised Learning on Riemannian Manifolds. In Machine Learning 56, Special Issue on Clustering, [2] M. Dyer, A. Frieze and R. Kannan, A random polynomial time algorithm for approximating the volume of convex sets (1991) in Journal of the Association for Computing Machinary, 38:1-17, [3] M.Dyer, P Gritzmann and A. Hufnagel, On the complexity of computing Mixed Volumes, In SIAM J, Comput. volume 27, No 2, pp , April 1998 [4] M. R. Jerrum, L. G. Valiant and V. V. Vazirani (1986), Random generation of Combinatorial structures from a uniform distribution. Theoretical Computer Science, 43, [5] E. Levina and P.J. Bickel (2005). Maximum Likelihood estimation of intrinsic dimension. In Advances in NIPS 17, Eds. L. K. Saul, Y. Weiss, L. Bottou. [6] R. M. Karp and M. Luby, (1983). Monte-Carlo algorithms for enumeration and reliablility problems. Proc. of the 24th 33-1

35 IEEE Foundations of Computer Science (FOCS 83),56-64 [7] P.Niyogi, S. Weinberger, S. Smale (2004), Finding the Homology of Submanifolds with High Confidence from Random Samples. Technical Report TR , University of Chicago [8] L. Lovász and S. Vempala (2004), Hit-and-run from a corner Proc. of the 36th ACM Symposium on the Theory of Computing, Chicago [9] S. Vempala and L. Lovász, Simulated annealing in convex bodies and an O (n 4 ) volume algorithm Proc. of the 44th IEEE Foundations of Computer Science (FOCS 03), Boston,

A Geometric Perspective on Data Analysis

A Geometric Perspective on Data Analysis A Geometric Perspective on Data Analysis Partha Niyogi The University of Chicago Collaborators: M. Belkin, X. He, A. Jansen, H. Narayanan, V. Sindhwani, S. Smale, S. Weinberger A Geometric Perspectiveon

More information

An Analysis of a Variation of Hit-and-Run for Uniform Sampling from General Regions

An Analysis of a Variation of Hit-and-Run for Uniform Sampling from General Regions An Analysis of a Variation of Hit-and-Run for Uniform Sampling from General Regions SEKSAN KIATSUPAIBUL Chulalongkorn University ROBERT L. SMITH University of Michigan and ZELDA B. ZABINSKY University

More information

Online Stochastic Matching CMSC 858F: Algorithmic Game Theory Fall 2010

Online Stochastic Matching CMSC 858F: Algorithmic Game Theory Fall 2010 Online Stochastic Matching CMSC 858F: Algorithmic Game Theory Fall 2010 Barna Saha, Vahid Liaghat Abstract This summary is mostly based on the work of Saberi et al. [1] on online stochastic matching problem

More information

A Geometric Perspective on Machine Learning

A Geometric Perspective on Machine Learning A Geometric Perspective on Machine Learning Partha Niyogi The University of Chicago Collaborators: M. Belkin, V. Sindhwani, X. He, S. Smale, S. Weinberger A Geometric Perspectiveon Machine Learning p.1

More information

Chapter 15 Vector Calculus

Chapter 15 Vector Calculus Chapter 15 Vector Calculus 151 Vector Fields 152 Line Integrals 153 Fundamental Theorem and Independence of Path 153 Conservative Fields and Potential Functions 154 Green s Theorem 155 urface Integrals

More information

Influence of graph construction on graph-based clustering measures

Influence of graph construction on graph-based clustering measures Influence of graph construction on graph-based clustering measures Markus Maier Ulrike von Luxburg Max Planck Institute for Biological Cybernetics, Tübingen, Germany Matthias Hein aarland University, aarbrücken,

More information

Who s The Weakest Link?

Who s The Weakest Link? Who s The Weakest Link? Nikhil Devanur, Richard J. Lipton, and Nisheeth K. Vishnoi {nikhil,rjl,nkv}@cc.gatech.edu Georgia Institute of Technology, Atlanta, GA 30332, USA. Abstract. In this paper we consider

More information

Week 5. Convex Optimization

Week 5. Convex Optimization Week 5. Convex Optimization Lecturer: Prof. Santosh Vempala Scribe: Xin Wang, Zihao Li Feb. 9 and, 206 Week 5. Convex Optimization. The convex optimization formulation A general optimization problem is

More information

Simplicial Hyperbolic Surfaces

Simplicial Hyperbolic Surfaces Simplicial Hyperbolic Surfaces Talk by Ken Bromberg August 21, 2007 1-Lipschitz Surfaces- In this lecture we will discuss geometrically meaningful ways of mapping a surface S into a hyperbolic manifold

More information

Clustering. (Part 2)

Clustering. (Part 2) Clustering (Part 2) 1 k-means clustering 2 General Observations on k-means clustering In essence, k-means clustering aims at minimizing cluster variance. It is typically used in Euclidean spaces and works

More information

MATH 234. Excercises on Integration in Several Variables. I. Double Integrals

MATH 234. Excercises on Integration in Several Variables. I. Double Integrals MATH 234 Excercises on Integration in everal Variables I. Double Integrals Problem 1. D = {(x, y) : y x 1, 0 y 1}. Compute D ex3 da. Problem 2. Find the volume of the solid bounded above by the plane 3x

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus III-Final review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the corresponding position vector. 1) Define the points P = (-,

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Homework - Solutions 3 2 Homework 2 - Solutions 3 3 Homework 3 - Solutions 9 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus

More information

Parametric Surfaces. Substitution

Parametric Surfaces. Substitution Calculus Lia Vas Parametric Surfaces. Substitution Recall that a curve in space is given by parametric equations as a function of single parameter t x = x(t) y = y(t) z = z(t). A curve is a one-dimensional

More information

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane?

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane? Math 4 Practice Problems for Midterm. A unit vector that is perpendicular to both V =, 3, and W = 4,, is (a) V W (b) V W (c) 5 6 V W (d) 3 6 V W (e) 7 6 V W. In three dimensions, the graph of the equation

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

MATH 116 REVIEW PROBLEMS for the FINAL EXAM

MATH 116 REVIEW PROBLEMS for the FINAL EXAM MATH 116 REVIEW PROBLEMS for the FINAL EXAM The following questions are taken from old final exams of various calculus courses taught in Bilkent University 1. onsider the line integral (2xy 2 z + y)dx

More information

Open and Closed Sets

Open and Closed Sets Open and Closed Sets Definition: A subset S of a metric space (X, d) is open if it contains an open ball about each of its points i.e., if x S : ɛ > 0 : B(x, ɛ) S. (1) Theorem: (O1) and X are open sets.

More information

MODEL SELECTION AND REGULARIZATION PARAMETER CHOICE

MODEL SELECTION AND REGULARIZATION PARAMETER CHOICE MODEL SELECTION AND REGULARIZATION PARAMETER CHOICE REGULARIZATION METHODS FOR HIGH DIMENSIONAL LEARNING Francesca Odone and Lorenzo Rosasco odone@disi.unige.it - lrosasco@mit.edu June 6, 2011 ABOUT THIS

More information

Information Processing Letters

Information Processing Letters Information Processing Letters 113 (2013) 132 136 Contents lists available at SciVerse ScienceDirect Information Processing Letters www.elsevier.com/locate/ipl The complexity of geodesic Voronoi diagrams

More information

Lecture 9: Pipage Rounding Method

Lecture 9: Pipage Rounding Method Recent Advances in Approximation Algorithms Spring 2015 Lecture 9: Pipage Rounding Method Lecturer: Shayan Oveis Gharan April 27th Disclaimer: These notes have not been subjected to the usual scrutiny

More information

MODEL SELECTION AND REGULARIZATION PARAMETER CHOICE

MODEL SELECTION AND REGULARIZATION PARAMETER CHOICE MODEL SELECTION AND REGULARIZATION PARAMETER CHOICE REGULARIZATION METHODS FOR HIGH DIMENSIONAL LEARNING Francesca Odone and Lorenzo Rosasco odone@disi.unige.it - lrosasco@mit.edu June 3, 2013 ABOUT THIS

More information

What you will learn today

What you will learn today What you will learn today Tangent Planes and Linear Approximation and the Gradient Vector Vector Functions 1/21 Recall in one-variable calculus, as we zoom in toward a point on a curve, the graph becomes

More information

Local Limit Theorem in negative curvature. François Ledrappier. IM-URFJ, 26th May, 2014

Local Limit Theorem in negative curvature. François Ledrappier. IM-URFJ, 26th May, 2014 Local Limit Theorem in negative curvature François Ledrappier University of Notre Dame/ Université Paris 6 Joint work with Seonhee Lim, Seoul Nat. Univ. IM-URFJ, 26th May, 2014 1 (M, g) is a closed Riemannian

More information

Lecture 5: Duality Theory

Lecture 5: Duality Theory Lecture 5: Duality Theory Rajat Mittal IIT Kanpur The objective of this lecture note will be to learn duality theory of linear programming. We are planning to answer following questions. What are hyperplane

More information

A Geometric Perspective on Machine Learning

A Geometric Perspective on Machine Learning A Geometric Perspective on Machine Learning Partha Niyogi The University of Chicago Thanks: M. Belkin, A. Caponnetto, X. He, I. Matveeva, H. Narayanan, V. Sindhwani, S. Smale, S. Weinberger A Geometric

More information

Aspects of Geometry. Finite models of the projective plane and coordinates

Aspects of Geometry. Finite models of the projective plane and coordinates Review Sheet There will be an exam on Thursday, February 14. The exam will cover topics up through material from projective geometry through Day 3 of the DIY Hyperbolic geometry packet. Below are some

More information

CS675: Convex and Combinatorial Optimization Spring 2018 Consequences of the Ellipsoid Algorithm. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Spring 2018 Consequences of the Ellipsoid Algorithm. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Spring 2018 Consequences of the Ellipsoid Algorithm Instructor: Shaddin Dughmi Outline 1 Recapping the Ellipsoid Method 2 Complexity of Convex Optimization

More information

Scribe from 2014/2015: Jessica Su, Hieu Pham Date: October 6, 2016 Editor: Jimmy Wu

Scribe from 2014/2015: Jessica Su, Hieu Pham Date: October 6, 2016 Editor: Jimmy Wu CS 267 Lecture 3 Shortest paths, graph diameter Scribe from 2014/2015: Jessica Su, Hieu Pham Date: October 6, 2016 Editor: Jimmy Wu Today we will talk about algorithms for finding shortest paths in a graph.

More information

Applications of Triple Integrals

Applications of Triple Integrals Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections REVIEW I MATH 254 Calculus IV Exam I (Friday, April 29 will cover sections 14.1-8. 1. Functions of multivariables The definition of multivariable functions is similar to that of functions of one variable.

More information

Reachability on a region bounded by two attached squares

Reachability on a region bounded by two attached squares Reachability on a region bounded by two attached squares Ali Mohades mohades@cic.aku.ac.ir AmirKabir University of Tech., Math. and Computer Sc. Dept. Mohammadreza Razzazi razzazi@ce.aku.ac.ir AmirKabir

More information

Learning with the Aid of an Oracle

Learning with the Aid of an Oracle ' Learning with the Aid of an Oracle (1996; Bshouty, Cleve, Gavaldà, Kannan, Tamon) CHRISTINO TAMON, Computer Science, Clarkson University, http://www.clarkson.edu/ tino Exact Learning, Boolean Circuits,

More information

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals)

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals) MA 43 Calculus III Fall 8 Dr. E. Jacobs Assignments Reading assignments are found in James Stewart s Calculus (Early Transcendentals) Assignment. Spheres and Other Surfaces Read. -. and.6 Section./Problems

More information

MATH 2023 Multivariable Calculus

MATH 2023 Multivariable Calculus MATH 2023 Multivariable Calculus Problem Sets Note: Problems with asterisks represent supplementary informations. You may want to read their solutions if you like, but you don t need to work on them. Set

More information

LEXICOGRAPHIC LOCAL SEARCH AND THE P-CENTER PROBLEM

LEXICOGRAPHIC LOCAL SEARCH AND THE P-CENTER PROBLEM LEXICOGRAPHIC LOCAL SEARCH AND THE P-CENTER PROBLEM Refael Hassin, Asaf Levin and Dana Morad Abstract We introduce a local search strategy that suits combinatorial optimization problems with a min-max

More information

Average Case Analysis for Tree Labelling Schemes

Average Case Analysis for Tree Labelling Schemes Average Case Analysis for Tree Labelling Schemes Ming-Yang Kao 1, Xiang-Yang Li 2, and WeiZhao Wang 2 1 Northwestern University, Evanston, IL, USA, kao@cs.northwestern.edu 2 Illinois Institute of Technology,

More information

Lecture 9. Semidefinite programming is linear programming where variables are entries in a positive semidefinite matrix.

Lecture 9. Semidefinite programming is linear programming where variables are entries in a positive semidefinite matrix. CSE525: Randomized Algorithms and Probabilistic Analysis Lecture 9 Lecturer: Anna Karlin Scribe: Sonya Alexandrova and Keith Jia 1 Introduction to semidefinite programming Semidefinite programming is linear

More information

MATH203 Calculus. Dr. Bandar Al-Mohsin. School of Mathematics, KSU

MATH203 Calculus. Dr. Bandar Al-Mohsin. School of Mathematics, KSU School of Mathematics, KSU Theorem The rectangular coordinates (x, y, z) and the cylindrical coordinates (r, θ, z) of a point P are related as follows: x = r cos θ, y = r sin θ, tan θ = y x, r 2 = x 2

More information

Algorithms for Euclidean TSP

Algorithms for Euclidean TSP This week, paper [2] by Arora. See the slides for figures. See also http://www.cs.princeton.edu/~arora/pubs/arorageo.ps Algorithms for Introduction This lecture is about the polynomial time approximation

More information

Compactness Theorems for Saddle Surfaces in Metric Spaces of Bounded Curvature. Dimitrios E. Kalikakis

Compactness Theorems for Saddle Surfaces in Metric Spaces of Bounded Curvature. Dimitrios E. Kalikakis BULLETIN OF THE GREEK MATHEMATICAL SOCIETY Volume 51, 2005 (45 52) Compactness Theorems for Saddle Surfaces in Metric Spaces of Bounded Curvature Dimitrios E. Kalikakis Abstract The notion of a non-regular

More information

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions Calculus III Math Spring 7 In-term exam April th. Suggested solutions This exam contains sixteen problems numbered through 6. Problems 5 are multiple choice problems, which each count 5% of your total

More information

A 4-Approximation Algorithm for k-prize Collecting Steiner Tree Problems

A 4-Approximation Algorithm for k-prize Collecting Steiner Tree Problems arxiv:1802.06564v1 [cs.cc] 19 Feb 2018 A 4-Approximation Algorithm for k-prize Collecting Steiner Tree Problems Yusa Matsuda and Satoshi Takahashi The University of Electro-Communications, Japan February

More information

New algorithms for sampling closed and/or confined equilateral polygons

New algorithms for sampling closed and/or confined equilateral polygons New algorithms for sampling closed and/or confined equilateral polygons Jason Cantarella and Clayton Shonkwiler University of Georgia BIRS Workshop Entanglement in Biology November, 2013 Closed random

More information

On Evasiveness, Kneser Graphs, and Restricted Intersections: Lecture Notes

On Evasiveness, Kneser Graphs, and Restricted Intersections: Lecture Notes Guest Lecturer on Evasiveness topics: Sasha Razborov (U. Chicago) Instructor for the other material: Andrew Drucker Scribe notes: Daniel Freed May 2018 [note: this document aims to be a helpful resource,

More information

On the packing chromatic number of some lattices

On the packing chromatic number of some lattices On the packing chromatic number of some lattices Arthur S. Finbow Department of Mathematics and Computing Science Saint Mary s University Halifax, Canada BH C art.finbow@stmarys.ca Douglas F. Rall Department

More information

Lower bounds on the barrier parameter of convex cones

Lower bounds on the barrier parameter of convex cones of convex cones Université Grenoble 1 / CNRS June 20, 2012 / High Performance Optimization 2012, Delft Outline Logarithmically homogeneous barriers 1 Logarithmically homogeneous barriers Conic optimization

More information

Coloring 3-Colorable Graphs

Coloring 3-Colorable Graphs Coloring -Colorable Graphs Charles Jin April, 015 1 Introduction Graph coloring in general is an etremely easy-to-understand yet powerful tool. It has wide-ranging applications from register allocation

More information

An expected polynomial time algorithm for coloring 2-colorable 3-graphs

An expected polynomial time algorithm for coloring 2-colorable 3-graphs An expected polynomial time algorithm for coloring 2-colorable 3-graphs Yury Person 1,2 Mathias Schacht 2 Institut für Informatik Humboldt-Universität zu Berlin Unter den Linden 6, D-10099 Berlin, Germany

More information

Double Integrals, Iterated Integrals, Cross-sections

Double Integrals, Iterated Integrals, Cross-sections Chapter 14 Multiple Integrals 1 ouble Integrals, Iterated Integrals, Cross-sections 2 ouble Integrals over more general regions, efinition, Evaluation of ouble Integrals, Properties of ouble Integrals

More information

Table of Contents. Recognition of Facial Gestures... 1 Attila Fazekas

Table of Contents. Recognition of Facial Gestures... 1 Attila Fazekas Table of Contents Recognition of Facial Gestures...................................... 1 Attila Fazekas II Recognition of Facial Gestures Attila Fazekas University of Debrecen, Institute of Informatics

More information

Extensions of Semidefinite Coordinate Direction Algorithm. for Detecting Necessary Constraints to Unbounded Regions

Extensions of Semidefinite Coordinate Direction Algorithm. for Detecting Necessary Constraints to Unbounded Regions Extensions of Semidefinite Coordinate Direction Algorithm for Detecting Necessary Constraints to Unbounded Regions Susan Perrone Department of Mathematics and Statistics Northern Arizona University, Flagstaff,

More information

Randomness and Computation March 25, Lecture 5

Randomness and Computation March 25, Lecture 5 0368.463 Randomness and Computation March 25, 2009 Lecturer: Ronitt Rubinfeld Lecture 5 Scribe: Inbal Marhaim, Naama Ben-Aroya Today Uniform generation of DNF satisfying assignments Uniform generation

More information

THE GROWTH DEGREE OF VERTEX REPLACEMENT RULES

THE GROWTH DEGREE OF VERTEX REPLACEMENT RULES THE GROWTH DEGREE OF VERTEX REPLACEMENT RULES JOSEPH P. PREVITE AND MICHELLE PREVITE 1. Introduction. 2. Vertex Replacement Rules. 3. Marked Graphs Definition 3.1. A marked graph (G, p) is a graph with

More information

18.02 Final Exam. y = 0

18.02 Final Exam. y = 0 No books, notes or calculators. 5 problems, 50 points. 8.0 Final Exam Useful formula: cos (θ) = ( + cos(θ)) Problem. (0 points) a) (5 pts.) Find the equation in the form Ax + By + z = D of the plane P

More information

Ellipsoid II: Grötschel-Lovász-Schrijver theorems

Ellipsoid II: Grötschel-Lovász-Schrijver theorems Lecture 9 Ellipsoid II: Grötschel-Lovász-Schrijver theorems I László Lovász. Ryan O Donnell We saw in the last lecture that the Ellipsoid Algorithm can solve the optimization problem max s.t. c x Ax b

More information

1 Introduction and Results

1 Introduction and Results On the Structure of Graphs with Large Minimum Bisection Cristina G. Fernandes 1,, Tina Janne Schmidt,, and Anusch Taraz, 1 Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil, cris@ime.usp.br

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 18 Luca Trevisan March 3, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 18 Luca Trevisan March 3, 2011 Stanford University CS359G: Graph Partitioning and Expanders Handout 8 Luca Trevisan March 3, 20 Lecture 8 In which we prove properties of expander graphs. Quasirandomness of Expander Graphs Recall that

More information

On Approximating Minimum Vertex Cover for Graphs with Perfect Matching

On Approximating Minimum Vertex Cover for Graphs with Perfect Matching On Approximating Minimum Vertex Cover for Graphs with Perfect Matching Jianer Chen and Iyad A. Kanj Abstract It has been a challenging open problem whether there is a polynomial time approximation algorithm

More information

Chapter 15 Notes, Stewart 7e

Chapter 15 Notes, Stewart 7e Contents 15.2 Iterated Integrals..................................... 2 15.3 Double Integrals over General Regions......................... 5 15.4 Double Integrals in Polar Coordinates..........................

More information

Closed Random Walks and Symplectic Geometry

Closed Random Walks and Symplectic Geometry Closed Random Walks and Symplectic Geometry Clayton Shonkwiler University of Georgia Wichita State University December 11, 2013 Random Walks (and Polymer Physics) Physics Question What is the average shape

More information

Edge-disjoint Spanning Trees in Triangulated Graphs on Surfaces and application to node labeling 1

Edge-disjoint Spanning Trees in Triangulated Graphs on Surfaces and application to node labeling 1 Edge-disjoint Spanning Trees in Triangulated Graphs on Surfaces and application to node labeling 1 Arnaud Labourel a a LaBRI - Universite Bordeaux 1, France Abstract In 1974, Kundu [4] has shown that triangulated

More information

302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES. 4. Function of several variables, their domain. 6. Limit of a function of several variables

302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES. 4. Function of several variables, their domain. 6. Limit of a function of several variables 302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 3.8 Chapter Review 3.8.1 Concepts to Know You should have an understanding of, and be able to explain the concepts listed below. 1. Boundary and interior points

More information

Estimating the Information Rate of Noisy Two-Dimensional Constrained Channels

Estimating the Information Rate of Noisy Two-Dimensional Constrained Channels Estimating the Information Rate of Noisy Two-Dimensional Constrained Channels Mehdi Molkaraie and Hans-Andrea Loeliger Dept. of Information Technology and Electrical Engineering ETH Zurich, Switzerland

More information

Summary of Raptor Codes

Summary of Raptor Codes Summary of Raptor Codes Tracey Ho October 29, 2003 1 Introduction This summary gives an overview of Raptor Codes, the latest class of codes proposed for reliable multicast in the Digital Fountain model.

More information

Lecture 2 Optimization with equality constraints

Lecture 2 Optimization with equality constraints Lecture 2 Optimization with equality constraints Constrained optimization The idea of constrained optimisation is that the choice of one variable often affects the amount of another variable that can be

More information

Convexization in Markov Chain Monte Carlo

Convexization in Markov Chain Monte Carlo in Markov Chain Monte Carlo 1 IBM T. J. Watson Yorktown Heights, NY 2 Department of Aerospace Engineering Technion, Israel August 23, 2011 Problem Statement MCMC processes in general are governed by non

More information

Tripod Configurations

Tripod Configurations Tripod Configurations Eric Chen, Nick Lourie, Nakul Luthra Summer@ICERM 2013 August 8, 2013 Eric Chen, Nick Lourie, Nakul Luthra (S@I) Tripod Configurations August 8, 2013 1 / 33 Overview 1 Introduction

More information

Practice problems from old exams for math 233

Practice problems from old exams for math 233 Practice problems from old exams for math 233 William H. Meeks III October 26, 2012 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

Mathematics. Time Allowed: 3 hours Maximum : The question paper consists of 31 questions divided into four sections A, B, C and D.

Mathematics. Time Allowed: 3 hours Maximum : The question paper consists of 31 questions divided into four sections A, B, C and D. Sample Paper (CBSE) Series SC/SP Code No. SP-16 Mathematics Time Allowed: 3 hours Maximum : 90 General Instructions: 1. All questions are compulsory. 2. The question paper consists of 31 questions divided

More information

CS522: Advanced Algorithms

CS522: Advanced Algorithms Lecture 1 CS5: Advanced Algorithms October 4, 004 Lecturer: Kamal Jain Notes: Chris Re 1.1 Plan for the week Figure 1.1: Plan for the week The underlined tools, weak duality theorem and complimentary slackness,

More information

Online algorithms for clustering problems

Online algorithms for clustering problems University of Szeged Department of Computer Algorithms and Artificial Intelligence Online algorithms for clustering problems Summary of the Ph.D. thesis by Gabriella Divéki Supervisor Dr. Csanád Imreh

More information

Three Different Algorithms for Generating Uniformly Distributed Random Points on the N-Sphere

Three Different Algorithms for Generating Uniformly Distributed Random Points on the N-Sphere Three Different Algorithms for Generating Uniformly Distributed Random Points on the N-Sphere Jan Poland Oct 4, 000 Abstract We present and compare three different approaches to generate random points

More information

arxiv:cs/ v1 [cs.cc] 28 Apr 2003

arxiv:cs/ v1 [cs.cc] 28 Apr 2003 ICM 2002 Vol. III 1 3 arxiv:cs/0304039v1 [cs.cc] 28 Apr 2003 Approximation Thresholds for Combinatorial Optimization Problems Uriel Feige Abstract An NP-hard combinatorial optimization problem Π is said

More information

Discrete geometry. Lecture 2. Alexander & Michael Bronstein tosca.cs.technion.ac.il/book

Discrete geometry. Lecture 2. Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Discrete geometry Lecture 2 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 The world is continuous, but the mind is discrete

More information

Turn Graphs and Extremal Surfaces in Free Groups

Turn Graphs and Extremal Surfaces in Free Groups Turn Graphs and Extremal Surfaces in Free Groups Noel Brady, Matt Clay, and Max Forester Abstract. This note provides an alternate account of Calegari s rationality theorem for stable commutator length

More information

Algorithmic Regularity Lemmas and Applications

Algorithmic Regularity Lemmas and Applications Algorithmic Regularity Lemmas and Applications László Miklós Lovász Massachusetts Institute of Technology Proving and Using Pseudorandomness Simons Institute for the Theory of Computing Joint work with

More information

Minicourse II Symplectic Monte Carlo Methods for Random Equilateral Polygons

Minicourse II Symplectic Monte Carlo Methods for Random Equilateral Polygons Minicourse II Symplectic Monte Carlo Methods for Random Equilateral Polygons Jason Cantarella and Clayton Shonkwiler University of Georgia Georgia Topology Conference July 9, 2013 Basic Definitions Symplectic

More information

Lecture 11: Clustering and the Spectral Partitioning Algorithm A note on randomized algorithm, Unbiased estimates

Lecture 11: Clustering and the Spectral Partitioning Algorithm A note on randomized algorithm, Unbiased estimates CSE 51: Design and Analysis of Algorithms I Spring 016 Lecture 11: Clustering and the Spectral Partitioning Algorithm Lecturer: Shayan Oveis Gharan May nd Scribe: Yueqi Sheng Disclaimer: These notes have

More information

arxiv: v1 [cs.ds] 20 Dec 2017

arxiv: v1 [cs.ds] 20 Dec 2017 On Counting Perfect Matchings in General Graphs Daniel Štefankovič Eric Vigoda John Wilmes December 21, 2017 arxiv:1712.07504v1 [cs.ds] 20 Dec 2017 Abstract Counting perfect matchings has played a central

More information

Kurt Mehlhorn, MPI für Informatik. Curve and Surface Reconstruction p.1/25

Kurt Mehlhorn, MPI für Informatik. Curve and Surface Reconstruction p.1/25 Curve and Surface Reconstruction Kurt Mehlhorn MPI für Informatik Curve and Surface Reconstruction p.1/25 Curve Reconstruction: An Example probably, you see more than a set of points Curve and Surface

More information

Triangle in a brick. Department of Geometry, Budapest University of Technology and Economics, H-1521 Budapest, Hungary. September 15, 2010

Triangle in a brick. Department of Geometry, Budapest University of Technology and Economics, H-1521 Budapest, Hungary. September 15, 2010 Triangle in a brick Á.G.Horváth Department of Geometry, udapest University of Technology Economics, H-151 udapest, Hungary September 15, 010 bstract In this paper we shall investigate the following problem:

More information

Some irrational polygons have many periodic billiard paths

Some irrational polygons have many periodic billiard paths Some irrational polygons have many periodic billiard paths W. Patrick Hooper Northwestern University Spring Topology and Dynamics Conference Milwaukee, Wisconsin March 5, 8 Lower bounds on growth rates

More information

Edges and Triangles. Po-Shen Loh. Carnegie Mellon University. Joint work with Jacob Fox

Edges and Triangles. Po-Shen Loh. Carnegie Mellon University. Joint work with Jacob Fox Edges and Triangles Po-Shen Loh Carnegie Mellon University Joint work with Jacob Fox Edges in triangles Observation There are graphs with the property that every edge is contained in a triangle, but no

More information

Today s outline: pp

Today s outline: pp Chapter 3 sections We will SKIP a number of sections Random variables and discrete distributions Continuous distributions The cumulative distribution function Bivariate distributions Marginal distributions

More information

Independent dominating sets in graphs of girth five via the semi-random method

Independent dominating sets in graphs of girth five via the semi-random method Independent dominating sets in graphs of girth five via the semi-random method Ararat Harutyunyan (Oxford), Paul Horn (Harvard), Jacques Verstraete (UCSD) March 12, 2014 Introduction: The semi-random method

More information

Hw 4 Due Feb 22. D(fg) x y z (

Hw 4 Due Feb 22. D(fg) x y z ( Hw 4 Due Feb 22 2.2 Exercise 7,8,10,12,15,18,28,35,36,46 2.3 Exercise 3,11,39,40,47(b) 2.4 Exercise 6,7 Use both the direct method and product rule to calculate where f(x, y, z) = 3x, g(x, y, z) = ( 1

More information

Double Integrals over Polar Coordinate

Double Integrals over Polar Coordinate 1. 15.4 DOUBLE INTEGRALS OVER POLAR COORDINATE 1 15.4 Double Integrals over Polar Coordinate 1. Polar Coordinates. The polar coordinates (r, θ) of a point are related to the rectangular coordinates (x,y)

More information

Applied Lagrange Duality for Constrained Optimization

Applied Lagrange Duality for Constrained Optimization Applied Lagrange Duality for Constrained Optimization Robert M. Freund February 10, 2004 c 2004 Massachusetts Institute of Technology. 1 1 Overview The Practical Importance of Duality Review of Convexity

More information

Random Walks and Universal Sequences

Random Walks and Universal Sequences Random Walks and Universal Sequences Xiaochen Qi February 28, 2013 Abstract A random walk is a chance process studied in probability, which plays an important role in probability theory and its applications.

More information

1 Double Integral. 1.1 Double Integral over Rectangular Domain

1 Double Integral. 1.1 Double Integral over Rectangular Domain Double Integral. Double Integral over Rectangular Domain As the definite integral of a positive function of one variable represents the area of the region between the graph and the x-asis, the double integral

More information

Review 1. Richard Koch. April 23, 2005

Review 1. Richard Koch. April 23, 2005 Review Richard Koch April 3, 5 Curves From the chapter on curves, you should know. the formula for arc length in section.;. the definition of T (s), κ(s), N(s), B(s) in section.4. 3. the fact that κ =

More information

MA 174: Multivariable Calculus Final EXAM (practice) NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper.

MA 174: Multivariable Calculus Final EXAM (practice) NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper. MA 174: Multivariable alculus Final EXAM (practice) NAME lass Meeting Time: NO ALULATOR, BOOK, OR PAPER ARE ALLOWED. Use the back of the test pages for scrap paper. Points awarded 1. (5 pts). (5 pts).

More information

On Clarkson s Las Vegas Algorithms for Linear and Integer Programming When the Dimension is Small

On Clarkson s Las Vegas Algorithms for Linear and Integer Programming When the Dimension is Small On Clarkson s Las Vegas Algorithms for Linear and Integer Programming When the Dimension is Small Robert Bassett March 10, 2014 2 Question/Why Do We Care Motivating Question: Given a linear or integer

More information

Orthogonal Ham-Sandwich Theorem in R 3

Orthogonal Ham-Sandwich Theorem in R 3 Orthogonal Ham-Sandwich Theorem in R 3 Downloaded 11/24/17 to 37.44.201.8. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php Abstract The ham-sandwich theorem

More information

CS 435, 2018 Lecture 9, Date: 3 May 2018 Instructor: Nisheeth Vishnoi. Cutting Plane and Ellipsoid Methods for Linear Programming

CS 435, 2018 Lecture 9, Date: 3 May 2018 Instructor: Nisheeth Vishnoi. Cutting Plane and Ellipsoid Methods for Linear Programming CS 435, 2018 Lecture 9, Date: 3 May 2018 Instructor: Nisheeth Vishnoi Cutting Plane and Ellipsoid Methods for Linear Programming In this lecture we introduce the class of cutting plane methods for convex

More information

Fountain Codes Based on Zigzag Decodable Coding

Fountain Codes Based on Zigzag Decodable Coding Fountain Codes Based on Zigzag Decodable Coding Takayuki Nozaki Kanagawa University, JAPAN Email: nozaki@kanagawa-u.ac.jp Abstract Fountain codes based on non-binary low-density parity-check (LDPC) codes

More information

Analysis of high dimensional data via Topology. Louis Xiang. Oak Ridge National Laboratory. Oak Ridge, Tennessee

Analysis of high dimensional data via Topology. Louis Xiang. Oak Ridge National Laboratory. Oak Ridge, Tennessee Analysis of high dimensional data via Topology Louis Xiang Oak Ridge National Laboratory Oak Ridge, Tennessee Contents Abstract iii 1 Overview 1 2 Data Set 1 3 Simplicial Complex 5 4 Computation of homology

More information

Random Simplicial Complexes

Random Simplicial Complexes Random Simplicial Complexes Duke University CAT-School 2015 Oxford 10/9/2015 Part III Extensions & Applications Contents Morse Theory for the Distance Function Persistent Homology and Maximal Cycles Contents

More information

To be a grade 1 I need to

To be a grade 1 I need to To be a grade 1 I need to Order positive and negative integers Understand addition and subtraction of whole numbers and decimals Apply the four operations in correct order to integers and proper fractions

More information