Chapter 15 Notes, Stewart 7e

Size: px
Start display at page:

Download "Chapter 15 Notes, Stewart 7e"

Transcription

1 Contents 15.2 Iterated Integrals Double Integrals over General Regions Double Integrals in Polar Coordinates Applications of Double Integrals The Triple Integral Triple Integrals in Cylindrical Coordinates Triple Integrals in Spherical Coordinates

2 15.2 Iterated Integrals If f(x, y) is a function of two variables on R = [a, b] [c, d] we can do partial integration the same way we did partial derivatives. If we look at d c f(x, y) dy then we are integrating y and holding x constant. In fact we get a function of x: A(x) = We can also integrate A(x) with respect to x: d c f(x, y) dy. b A(x) dx = b d a a c f(x, y) dy dx. The integral of f(x, y) over the region R can be expressed as f(x, y) da = b d a c R f(x, y) dy dx. where da = dxdy = dydx. If f(x, y) is continuous then these integrals are interchangeable b d f(x, y) dy dx = d b a c c a f(x, y) dx dy. Example x 2 + y 2 dy dx. 2

3 Example (2x + y) 8 dx dy. Example xe x y dy dx. 3

4 Example Find the volume of the solid bounded by the elliptic paraboloid z = 1 + (x 1) 2 + 4y 2, the planes x = 3 and y = 2 and the coordinate axes. Step 1: DRAW THE REGION 4

5 15.3 Double Integrals over General Regions What about nonrectangular regions and double integrals? It is mostly the same but now the limits can be functions and not just numbers. There are two types of regions: Type I y y = g 2 (x) a y = g 1 (x) b x Always integrate in the direction of the postive arrow. In this case we will start with y. b y=g2 (x) a y=g 1 (x) f(x, y) dy dx. Type II y b x = g 1 (y) x = g 2 (y) a x Always integrate in the direction of the postive arrow. In this case we will start with x. b x=g2 (y) a x=g 1 (y) f(x, y) dx dy. 5

6 Example Sketch the region and evaluate the integral y 2 x=y 2 1 x=y dx dy x 1 6

7 Example Evaluate 4y da, D = {(x, y) 1 x 2, 0 y 2x} x D Example Evaluate x + y da, where A is bounded by y = x and y = x 2. D 7

8 Example Find the volume of the solid enclosed by the paraboloid z = x 2 + 3y 2 and the planes x = 0, y = 1, y = x and z = 0 8

9 Example Sketch the region and change the order of integration x x 2 6x dy dx Example Sketch the region and change the order of integration. 1 e x 0 1 dy dx 9

10 15.4 Double Integrals in Polar Coordinates Integrating in polar coordinates When we were integrating f(x, y) da in cartesian coordinates our da was a small rectangle D of size da = dx dy or da = dy dx. Now we want to be able to integrate in polar coordinates so da = r dr dθ. Conversion Factors: x = r cos θ y = r sin θ r 2 = x 2 + y 2 Example Evaluate 4 y2 and the y-axis. D e x2 y 2 da where D is the region bounded by the semicircle x = 1. sketch the region. 2. convert to polar. 3. set up integral where da = r dr dθ Example Find the area of the region inside the circle r = 4 cos θ and outside the circle r = sketch the region. 2. set up integral where da = r dr dθ Example Convert to polar coordinates and integrate (x 1) 2 0 x + y dy dx x 2 + y2 10

11 15.5 Applications of Double Integrals I. Density and Mass and Density = mass volume mass = volume Density In calculus if we know the density ρ(x, y) function we can add up differential masses M = mass = ρ(x, y) da R II. Center of Mass When we calculute the center of mass we need to know the moment about each axis and the mass. We already know how to calculate the mass so M y = xρ(x, y) da and M x = yρ(x, y) da R R Then x = M y M and y = M x M Example Find the center of mass of the region of constant density bounded by y 2 = 2x and x + y = 4 in the first quadrant. Example Find the center of mass of a thin plate bounded by y = 1 and y = x 2 when the density is given by ρ(x, y) = y

12 15.7 The Triple Integral Everything is the same as before but now we are integrating over a ball in space rather than a 2-D region. dv = dx dy dz and Volume = dv Example Integrating in 3-D 1 π π R ysinz dx dy dz Example Let D be the region bounded by the paraboloids z = 8 x 2 y 2 and z = x 2 +y 2. Write iterated integrals for the volume 3 ways. dv = dz dx dy, dv = dz dy dx and dv = dx dy dz Example Find the volume of the wedge cut from the cylinder x 2 + y 2 = 1 by the planes z = y and z = 0 and z 0. Example Rewrite 5 ways: 1 1 x 2 1 x f(x, y, z) dy dz dx 12

13 15.8 Triple Integrals in Cylindrical Coordinates Recall 2-D: Cartesian: (x, y) Polar: (r, θ) Conversion Factors: x = r cos θ y = r sin θ r 2 = x 2 + y 2 We are going to extend the idea of polar coordinates to 3 dimensions. We do this by considering the xy-plane as a polar coordinate system and the z-axis stays the same. Cylindrical Coordinates: Cartesian: (x, y, z) Cylindrical: (r, θ, z) Conversion Factors from rectangular to cylindrical.: x = r cos θ z = z y = r sin θ r 2 = x 2 + y 2 z (x, y, z) (r, θ, z) y x (r, θ) Example Translate the equations from the given system to the either rectangular or cylindrical as appropriate. A. z = x 2 + y 2, z 1. B. r = 3 sec θ 13

14 2-D integration: In cartesian coordinates da = dx dy and in polar coordinates da = r dr dθ. 3-D integration: In rectangular coordinates dv = dx dy dz and in cylindrical coordinates we need to find our dv : dv = r dz dr dθ. Everything else is the same: 1. Draw the region in 3-space. 2. Draw the projection onto the rθ-plane. 3. Choose an order of integration. 4. Establish the limits. Example Set up the integral for evaluating x2 + y E 2 dv where E is the region that lies inside the cylinder x 2 + y 2 = 16 and between the planes z = 5 and z = 4. Example Set up the integral for evaluating E ez paraboloid z = 1 + x 2 + y 2, the cylinder x 2 + y 2 = 5 and the xy-plane. dv where E is enclosed by the Example Set up the integral for the volume of the region between z = x 2 + y 2 and z = 2 x 2 y 2. Example Evaluate the integral by changing to cylindrical coordinates: 1 1 x 2 2 x 2 y x 2 x 2 +y 2 (x 2 + y 2 ) 3/2 dz dy dx 14

15 Find the centroid in cylindrical coordinates: M xy = z dv distance from xy-plane (Cartesian) = z dv distance from xy-plane (Cylindrical) M yz = x dv distance from yz-plane (Cartesian) = r cos θ dv distance from yz-plane (Cylindrical) M xz = y dv distance from xz-plane (Cartesian) = r sin θ dv distance from zz-plane (Cylindrical) x = M yz M y = M xz M z = M xy M 15

16 15.9 Triple Integrals in Spherical Coordinates We are going to extend the idea of cartesian coordinates (x, y, z) to spherical coordinates where we have a distance from the origin ρ and two angles. One angle is the same as polar coordinates: θ is the angle made from the x-axis. The other angle ϕ is measured from the positive z-axis with 0 ϕ π. Spherical Coordinates: Cartesian: (x, y, z) Cylindrical: (r, θ, z) Spherical: (ρ, θ, ϕ) Conversion Factors from rectangular to cylindrical and spherical: x = r cos θ = ρ sin ϕ cos θ r 2 = x 2 + y 2 y = r sin θ = ρ sin ϕ sin θ ρ 2 = x 2 + y 2 + z 2 = r 2 + z 2 z = z = ρ cos ϕ z ρ (x, y, z) (ρ, θ, ϕ) y x Example Translate the equations from the given system to the either rectangular or spherical or both as appropriate. A. z = x 2 + y 2, z 1. B. r = 3 sec θ C. tan 2 ϕ = 1 D. 6 cos ϕ 16

17 3-D integration: In rectangular coordinates: dv = dx dy dz and in cylindrical coordinates: dv = r dz dr dθ. We want dv for spherical coordinates: dv = ρ 2 sin ϕ dρ dϕ dθ. Everything else is the same: 1. Draw the region in 3-space. 2. Draw a ρ arrow to get dρ limits. 3. Figure out how ϕ and θ change. 4. Establish the limits. Example Set up the integral to find the volume of the smaller region cut from the solid sphere ρ 2 by z = 1. Example Let D be the region bounded below by z = 0, above by x 2 + y 2 + z 2 = 4 and on the sides by x 2 + y 2 = 1. Set up the integral in spherical coordinates to find the volume. Example Evaluate the integral by changing to spherical coordinates: 3 9 x x x 2 y 2 z x 2 + y 2 + z 2 dz dy dx 17

Math 2130 Practice Problems Sec Name. Change the Cartesian integral to an equivalent polar integral, and then evaluate.

Math 2130 Practice Problems Sec Name. Change the Cartesian integral to an equivalent polar integral, and then evaluate. Math 10 Practice Problems Sec 1.-1. Name Change the Cartesian integral to an equivalent polar integral, and then evaluate. 1) 5 5 - x dy dx -5 0 A) 5 B) C) 15 D) 5 ) 0 0-8 - 6 - x (8 + ln 9) A) 1 1 + x

More information

MAC2313 Test 3 A E g(x, y, z) dy dx dz

MAC2313 Test 3 A E g(x, y, z) dy dx dz MAC2313 Test 3 A (5 pts) 1. If the function g(x, y, z) is integrated over the cylindrical solid bounded by x 2 + y 2 = 3, z = 1, and z = 7, the correct integral in Cartesian coordinates is given by: A.

More information

Integration using Transformations in Polar, Cylindrical, and Spherical Coordinates

Integration using Transformations in Polar, Cylindrical, and Spherical Coordinates ections 15.4 Integration using Transformations in Polar, Cylindrical, and pherical Coordinates Cylindrical Coordinates pherical Coordinates MATH 127 (ection 15.5) Applications of Multiple Integrals The

More information

) in the k-th subbox. The mass of the k-th subbox is M k δ(x k, y k, z k ) V k. Thus,

) in the k-th subbox. The mass of the k-th subbox is M k δ(x k, y k, z k ) V k. Thus, 1 Triple Integrals Mass problem. Find the mass M of a solid whose density (the mass per unit volume) is a continuous nonnegative function δ(x, y, z). 1. Divide the box enclosing into subboxes, and exclude

More information

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim Chapter 14 Multiple Integrals..1 Double Integrals, Iterated Integrals, Cross-sections.2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals.3

More information

Worksheet 3.5: Triple Integrals in Spherical Coordinates. Warm-Up: Spherical Coordinates (ρ, φ, θ)

Worksheet 3.5: Triple Integrals in Spherical Coordinates. Warm-Up: Spherical Coordinates (ρ, φ, θ) Boise State Math 275 (Ultman) Worksheet 3.5: Triple Integrals in Spherical Coordinates From the Toolbox (what you need from previous classes) Know what the volume element dv represents. Be able to find

More information

MATH 261 EXAM III PRACTICE PROBLEMS

MATH 261 EXAM III PRACTICE PROBLEMS MATH 6 EXAM III PRACTICE PROBLEMS These practice problems are pulled from actual midterms in previous semesters. Exam 3 typically has 5 (not 6!) problems on it, with no more than one problem of any given

More information

MIDTERM. Section: Signature:

MIDTERM. Section: Signature: MIDTERM Math 32B 8/8/2 Name: Section: Signature: Read all of the following information before starting the exam: Check your exam to make sure all pages are present. NO CALCULATORS! Show all work, clearly

More information

Applications of Triple Integrals

Applications of Triple Integrals Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

Triple Integrals. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Triple Integrals

Triple Integrals. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Triple Integrals Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 211 Riemann Sum Approach Suppose we wish to integrate w f (x, y, z), a continuous function, on the box-shaped region

More information

To find the maximum and minimum values of f(x, y, z) subject to the constraints

To find the maximum and minimum values of f(x, y, z) subject to the constraints Midterm 3 review Math 265 Fall 2007 14.8. Lagrange Multipliers. Case 1: One constraint. To find the maximum and minimum values of f(x, y, z) subject to the constraint g(x, y, z) = k: Step 1: Find all values

More information

Math Triple Integrals in Cylindrical Coordinates

Math Triple Integrals in Cylindrical Coordinates Math 213 - Triple Integrals in Cylindrical Coordinates Peter A. Perry University of Kentucky November 2, 218 Homework Re-read section 15.7 Work on section 15.7, problems 1-13 (odd), 17-21 (odd) from Stewart

More information

UNIVERSITI TEKNOLOGI MALAYSIA SSCE 1993 ENGINEERING MATHEMATICS II TUTORIAL 2. 1 x cos dy dx x y dy dx. y cosxdy dx

UNIVERSITI TEKNOLOGI MALAYSIA SSCE 1993 ENGINEERING MATHEMATICS II TUTORIAL 2. 1 x cos dy dx x y dy dx. y cosxdy dx UNIVESITI TEKNOLOI MALAYSIA SSCE 99 ENINEEIN MATHEMATICS II TUTOIAL. Evaluate the following iterated integrals. (e) (g) (i) x x x sinx x e x y dy dx x dy dx y y cosxdy dx xy x + dxdy (f) (h) (y + x)dy

More information

MATH203 Calculus. Dr. Bandar Al-Mohsin. School of Mathematics, KSU

MATH203 Calculus. Dr. Bandar Al-Mohsin. School of Mathematics, KSU School of Mathematics, KSU Theorem The rectangular coordinates (x, y, z) and the cylindrical coordinates (r, θ, z) of a point P are related as follows: x = r cos θ, y = r sin θ, tan θ = y x, r 2 = x 2

More information

Double Integrals over Polar Coordinate

Double Integrals over Polar Coordinate 1. 15.4 DOUBLE INTEGRALS OVER POLAR COORDINATE 1 15.4 Double Integrals over Polar Coordinate 1. Polar Coordinates. The polar coordinates (r, θ) of a point are related to the rectangular coordinates (x,y)

More information

Math 11 Fall 2016 Section 1 Monday, October 17, 2016

Math 11 Fall 2016 Section 1 Monday, October 17, 2016 Math 11 Fall 16 Section 1 Monday, October 17, 16 First, some important points from the last class: f(x, y, z) dv, the integral (with respect to volume) of f over the three-dimensional region, is a triple

More information

Triple Integrals. Be able to set up and evaluate triple integrals over rectangular boxes.

Triple Integrals. Be able to set up and evaluate triple integrals over rectangular boxes. SUGGESTED REFERENCE MATERIAL: Triple Integrals As you work through the problems listed below, you should reference Chapters 4.5 & 4.6 of the recommended textbook (or the equivalent chapter in your alternative

More information

Multiple Integrals. max x i 0

Multiple Integrals. max x i 0 Multiple Integrals 1 Double Integrals Definite integrals appear when one solves Area problem. Find the area A of the region bounded above by the curve y = f(x), below by the x-axis, and on the sides by

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Homework - Solutions 3 2 Homework 2 - Solutions 3 3 Homework 3 - Solutions 9 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus

More information

Math Exam III Review

Math Exam III Review Math 213 - Exam III Review Peter A. Perry University of Kentucky April 10, 2019 Homework Exam III is tonight at 5 PM Exam III will cover 15.1 15.3, 15.6 15.9, 16.1 16.2, and identifying conservative vector

More information

Double Integrals, Iterated Integrals, Cross-sections

Double Integrals, Iterated Integrals, Cross-sections Chapter 14 Multiple Integrals 1 ouble Integrals, Iterated Integrals, Cross-sections 2 ouble Integrals over more general regions, efinition, Evaluation of ouble Integrals, Properties of ouble Integrals

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus III-Final review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the corresponding position vector. 1) Define the points P = (-,

More information

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions Calculus III Math Spring 7 In-term exam April th. Suggested solutions This exam contains sixteen problems numbered through 6. Problems 5 are multiple choice problems, which each count 5% of your total

More information

MATH 234. Excercises on Integration in Several Variables. I. Double Integrals

MATH 234. Excercises on Integration in Several Variables. I. Double Integrals MATH 234 Excercises on Integration in everal Variables I. Double Integrals Problem 1. D = {(x, y) : y x 1, 0 y 1}. Compute D ex3 da. Problem 2. Find the volume of the solid bounded above by the plane 3x

More information

12.5 Triple Integrals

12.5 Triple Integrals 1.5 Triple Integrals Arkansas Tech University MATH 94: Calculus III r. Marcel B Finan In Sections 1.1-1., we showed how a function of two variables can be integrated over a region in -space and how integration

More information

1 Double Integrals over Rectangular Regions

1 Double Integrals over Rectangular Regions Contents ouble Integrals over Rectangular Regions ouble Integrals Over General Regions 7. Introduction.................................... 7. Areas of General Regions............................. 9.3 Region

More information

QUIZ 4 (CHAPTER 17) SOLUTIONS MATH 252 FALL 2008 KUNIYUKI SCORED OUT OF 125 POINTS MULTIPLIED BY % POSSIBLE

QUIZ 4 (CHAPTER 17) SOLUTIONS MATH 252 FALL 2008 KUNIYUKI SCORED OUT OF 125 POINTS MULTIPLIED BY % POSSIBLE QUIZ 4 (CHAPTER 17) SOLUTIONS MATH 5 FALL 8 KUNIYUKI SCORED OUT OF 15 POINTS MULTIPLIED BY.84 15% POSSIBLE 1) Reverse the order of integration, and evaluate the resulting double integral: 16 y dx dy. Give

More information

2. Give an example of a non-constant function f(x, y) such that the average value of f over is 0.

2. Give an example of a non-constant function f(x, y) such that the average value of f over is 0. Midterm 3 Review Short Answer 2. Give an example of a non-constant function f(x, y) such that the average value of f over is 0. 3. Compute the Riemann sum for the double integral where for the given grid

More information

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals)

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals) MA 43 Calculus III Fall 8 Dr. E. Jacobs Assignments Reading assignments are found in James Stewart s Calculus (Early Transcendentals) Assignment. Spheres and Other Surfaces Read. -. and.6 Section./Problems

More information

Math 241, Exam 3 Information.

Math 241, Exam 3 Information. Math 241, xam 3 Information. 11/28/12, LC 310, 11:15-12:05. xam 3 will be based on: Sections 15.2-15.4, 15.6-15.8. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

Worksheet 3.4: Triple Integrals in Cylindrical Coordinates. Warm-Up: Cylindrical Volume Element d V

Worksheet 3.4: Triple Integrals in Cylindrical Coordinates. Warm-Up: Cylindrical Volume Element d V Boise State Math 275 (Ultman) Worksheet 3.4: Triple Integrals in Cylindrical Coordinates From the Toolbox (what you need from previous classes) Know what the volume element dv represents. Be able to find

More information

Math 265 Exam 3 Solutions

Math 265 Exam 3 Solutions C Roettger, Fall 16 Math 265 Exam 3 Solutions Problem 1 Let D be the region inside the circle r 5 sin θ but outside the cardioid r 2 + sin θ. Find the area of D. Note that r and θ denote polar coordinates.

More information

38. Triple Integration over Rectangular Regions

38. Triple Integration over Rectangular Regions 8. Triple Integration over Rectangular Regions A rectangular solid region S in R can be defined by three compound inequalities, a 1 x a, b 1 y b, c 1 z c, where a 1, a, b 1, b, c 1 and c are constants.

More information

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Math 113 Calculus III Final Exam Practice Problems Spring 2003 Math 113 Calculus III Final Exam Practice Problems Spring 23 1. Let g(x, y, z) = 2x 2 + y 2 + 4z 2. (a) Describe the shapes of the level surfaces of g. (b) In three different graphs, sketch the three cross

More information

MATH 52 MIDTERM I APRIL 22, 2009

MATH 52 MIDTERM I APRIL 22, 2009 MATH 52 MIDTERM I APRIL 22, 2009 THIS IS A CLOSED BOOK, CLOSED NOTES EXAM. NO CALCULATORS OR OTHER ELECTRONIC DEVICES ARE PERMITTED. YOU DO NOT NEED TO EVALUATE ANY INTEGRALS IN ANY PROBLEM. THERE ARE

More information

MATH 200 WEEK 9 - WEDNESDAY TRIPLE INTEGRALS

MATH 200 WEEK 9 - WEDNESDAY TRIPLE INTEGRALS MATH WEEK 9 - WEDNESDAY TRIPLE INTEGRALS MATH GOALS Be able to set up and evaluate triple integrals using rectangular, cylindrical, and spherical coordinates MATH TRIPLE INTEGRALS We integrate functions

More information

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint.

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. . Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. f (x, y) = x y, x + y = 8. Set up the triple integral of an arbitrary continuous function

More information

Mathematics 205 HWK 21 Solutions Section 16.5 p766

Mathematics 205 HWK 21 Solutions Section 16.5 p766 Mathematics 5 HK 1 Solutions Section 16.5 p766 Problem 5, 16.5, p766. For the region shown (a rectangular slab of dimensions 1 5; see the text), choose coordinates and set up a triple integral, including

More information

Homework 8. Due: Tuesday, March 31st, 2009

Homework 8. Due: Tuesday, March 31st, 2009 MATH 55 Applied Honors Calculus III Winter 9 Homework 8 Due: Tuesday, March 3st, 9 Section 6.5, pg. 54: 7, 3. Section 6.6, pg. 58:, 3. Section 6.7, pg. 66: 3, 5, 47. Section 6.8, pg. 73: 33, 38. Section

More information

Math 253, Section 102, Fall 2006 Practice Final Solutions

Math 253, Section 102, Fall 2006 Practice Final Solutions Math 253, Section 102, Fall 2006 Practice Final Solutions 1 2 1. Determine whether the two lines L 1 and L 2 described below intersect. If yes, find the point of intersection. If not, say whether they

More information

18.02 Final Exam. y = 0

18.02 Final Exam. y = 0 No books, notes or calculators. 5 problems, 50 points. 8.0 Final Exam Useful formula: cos (θ) = ( + cos(θ)) Problem. (0 points) a) (5 pts.) Find the equation in the form Ax + By + z = D of the plane P

More information

Calculus IV. Exam 2 November 13, 2003

Calculus IV. Exam 2 November 13, 2003 Name: Section: Calculus IV Math 1 Fall Professor Ben Richert Exam November 1, Please do all your work in this booklet and show all the steps. Calculators and note-cards are not allowed. Problem Possible

More information

Chapter 15 Vector Calculus

Chapter 15 Vector Calculus Chapter 15 Vector Calculus 151 Vector Fields 152 Line Integrals 153 Fundamental Theorem and Independence of Path 153 Conservative Fields and Potential Functions 154 Green s Theorem 155 urface Integrals

More information

MATH 2023 Multivariable Calculus

MATH 2023 Multivariable Calculus MATH 2023 Multivariable Calculus Problem Sets Note: Problems with asterisks represent supplementary informations. You may want to read their solutions if you like, but you don t need to work on them. Set

More information

Parametric Surfaces. Substitution

Parametric Surfaces. Substitution Calculus Lia Vas Parametric Surfaces. Substitution Recall that a curve in space is given by parametric equations as a function of single parameter t x = x(t) y = y(t) z = z(t). A curve is a one-dimensional

More information

Exam 2 Preparation Math 2080 (Spring 2011) Exam 2: Thursday, May 12.

Exam 2 Preparation Math 2080 (Spring 2011) Exam 2: Thursday, May 12. Multivariable Calculus Exam 2 Preparation Math 28 (Spring 2) Exam 2: Thursday, May 2. Friday May, is a day off! Instructions: () There are points on the exam and an extra credit problem worth an additional

More information

10.7 Triple Integrals. The Divergence Theorem of Gauss

10.7 Triple Integrals. The Divergence Theorem of Gauss 10.7 riple Integrals. he Divergence heorem of Gauss We begin by recalling the definition of the triple integral f (x, y, z) dv, (1) where is a bounded, solid region in R 3 (for example the solid ball {(x,

More information

Multivariate Calculus: Review Problems for Examination Two

Multivariate Calculus: Review Problems for Examination Two Multivariate Calculus: Review Problems for Examination Two Note: Exam Two is on Tuesday, August 16. The coverage is multivariate differential calculus and double integration. You should review the double

More information

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two:

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two: Final Solutions. Suppose that the equation F (x, y, z) implicitly defines each of the three variables x, y, and z as functions of the other two: z f(x, y), y g(x, z), x h(y, z). If F is differentiable

More information

Math 241, Final Exam. 12/11/12.

Math 241, Final Exam. 12/11/12. Math, Final Exam. //. No notes, calculator, or text. There are points total. Partial credit may be given. ircle or otherwise clearly identify your final answer. Name:. (5 points): Equation of a line. Find

More information

Contents. 3 Multiple Integration. 3.1 Double Integrals in Rectangular Coordinates

Contents. 3 Multiple Integration. 3.1 Double Integrals in Rectangular Coordinates Calculus III (part 3): Multiple Integration (by Evan Dummit, 8, v. 3.) Contents 3 Multiple Integration 3. Double Integrals in Rectangular Coordinates............................... 3.. Double Integrals

More information

MA 174: Multivariable Calculus Final EXAM (practice) NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper.

MA 174: Multivariable Calculus Final EXAM (practice) NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper. MA 174: Multivariable alculus Final EXAM (practice) NAME lass Meeting Time: NO ALULATOR, BOOK, OR PAPER ARE ALLOWED. Use the back of the test pages for scrap paper. Points awarded 1. (5 pts). (5 pts).

More information

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points.

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. 1. Evaluate the area A of the triangle with the vertices

More information

MATH 010B - Spring 2018 Worked Problems - Section 6.2. ze x2 +y 2

MATH 010B - Spring 2018 Worked Problems - Section 6.2. ze x2 +y 2 MATH B - Spring 8 orked Problems - Section 6.. Compute the following double integral x +y 9 z 3 ze x +y dv Solution: Here, we can t hope to integrate this directly in Cartesian coordinates, since the the

More information

MA EXAM 2 Form 01 April 4, You must use a #2 pencil on the mark sense sheet (answer sheet).

MA EXAM 2 Form 01 April 4, You must use a #2 pencil on the mark sense sheet (answer sheet). MA 6100 EXAM Form 01 April, 017 NAME STUDENT ID # YOUR TA S NAME RECITATION TIME 1. You must use a # pencil on the mark sense sheet (answer sheet).. On the scantron, write 01 in the TEST/QUIZ NUMBER boxes

More information

MATH 251 Fall 2016 EXAM III - VERSION A

MATH 251 Fall 2016 EXAM III - VERSION A MATH 51 Fall 16 EXAM III - VERSION A LAST NAME: FIRST NAME: SECTION NUMBER: UIN: DIRECTIONS: 1. You may use a calculator on this exam.. TURN OFF cell phones and put them away. If a cell phone is seen during

More information

Section Parametrized Surfaces and Surface Integrals. (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals

Section Parametrized Surfaces and Surface Integrals. (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals Section 16.4 Parametrized Surfaces and Surface Integrals (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals MATH 127 (Section 16.4) Parametrized Surfaces and Surface Integrals

More information

6. Find the equation of the plane that passes through the point (-1,2,1) and contains the line x = y = z.

6. Find the equation of the plane that passes through the point (-1,2,1) and contains the line x = y = z. Week 1 Worksheet Sections from Thomas 13 th edition: 12.4, 12.5, 12.6, 13.1 1. A plane is a set of points that satisfies an equation of the form c 1 x + c 2 y + c 3 z = c 4. (a) Find any three distinct

More information

= f (a, b) + (hf x + kf y ) (a,b) +

= f (a, b) + (hf x + kf y ) (a,b) + Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Summary Assignments...2

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Summary Assignments...2 PURE MATHEMATICS 212 Multivariable Calculus CONTENTS Page 1. Assignment Summary... i 2. Summary...1 3. Assignments...2 i PMTH212, Multivariable Calculus Assignment Summary 2010 Assignment Date to be Posted

More information

Triple Integrals in Rectangular Coordinates

Triple Integrals in Rectangular Coordinates Triple Integrals in Rectangular Coordinates P. Sam Johnson April 10, 2017 P. Sam Johnson (NIT Karnataka) Triple Integrals in Rectangular Coordinates April 10, 2017 1 / 28 Overview We use triple integrals

More information

R f da (where da denotes the differential of area dxdy (or dydx)

R f da (where da denotes the differential of area dxdy (or dydx) Math 28H Topics for the second exam (Technically, everything covered on the first exam, plus) Constrained Optimization: Lagrange Multipliers Most optimization problems that arise naturally are not unconstrained;

More information

Ma MULTIPLE INTEGRATION

Ma MULTIPLE INTEGRATION Ma 7 - MULTIPLE INTEGATION emark: The concept of a function of one variable in which y gx may be extended to two or more variables. If z is uniquely determined by values of the variables x and y, thenwesayz

More information

Multivariate Calculus Review Problems for Examination Two

Multivariate Calculus Review Problems for Examination Two Multivariate Calculus Review Problems for Examination Two Note: Exam Two is on Thursday, February 28, class time. The coverage is multivariate differential calculus and double integration: sections 13.3,

More information

MATH 116 REVIEW PROBLEMS for the FINAL EXAM

MATH 116 REVIEW PROBLEMS for the FINAL EXAM MATH 116 REVIEW PROBLEMS for the FINAL EXAM The following questions are taken from old final exams of various calculus courses taught in Bilkent University 1. onsider the line integral (2xy 2 z + y)dx

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below:

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below: Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

The diagram above shows a sketch of the curve C with parametric equations

The diagram above shows a sketch of the curve C with parametric equations 1. The diagram above shows a sketch of the curve C with parametric equations x = 5t 4, y = t(9 t ) The curve C cuts the x-axis at the points A and B. (a) Find the x-coordinate at the point A and the x-coordinate

More information

Math 209 (Fall 2007) Calculus III. Solution #5. 1. Find the minimum and maximum values of the following functions f under the given constraints:

Math 209 (Fall 2007) Calculus III. Solution #5. 1. Find the minimum and maximum values of the following functions f under the given constraints: Math 9 (Fall 7) Calculus III Solution #5. Find the minimum and maximum values of the following functions f under the given constraints: (a) f(x, y) 4x + 6y, x + y ; (b) f(x, y) x y, x + y 6. Solution:

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley FINAL EXAMINATION, Fall 2012 DURATION: 3 hours Department of Mathematics MATH 53 Multivariable Calculus Examiner: Sean Fitzpatrick Total: 100 points Family Name: Given

More information

Explore 3D Figures. Dr. Jing Wang (517) , Lansing Community College, Michigan, USA

Explore 3D Figures. Dr. Jing Wang (517) , Lansing Community College, Michigan, USA Explore 3D Figures Dr. Jing Wang (517)2675965, wangj@lcc.edu Lansing Community College, Michigan, USA Part I. 3D Modeling In this part, we create 3D models using Mathematica for various solids in 3D space,

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45 : Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ) Chapter 10: Parametric Equations

More information

Calculus III Meets the Final

Calculus III Meets the Final Calculus III Meets the Final Peter A. Perry University of Kentucky December 7, 2018 Homework Review for Final Exam on Thursday, December 13, 6:00-8:00 PM Be sure you know which room to go to for the final!

More information

Exam in Calculus. Wednesday June 1st First Year at The TEK-NAT Faculty and Health Faculty

Exam in Calculus. Wednesday June 1st First Year at The TEK-NAT Faculty and Health Faculty Exam in Calculus Wednesday June 1st 211 First Year at The TEK-NAT Faculty and Health Faculty The present exam consists of 7 numbered pages with a total of 12 exercises. It is allowed to use books, notes,

More information

WW Prob Lib1 Math course-section, semester year

WW Prob Lib1 Math course-section, semester year WW Prob Lib Math course-section, semester year WeBWorK assignment due /25/06 at :00 PM..( pt) Consider the parametric equation x = 7(cosθ + θsinθ) y = 7(sinθ θcosθ) What is the length of the curve for

More information

Updated: March 31, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University

Updated: March 31, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University Updated: March 3, 26 Calculus III Section 5.6 Math 232 Calculus III Brian Veitch Fall 25 Northern Illinois University 5.6 Triple Integrals In order to build up to a triple integral let s start back at

More information

Coordinate Transformations in Advanced Calculus

Coordinate Transformations in Advanced Calculus Coordinate Transformations in Advanced Calculus by Sacha Nandlall T.A. for MATH 264, McGill University Email: sacha.nandlall@mail.mcgill.ca Website: http://www.resanova.com/teaching/calculus/ Fall 2006,

More information

Math 32B Discussion Session Week 2 Notes January 17 and 24, 2017

Math 32B Discussion Session Week 2 Notes January 17 and 24, 2017 Math 3B Discussion Session Week Notes January 7 and 4, 7 This week we ll finish discussing the double integral for non-rectangular regions (see the last few pages of the week notes) and then we ll touch

More information

Math Boot Camp: Coordinate Systems

Math Boot Camp: Coordinate Systems Math Boot Camp: Coordinate Systems You can skip this boot camp if you can answer the following question: Staying on a sphere of radius R, what is the shortest distance between the point (0, 0, R) on the

More information

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures Grad operator, triple and line integrals Notice: this material must not be used as a substitute for attending the lectures 1 .1 The grad operator Let f(x 1, x,..., x n ) be a function of the n variables

More information

8(x 2) + 21(y 1) + 6(z 3) = 0 8x + 21y + 6z = 55.

8(x 2) + 21(y 1) + 6(z 3) = 0 8x + 21y + 6z = 55. MATH 24 -Review for Final Exam. Let f(x, y, z) x 2 yz + y 3 z x 2 + z, and a (2,, 3). Note: f (2xyz 2x, x 2 z + 3y 2 z, x 2 y + y 3 + ) f(a) (8, 2, 6) (a) Find all stationary points (if any) of f. et f.

More information

f(x, y, z)dv = As remarked above, triple integrals can be evaluated as iterated integrals.

f(x, y, z)dv = As remarked above, triple integrals can be evaluated as iterated integrals. 7.5 Triple Integrals These are just like double integrals, but with another integration to perform. Although this is conceptually a simple extension of the idea, in practice it can get very complicated.

More information

Name: Final Exam Review. (b) Reparameterize r(t) with respect to arc length measured for the point (1, 0, 1) in the direction of increasing t.

Name: Final Exam Review. (b) Reparameterize r(t) with respect to arc length measured for the point (1, 0, 1) in the direction of increasing t. MATH 127 ALULU III Name: 1. Let r(t) = e t i + e t sin t j + e t cos t k (a) Find r (t) Final Exam Review (b) Reparameterize r(t) with respect to arc length measured for the point (1,, 1) in the direction

More information

10.1 Curves Defined by Parametric Equations

10.1 Curves Defined by Parametric Equations 10.1 Curves Defined by Parametric Equations Ex: Consider the unit circle from Trigonometry. What is the equation of that circle? There are 2 ways to describe it: x 2 + y 2 = 1 and x = cos θ y = sin θ When

More information

Dr. Allen Back. Nov. 21, 2014

Dr. Allen Back. Nov. 21, 2014 Dr. Allen Back of Nov. 21, 2014 The most important thing you should know (e.g. for exams and homework) is how to setup (and perhaps compute if not too hard) surface integrals, triple integrals, etc. But

More information

Math 32B Discussion Session Week 2 Notes April 5 and 7, 2016

Math 32B Discussion Session Week 2 Notes April 5 and 7, 2016 Math 3B Discussion Session Week Notes April 5 and 7, 6 We have a little flexibility this week: we can tie up some loose ends from double integrals over vertically or horizontally simple regions, we can

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46 Polar Coordinates Polar Coordinates: Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ)

More information

Math 2374 Spring 2007 Midterm 3 Solutions - Page 1 of 6 April 25, 2007

Math 2374 Spring 2007 Midterm 3 Solutions - Page 1 of 6 April 25, 2007 Math 374 Spring 7 Midterm 3 Solutions - Page of 6 April 5, 7. (3 points) Consider the surface parametrized by (x, y, z) Φ(x, y) (x, y,4 (x +y )) between the planes z and z 3. (i) (5 points) Set up the

More information

Final Exam Review. Name: Class: Date: Short Answer

Final Exam Review. Name: Class: Date: Short Answer Name: Class: Date: ID: A Final Exam Review Short Answer 1. Find the distance between the sphere (x 1) + (y + 1) + z = 1 4 and the sphere (x 3) + (y + ) + (z + ) = 1. Find, a a + b, a b, a, and 3a + 4b

More information

A1:Orthogonal Coordinate Systems

A1:Orthogonal Coordinate Systems A1:Orthogonal Coordinate Systems A1.1 General Change of Variables Suppose that we express x and y as a function of two other variables u and by the equations We say that these equations are defining a

More information

First we consider how to parameterize a surface (similar to a parameterized curve for line integrals). Surfaces will need two parameters.

First we consider how to parameterize a surface (similar to a parameterized curve for line integrals). Surfaces will need two parameters. Math 55 - Vector Calculus II Notes 14.6 urface Integrals Let s develop some surface integrals. First we consider how to parameterize a surface (similar to a parameterized curve for line integrals). urfaces

More information

Integration. Example Find x 3 dx.

Integration. Example Find x 3 dx. Integration A function F is called an antiderivative of the function f if F (x)=f(x). The set of all antiderivatives of f is called the indefinite integral of f with respect to x and is denoted by f(x)dx.

More information

Chapter 5 Partial Differentiation

Chapter 5 Partial Differentiation Chapter 5 Partial Differentiation For functions of one variable, y = f (x), the rate of change of the dependent variable can dy be found unambiguously by differentiation: f x. In this chapter we explore

More information

Worksheet 3.2: Double Integrals in Polar Coordinates

Worksheet 3.2: Double Integrals in Polar Coordinates Boise State Math 75 (Ultman) Worksheet 3.: ouble Integrals in Polar Coordinates From the Toolbox (what you need from previous classes): Trig/Calc II: Convert equations in x and y into r and θ, using the

More information

MA FINAL EXAM Green April 30, 2018 EXAM POLICIES

MA FINAL EXAM Green April 30, 2018 EXAM POLICIES MA 6100 FINAL EXAM Green April 0, 018 NAME STUDENT ID # YOUR TA S NAME RECITATION TIME Be sure the paper you are looking at right now is GREEN! Write the following in the TEST/QUIZ NUMBER boxes (and blacken

More information

Dr. Allen Back. Nov. 19, 2014

Dr. Allen Back. Nov. 19, 2014 Why of Dr. Allen Back Nov. 19, 2014 Graph Picture of T u, T v for a Lat/Long Param. of the Sphere. Why of Graph Basic Picture Why of Graph Why Φ(u, v) = (x(u, v), y(u, v), z(u, v)) Tangents T u = (x u,

More information

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

Solution of final examination

Solution of final examination of final examination Math 20, pring 201 December 9, 201 Problem 1 Let v(t) (2t e t ) i j + π cos(πt) k be the velocity of a particle with initial position r(0) ( 1, 0, 2). Find the accelaration at the

More information

A small review, Second Midterm, Calculus 3, Prof. Montero 3450: , Fall 2008

A small review, Second Midterm, Calculus 3, Prof. Montero 3450: , Fall 2008 A small review, Second Midterm, Calculus, Prof. Montero 45:-4, Fall 8 Maxima and minima Let us recall first, that for a function f(x, y), the gradient is the vector ( f)(x, y) = ( ) f f (x, y); (x, y).

More information

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring Outcomes List for Math 200-200935 Multivariable Calculus (9 th edition of text) Spring 2009-2010 The purpose of the Outcomes List is to give you a concrete summary of the material you should know, and

More information

Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Big Ideas. What We Are Doing Today... Notes. Notes. Notes

Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Big Ideas. What We Are Doing Today... Notes. Notes. Notes Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Textbook: Section 16.6 Big Ideas A surface in R 3 is a 2-dimensional object in 3-space. Surfaces can be described using two variables.

More information