PHYSICAL REPLICATION OF HUMAN BONE BY USING DIRECT INTEGRATION OF REVERSE ENGINEERING AND RAPID PROTOTYPING TECHNIQUES

Size: px
Start display at page:

Download "PHYSICAL REPLICATION OF HUMAN BONE BY USING DIRECT INTEGRATION OF REVERSE ENGINEERING AND RAPID PROTOTYPING TECHNIQUES"

Transcription

1 PHYSICAL REPLICATION OF HUMAN BONE BY USING DIRECT INTEGRATION OF REVERSE ENGINEERING AND RAPID N. N. Kumbhar 1*, Dr. A. V. Mulay 2, Dr. B. B. Ahuja 3 1 Production Engg. Dept., College of Engineering, Pune , kumbharnn88@gmail.com 2 Production Engg. Dept., College of Engineering, Pune , avm.prod@coep.ac.in 3 Production Engg. Dept., College of Engineering, Pune , bba.prod@coep.ac.in Abstract: The replication of an existing object of complex shape is one of the typical applications of the integration between two modern computer-based technologies, reverse engineering (RE) and rapid prototyping (RP). The method is multipurpose and can be used in various applicative domains like mechanical components, house hold equipments, bio-medical, anatomical parts amongst others. This paper presents a process to construct 3D rapid prototyping (RP) physical models of human bone by using 3D point cloud data which is obtained from 3D laser scanner. This process is achieved by generating the triangular mesh directly from 3D point cloud data without developing any surface model using any commercial CAD software. The generated STL file from 3D point cloud data is used as a basic input for RP process. The Delaunay Tetrahadralization approach is used to process the 3D point cloud data to obtain STL file. 3D point cloud data of Metacarpus (human Bone) is used as the case study for the generation of the 3D RP model. Once this STL file is obtained, a 3D physical model of the human bone is generated on Rapid Prototyping machine and its virtual reality model is presented for visualization in STL format. The results of this research are assessed for clinical reliability in replication of human bone in medical field. Key words: Reverse Engineering, Rapid Prototyping, 3D Point Cloud Data, Delaunay Tetrahedralization, STL file, Human bone. 1. Introduction: Bio-medical engineering is a technological field with great potential for future advances. This field encompasses medical treatment engineering, genetic technology and medicine engineering. Building sets of medical information, medical images, bio-medical materials and applying these sets of medical data assists in the development of all aspects of biomedical engineering [1, 2]. In recent years, CAD has been increasingly applied in bio-medical engineering. The integration of CAD and medical technology is referred to as Bio-CAD. Bio- CAD includes regenerative medicine engineering, computer-aided surgery, structural modeling of tissue, design of orthopedic devices and implants, reverse engineering (RE), 3D reconstruction and solid freeform fabrication or bio-manufacturing [2]. CT medical imaging is the key tool for viewing the internal structure of the human body, but is limited by its 2D image presentation in that it does not allow doctors to quickly diagnose illnesses and explain symptoms and treatments to patients [3]. Medical images in 3D solid models are therefore very important in the diagnosis and treatment process. All reconstructed 3D solid models can be converted to RP physical models (STL file). A number of open sources and commercial products for 3D biomechanical construction are available, but still, these tools does not appear to be a simple and accurate for bio image acquisition and analysis. 2. Methods to construct STL file: There are three methods that can be applied to reconstruct a 3D solid model of bio-medical imaging from its 2D CT image or 3D point cloud data. The first method involves a swept blend from the contours of each layer in point data [4]. The second method is via marching-cube algorithm [5, 6]. With the third method, contour detection in each layer is used to construct the mixed layers in the triangular STL model for RP fabrication by connecting the vertices of two parallel polygons [1]. Each of these methods has disadvantages [1, 4, 5, 6]

2 PHYSICAL REPLICATION OF HUMAN BONE BY USING DIRECT INTEGRATION OF REVERSE ENGINEERING AND RAPID The first method, where swept blend of curves is involved, this method is extremely complicated, and it cannot be applied without drawing the curve model, since the spline must first be constructed before modeling [4]. In the second method, i. e. marching-cube algorithm technique may make holes and saw-toothed paths within the connection of triangular patches [6]. The third method sufferss from drawbacks in the contour detection for each CT layer and file errors in the construction and use of STL meshes [1]. In this research work a simple but robust process (Delaunay Tetrahadralization) is proposed for converting a 3D point cloud data obtained from 3D Laser scanner machine to a Rapid Prototype physical model. Delaunay Tetrahedralization approach is based on Delaunay Triangulation approach. [7, 8]. 3. Delaunay Triangulation approach Delaunay Triangualtion is a methodology developed so that no vertex from the entire point data set lies inside the circumcircle of any triangle which ensures nonintersecting and non overlapping triangulated network. circumcircle criterion is shown in Figure 1. [8, 9, 10, 11] Figure 2 Circumcircle & Circumsphere criterion 4. Steps followed in Delauany Tetrahedralization approach to develop STL file. To convert this concept into algorithm and then into programming module, following steps are used: [8] 1. Obtain Point cloud data of available product by using 3D Laser scanner. 2. Generate a tetrahedral mesh model of point cloud by using the Delaunay Tetrahedralization approach. 3. Generate triangulated surface mesh model from tetrahedral mesh. 4. Validation of the surface mesh model using Euler s formula, Angle criteria. 5. Generation of STL file. Figure 1 Circumcircle criterion This method has got major limitations like this method is useful only for 2D point cloud data or planer data. But in majority RE projects the product is having curved 3D surfaces. In order to handle 3D data new approach is evolved i. e. Delaunay tetrahedralization based on circumsphere criteria which is shown in Figure 2. Figure 3 Flowchart for conversion of point cloud data into RP model using Delaunay tetrahedralization 189 2

3 5. Experimental Setup In this research work mainly two machines are used to convert point cloud data into rapid prototyping model and its validation. The first machine used is RP machine which is manufactured by stratasys Ltd. This machine is based on FDM technology which maintains layer thickness of mm to mm, shown in Figure 4. superimposed on previously generated STL file to find out the deviation between the two. Initially the source code is developed to convert point cloud data in to STL file using Delaunay Tetrahedralization. To check the proper working of source code initially simple example of rhombus containing 8 points is considered [8] and after getting satisfactory results the same program is used to convert the point cloud data of Metacarpals (Human Bone) in to STL file. This case study is divided in to five stages. 1. Data acquisition 2. Mesh constriction 3. Validation of STL file 4. Generation of RP model 5. Physical Validation Case Study Figure 4 Rapid Prototyping machine A. Data Acquisition: In this case study point cloud data is directly available. Hence this step is eliminated. Total points used for conversion are 10233, which are shown in Figure 6. Second machine is PICZA 3D Laser Scanner LPX 600 is used to scan the physical object. The output obtained from this is expressed in terms of a cloud of points, or set of points with coordinates x,y,z in a Cartesian reference system, which is also shown in Figure 5. Figure 6 Bone Point Cloud Data B. Mesh construction To get triangulated mesh model of obtained point cloud data, Delaunay Tetrahedralization approach is used, mesh model is shown in Figure 7. Figure 5 PICZA 3D Laser Scanner LPX Case Study and Analysis This research proposes Delanunay tetrahedralization mesh generation of 3D point cloud data to get physical replication of human bone. There are three main steps involved in the replication process: Scanning of model, mesh generation (STL file generation) and rapid manufacturing by RP machine. To do the physical validation of generated RP product, the RP product is re - scanned by 3D Laser Scanner and then re scanned point cloud data is Figure 7 Triangulated mesh model of Human Bone To generate an error free STL file, the triangulated mesh model has to be validated by three validation criteria s. 1. Euler s Formula - To check topology. 2. Angle Criterion To check the properties indicating Delaunay triangles. 3. Quality Factor of Triangles - To check aspect ratio

4 PHYSICAL REPLICATION OF HUMAN BONE BY USING DIRECT INTEGRATION OF REVERSE ENGINEERING AND RAPID This generated mesh model is validated using given criteria s and results are given below in Table 1. Table 1 Mesh model validation Parameters Human Bone No. of Vertices (V) No. of Edges (E) No. of Triangles (F) Euler s formula: V E + F = = 2 Angle Validation Ok Quality Factor of Triangles 89% Triangles are better size D. Physical Validation To do the physical validation of the RP product, the RP product is re - scanned by 3D Laser Scanner. Then to get the deviation between point cloud data and previously generated STL file, a point cloud data is superimposed on the STL file. The analyzed results are shown in Figure 8 with the differences within ±0.5 mm. The human bone has a difference of to 0.59 mm. This is an acceptable level. C. Generation of Rapid Prototype model Table 2 shows the development of Rapid Prototyping model form triangulation mesh mode. Table 2 RP model development flow Output model RP machine STL File Format Triangulation Human Bone facet normal outer loop vertex vertex vertex endloop endfacet Figure 8 Comparison result of Human Bone 7. Conclusion The research work described the possibility of applying both Reveres engineering and Rapid Prototyping techniques in the medical field. In the specific case of reproduction of a human bone, a point cloud data is processed by using commercial software to develop a solid model and rapid prototyping model, but it is time consuming process. To overcome time consuming process a Delaunay Tetrahadralization approach is used to generate a rapid prototype model, which gives good results after physical validation. Comparison between the generated model and the original was satisfactory. This research suggested three steps to generate the model without complexity: first, data acquisition through 3D Laser scanner; second, Mesh generation by using Delaunay Tetrahadralization and third is RP model generation. Using analysis and comparison method, it can be shown that the method used in this research is within an acceptable error range. The error range is consistently around to mm which illustrates the feasibility of this research in medical field

5 8. Reference [1] Jagtap Suraj Rajendra, Analysis of integration of reverse engineering and generative manufacturing processes for medical science A review, Int. J. Mech. Eng. & Rob. Res. 2013, ISSN Vol. 2, No. 4, October [2] Kentaro Iwami and Norihiro Umeda, Advanced Applications of Rapid Prototyping Technology in Modern Engineering, ISBN , (2011) [3] Jelena Milovanović, Miroslav Trajanović, Medical applications of rapid prototyping, Facta Universitatis, Series: Mechanical Engineering Vol. 5, No 1, 2007, pp [4] C.S. Wang, C.Y. Hsiao, T.R. Chang, and C.K. Teng, STL Mesh Reconstruction for Bio-Medical Rapid Prototyping Model, Manuscript received March 15, This work was supported in part by the National Science Council, Taiwan (R.O.C.) under Grant E [5] Timothy S. Newman, Hong Yi, A survey of the marching cubes algorithm, Computers & Graphics 30 (2006) , doi: /j.cag [6] Thomas Wiemann, Andres N uchter, Kai Lingemann, Stefan Stiene, and Joachim Hertzberg, Automatic Construction of Polygonal Maps From Point Cloud Data, The Institute of Computer Science, University of Osnabr uck, Germany (2011) [7] Seok-Hee Lee, Ho-Chan Kim, Sung-Min Hur, Dong-Yol Yang, STL file generation from measured point cloud data by segmentation and Delaunay Trinagulation, Computer Aided Design 34 (2002) [8] N. N. Kumbhar, A. V. Mulay, B. B. Ahuja Scanned Data Triangulation using Delaunay Tetrahedralization Approach for 3D Point Cloud Data, 4 th International & 25 th All India Manufacturing Technology, Design and Research (AIMTDR ) Conference, Jadhavpur University, Kolkata, India, 14 th 16 th December, 2012, Vol. 1: , ISBM: [9] om/delaunay/delaunay.html [10] y.html [11] delaunay.html [12]

Three-Dimensional Reconstruction for Medical-CAD Modeling

Three-Dimensional Reconstruction for Medical-CAD Modeling 431 Three-Dimensional Reconstruction for Medical-CAD Modeling B. Starly 1 (Binil.Starly@drexel.edu), Z. Fang 1 (zhibin.fang@drexel.edu), W. Sun 1 (sunwei@drexel.edu), A. Shokoufandeh 2 (ashokouf@cs.drexel.edu)

More information

Automatic NC Part. Programming Interface for a UV Laser Ablation Tool

Automatic NC Part. Programming Interface for a UV Laser Ablation Tool Automatic NC Part Programming Interface for a UV Laser Ablation Tool by Emir Mutapcic Dr. Pio Iovenitti Dr. Jason Hayes Abstract This research project commenced in December 2001 and it is expected to be

More information

DESIGN AND MANUFACTURING OF CUSTOMIZED ANATOMICAL IMPLANTS BY USING RAPID PROTOTYPING TECHNIQUE

DESIGN AND MANUFACTURING OF CUSTOMIZED ANATOMICAL IMPLANTS BY USING RAPID PROTOTYPING TECHNIQUE Volume 1, Issue 1, 2011, PP-01-05 Available online at http://www.bioinfo.in/contents.php?id=180 DESIGN AND MANUFACTURING OF CUSTOMIZED ANATOMICAL IMPLANTS BY USING RAPID PROTOTYPING TECHNIQUE SHEREKAR

More information

Offset Triangular Mesh Using the Multiple Normal Vectors of a Vertex

Offset Triangular Mesh Using the Multiple Normal Vectors of a Vertex 285 Offset Triangular Mesh Using the Multiple Normal Vectors of a Vertex Su-Jin Kim 1, Dong-Yoon Lee 2 and Min-Yang Yang 3 1 Korea Advanced Institute of Science and Technology, sujinkim@kaist.ac.kr 2 Korea

More information

An Introduction to Geometric Modeling using Polygonal Meshes

An Introduction to Geometric Modeling using Polygonal Meshes An Introduction to Geometric Modeling using Polygonal Meshes Joaquim Madeira Version 0.2 October 2014 U. Aveiro, October 2014 1 Main topics CG and affine areas Geometric Modeling Polygonal meshes Exact

More information

LATEST TRENDS on APPLIED MATHEMATICS, SIMULATION, MODELLING

LATEST TRENDS on APPLIED MATHEMATICS, SIMULATION, MODELLING 3D surface reconstruction of objects by using stereoscopic viewing Baki Koyuncu, Kurtuluş Küllü bkoyuncu@ankara.edu.tr kkullu@eng.ankara.edu.tr Computer Engineering Department, Ankara University, Ankara,

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor(SJIF):.4 e-issn(o): 48-4470 p-issn(p): 48-6406 International Journal of Advance Engineering and Research Development Volume,Issue, March -05 Optimization of Fused Deposition

More information

Reconstruction of complete 3D object model from multi-view range images.

Reconstruction of complete 3D object model from multi-view range images. Header for SPIE use Reconstruction of complete 3D object model from multi-view range images. Yi-Ping Hung *, Chu-Song Chen, Ing-Bor Hsieh, Chiou-Shann Fuh Institute of Information Science, Academia Sinica,

More information

CHAPTER 5 USE OF STL FILE FOR FINITE ELEMENT ANALYSIS

CHAPTER 5 USE OF STL FILE FOR FINITE ELEMENT ANALYSIS CHAPTER 5 USE OF STL FILE FOR FINITE ELEMENT ANALYSIS 5.1 Introduction: Most CAD software in the market can generate STL files, and these are generally used for prototyping and rendering purposes. These

More information

Outline of the presentation

Outline of the presentation Surface Reconstruction Petra Surynková Charles University in Prague Faculty of Mathematics and Physics petra.surynkova@mff.cuni.cz Outline of the presentation My work up to now Surfaces of Building Practice

More information

Developing 3D Finite element model of Head using Magnetic resonance imaging and algorithm developed in MATLAB

Developing 3D Finite element model of Head using Magnetic resonance imaging and algorithm developed in MATLAB Developing 3D Finite element model of Head using Magnetic resonance imaging and algorithm developed in MATLAB Dr Chandrashekhar Bendigeri 1, Sachin Patil 2 1 Associate Professor, Department of Mechanical

More information

Comparison of Two Mathematical Models for the Surface Reconstruction for Deformation Analysis by Using FARO Focus 3D

Comparison of Two Mathematical Models for the Surface Reconstruction for Deformation Analysis by Using FARO Focus 3D Ke-Wei Li Comparison of Two Mathematical Models for the Surface Reconstruction for Deformation Analysis by Using FARO Focus 3D Duration of the Thesis: 6 months Completion: October 2012 Tutor: Dipl.-Ing.

More information

ScienceDirect. Curve Reconstruction of Digitized Surface using K-means Algorithm

ScienceDirect. Curve Reconstruction of Digitized Surface using K-means Algorithm Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 69 ( 2014 ) 544 549 24th DAAAM International Symposium on Intelligent Manufacturing and Automation, 2013 Curve Reconstruction

More information

3D Modeling of Objects Using Laser Scanning

3D Modeling of Objects Using Laser Scanning 1 3D Modeling of Objects Using Laser Scanning D. Jaya Deepu, LPU University, Punjab, India Email: Jaideepudadi@gmail.com Abstract: In the last few decades, constructing accurate three-dimensional models

More information

The interfacing software named PSG Slice has been developed using the. computer programming language C. Since, the software has a mouse driven

The interfacing software named PSG Slice has been developed using the. computer programming language C. Since, the software has a mouse driven CHAPTER 6 DEVELOPMENT OF SLICING MODULE FOR RAPID PROTOTYPING MACHINE 6.1 INTRODUCTION The interfacing software named PSG Slice has been developed using the computer programming language C. Since, the

More information

Finding a Best Fit Plane to Non-coplanar Point-cloud Data Using Non Linear and Linear Equations

Finding a Best Fit Plane to Non-coplanar Point-cloud Data Using Non Linear and Linear Equations AIJSTPME (013) 6(): 17-3 Finding a Best Fit Plane to Non-coplanar Point-cloud Data Using Non Linear and Linear Equations Mulay A. Production Engineering Department, College of Engineering, Pune, India

More information

Incomplete mesh offset for NC machining

Incomplete mesh offset for NC machining Journal of Materials Processing Technology 194 (2007) 110 120 Incomplete mesh offset for NC machining Su-Jin Kim a,, Min-Yang Yang b,1 a Mechanical and Aerospace Engineering, ERI, Gyeongsang National University,

More information

Biomedical Image Processing for Human Elbow

Biomedical Image Processing for Human Elbow Biomedical Image Processing for Human Elbow Akshay Vishnoi, Sharad Mehta, Arpan Gupta Department of Mechanical Engineering Graphic Era University Dehradun, India akshaygeu001@gmail.com, sharadm158@gmail.com

More information

A Comparison Study of 3D Scanners for Diagnosing Deviations in Their Outputs Using Reverse Engineering Technique

A Comparison Study of 3D Scanners for Diagnosing Deviations in Their Outputs Using Reverse Engineering Technique IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 14, Issue 3 Ver. I (May. - June. 2017), PP 26-32 www.iosrjournals.org A Comparison Study of 3D Scanners

More information

4th WSEAS/IASME International Conference on EDUCATIONAL TECHNOLOGIES (EDUTE'08) Corfu, Greece, October 26-28, 2008

4th WSEAS/IASME International Conference on EDUCATIONAL TECHNOLOGIES (EDUTE'08) Corfu, Greece, October 26-28, 2008 Loyola Marymount University One LMU Dr. MS 8145 Los Angeles, CA, 90045 USA Abstract: - The project involves the evaluation of the effectiveness of a low-cost reverse engineering system. Recently, the reverse

More information

3D PRINTING 1. INTRODUCTION 2. HISTORY 3. GENERAL PRINCIPLES 4. WORKFLOW 5. APPLICATIONS 6. CONCLUSION CONTENT: 12 DECEMBER 2017 PETR VALENTA

3D PRINTING 1. INTRODUCTION 2. HISTORY 3. GENERAL PRINCIPLES 4. WORKFLOW 5. APPLICATIONS 6. CONCLUSION CONTENT: 12 DECEMBER 2017 PETR VALENTA 3D PRINTING 1 12 DECEMBER 2017 PETR VALENTA CONTENT: 1. INTRODUCTION 2. HISTORY 3. GENERAL PRINCIPLES 4. WORKFLOW 5. APPLICATIONS 6. CONCLUSION 1. Introduction 2 2005 2007, Software: Blender 1. Introduction

More information

A New Slicing Procedure for Rapid Prototyping Systems

A New Slicing Procedure for Rapid Prototyping Systems Int J Adv Manuf Technol (2001) 18:579 585 2001 Springer-Verlag London Limited A New Slicing Procedure for Rapid Prototyping Systems Y.-S. Liao 1 and Y.-Y. Chiu 2 1 Department of Mechanical Engineering,

More information

MODELLING OF PROSTHETIC HIP JOINT GENERATED FROM CT SCAN DATA Mahender Koduri 1, G Krishna Teja 2, O Rajender 3 1,2,3

MODELLING OF PROSTHETIC HIP JOINT GENERATED FROM CT SCAN DATA Mahender Koduri 1, G Krishna Teja 2, O Rajender 3 1,2,3 MODELLING OF PROSTHETIC HIP JOINT GENERATED FROM CT SCAN DATA Mahender Koduri 1, G Krishna Teja 2, O Rajender 3 1,2,3 Asst. Professor, Dept. of Mech. Engg. AGI ABSTRACT Total hip arthroplasty is a surgical

More information

Comparative Study of Marching Cubes Algorithms for the Conversion of 2D image to 3D

Comparative Study of Marching Cubes Algorithms for the Conversion of 2D image to 3D International Journal of Computational Intelligence Research ISSN 0973-1873 Volume 13, Number 3 (2017), pp. 327-337 Research India Publications http://www.ripublication.com Comparative Study of Marching

More information

arxiv: v1 [cs.cv] 6 Jun 2017

arxiv: v1 [cs.cv] 6 Jun 2017 Volume Calculation of CT lung Lesions based on Halton Low-discrepancy Sequences Liansheng Wang a, Shusheng Li a, and Shuo Li b a Department of Computer Science, Xiamen University, Xiamen, China b Dept.

More information

COPYRIGHTED MATERIAL RAPID PROTOTYPING PROCESS

COPYRIGHTED MATERIAL RAPID PROTOTYPING PROCESS 2 RAPID PROTOTYPING PROCESS The objective of rapid prototyping is to quickly fabricate any complex-shaped, three-dimensional part from CAD data. Rapid prototyping is an example of an additive fabrication

More information

Medical 3d Printing, Case Study

Medical 3d Printing, Case Study Medical 3d Printing, Case Study Prakash Marripati Cyient, Hyderabad, India Ravi Katukam Cyient, Hyderabad, India Manzoor Hussain Principal,JNTUCES,Hyderabad,India Abstract- While Additive manufacturing

More information

Based on the cross section contour surface model reconstruction

Based on the cross section contour surface model reconstruction International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 Volume 3 Issue 12 ǁ December. 2015 ǁ PP.07-12 Based on the cross section contour surface

More information

3D SPATIAL DATA ACQUISITION AND MODELING OF ANGHEL SALIGNY MONUMENT USING TERRESTRIAL LASER SCANNING

3D SPATIAL DATA ACQUISITION AND MODELING OF ANGHEL SALIGNY MONUMENT USING TERRESTRIAL LASER SCANNING JOURNAL OF APPLIED ENGINEERING SCIENCES VOL. 2(15), issue 2_2012 ISSN 2247-3769 ISSN-L 2247-3769 (Print) / e-issn:2284-7197 3D SPATIAL DATA ACQUISITION AND MODELING OF ANGHEL SALIGNY MONUMENT USING TERRESTRIAL

More information

3D Modeling: Surfaces

3D Modeling: Surfaces CS 430/536 Computer Graphics I 3D Modeling: Surfaces Week 8, Lecture 16 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel

More information

Medical 3D printing and Standard requirement issues

Medical 3D printing and Standard requirement issues Medical 3D printing and Standard requirement issues Kyu Won Shim MD, PhD. Department of Neurosurgery, Severance Children s Hospital, Yonsei University, College of Medicine, Seoul, Korea 1 No conflict of

More information

coding of various parts showing different features, the possibility of rotation or of hiding covering parts of the object's surface to gain an insight

coding of various parts showing different features, the possibility of rotation or of hiding covering parts of the object's surface to gain an insight Three-Dimensional Object Reconstruction from Layered Spatial Data Michael Dangl and Robert Sablatnig Vienna University of Technology, Institute of Computer Aided Automation, Pattern Recognition and Image

More information

Miniaturizing Components by Reverse Engineering and Rapid Prototyping Techniques

Miniaturizing Components by Reverse Engineering and Rapid Prototyping Techniques Miniaturizing Components by Reverse Engineering and Rapid Prototyping Techniques L. Francis Xavier 1, Dr. D. Elangovan 2, N.Subramani 3, R.Mahesh 4 Assistant Professor, Department of Mechanical Engineering,

More information

Experimental Investigation on Reverse Engineering of a Typical Freeform Surface using Portable Laser Arm Scanner

Experimental Investigation on Reverse Engineering of a Typical Freeform Surface using Portable Laser Arm Scanner International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Experimental

More information

Laser scanning and CAD conversion accuracy correction of a highly curved engineering component using a precision tactile measuring system

Laser scanning and CAD conversion accuracy correction of a highly curved engineering component using a precision tactile measuring system Laser scanning and CAD conversion accuracy correction of a highly curved engineering component using a precision tactile measuring system Athanasios Giannelis 1, Ioanna Symeonidou 2, Dimitrios Tzetzis

More information

COMPUTER AIDED REVERSE ENGINEERING SYSTEM USED FOR CUSTOMIZED PRODUCTS

COMPUTER AIDED REVERSE ENGINEERING SYSTEM USED FOR CUSTOMIZED PRODUCTS COMPUTER AIDED REVERSE ENGINEERING SYSTEM USED FOR CUSTOMIZED PRODUCTS Oancea, Gh.; gh.oancea@unitbv.ro Ivan, N.V.; nivivan@unitbv.ro Pescaru, R.; rfolosea@unitbv.ro Abstract: Computer Aided Reverse Engineering

More information

Additive Manufacturing

Additive Manufacturing Additive Manufacturing Prof. J. Ramkumar Department of Mechanical Engineering IIT Kanpur March 28, 2018 Outline Introduction to Additive Manufacturing Classification of Additive Manufacturing Systems Introduction

More information

The Optimization of Surface Quality in Rapid Prototyping

The Optimization of Surface Quality in Rapid Prototyping The Optimization of Surface Quality in Rapid Prototyping MIRCEA ANCĂU & CRISTIAN CAIZAR Department of Manufacturing Engineering Technical University of Cluj-Napoca B-dul Muncii 103-105, 400641 Cluj-Napoca

More information

STL Rapid Prototyping

STL Rapid Prototyping CATIA V5 Training Foils STL Rapid Prototyping Version 5 Release 19 January 2009 EDU_CAT_EN_STL_FI_V5R19 1 About this course Objectives of the course Upon completion of this course you will learn how to

More information

A Constrained Delaunay Triangle Mesh Method for Three-Dimensional Unstructured Boundary Point Cloud

A Constrained Delaunay Triangle Mesh Method for Three-Dimensional Unstructured Boundary Point Cloud International Journal of Computer Systems (ISSN: 2394-1065), Volume 03 Issue 02, February, 2016 Available at http://www.ijcsonline.com/ A Constrained Delaunay Triangle Mesh Method for Three-Dimensional

More information

AIRFOIL PROFILE DESIGN BY REVERSE ENGINEERING BEZIER CURVE

AIRFOIL PROFILE DESIGN BY REVERSE ENGINEERING BEZIER CURVE Int. J. Mech. Eng. & Rob. Res. 2012 Rama Krishna N Parasaram and T N Charyulu, 2012 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 1, No. 3, October 2012 2012 IJMERR. All Rights Reserved AIRFOIL PROFILE

More information

A Procedure for the 3D Reconstruction of Biological Organs from 2D Image Sequences

A Procedure for the 3D Reconstruction of Biological Organs from 2D Image Sequences A Procedure for the 3D Reconstruction of Biological Organs from 2D Image Sequences Kirana Kumara P Centre for Product Design and Manufacturing Indian Institute of Science Bangalore, 560 012 India Ashitava

More information

A Hybrid Methodology for the Creation of High Quality Surfaces for Reverse Engineering Applications

A Hybrid Methodology for the Creation of High Quality Surfaces for Reverse Engineering Applications A Hybrid Methodology for the Creation of High Quality Surfaces for Reverse Engineering Applications G. M. Lecrivain, I. Kennedy and A.Slaouti. IAENG Abstract Reverse Engineering has become a viable technique

More information

3D Volume Mesh Generation of Human Organs Using Surface Geometries Created from the Visible Human Data Set

3D Volume Mesh Generation of Human Organs Using Surface Geometries Created from the Visible Human Data Set 3D Volume Mesh Generation of Human Organs Using Surface Geometries Created from the Visible Human Data Set John M. Sullivan, Jr., Ziji Wu, and Anand Kulkarni Worcester Polytechnic Institute Worcester,

More information

FACET SHIFT ALGORITHM BASED ON MINIMAL DISTANCE IN SIMPLIFICATION OF BUILDINGS WITH PARALLEL STRUCTURE

FACET SHIFT ALGORITHM BASED ON MINIMAL DISTANCE IN SIMPLIFICATION OF BUILDINGS WITH PARALLEL STRUCTURE FACET SHIFT ALGORITHM BASED ON MINIMAL DISTANCE IN SIMPLIFICATION OF BUILDINGS WITH PARALLEL STRUCTURE GE Lei, WU Fang, QIAN Haizhong, ZHAI Renjian Institute of Surveying and Mapping Information Engineering

More information

A processing algorithm for freeform fabrication of heterogeneous structures

A processing algorithm for freeform fabrication of heterogeneous structures A processing algorithm for freeform fabrication of heterogeneous structures Wei Sun Tao Jiang and Feng Lin The authors Wei Sun and Tao Jiang are based at the Department of Mechanical Engineering and Mechanics,

More information

MINIMIZATION OF VOLUMETRIC ERRORS IN CAD MEDICAL MODELS USING 64 SLICE SPIRAL CT SCANNER. L. Krishnanand, A. Manmadhachary and Y.

MINIMIZATION OF VOLUMETRIC ERRORS IN CAD MEDICAL MODELS USING 64 SLICE SPIRAL CT SCANNER. L. Krishnanand, A. Manmadhachary and Y. MINIMIZATION OF VOLUMETRIC ERRORS IN CAD MEDICAL MODELS USING 64 SLICE SPIRAL CT SCANNER L. Krishnanand, A. Manmadhachary and Y. Ravi Kumar Department of Mechanical Engineering,National Institute of Technology

More information

Reverse Engineering: Mechanical. Dr. Tarek A. Tutunji

Reverse Engineering: Mechanical. Dr. Tarek A. Tutunji Reverse Engineering: Mechanical Dr. Tarek A. Tutunji Mechanical RE References: 1. RE (reverse engineering) as necessary phase by rapid product development by Sokovic and Kopac 2. A Practical Appreciation

More information

The Quality Of 3D Models

The Quality Of 3D Models The Quality Of 3D Models Problems and Solutions for Applications Post-Design Fathi El-Yafi Senior Product Engineer Product Department of EXA Corporation 1 : Overview Status Problems Identified Defect Sources

More information

TARGET IMPACT DETECTION ALGORITHM USING COMPUTER-AIDED DESIGN (CAD) MODEL GEOMETRY

TARGET IMPACT DETECTION ALGORITHM USING COMPUTER-AIDED DESIGN (CAD) MODEL GEOMETRY AD AD-E403 558 Technical Report ARMET-TR-13024 TARGET IMPACT DETECTION ALGORITHM USING COMPUTER-AIDED DESIGN (CAD) MODEL GEOMETRY Philip Brislin Ahmed G. Hassan September 2014 U.S. ARMY ARMAMENT RESEARCH,

More information

Copyright 2017 Medical IP - Tutorial Medip v /2018, Revision

Copyright 2017 Medical IP - Tutorial Medip v /2018, Revision Copyright 2017 Medical IP - Tutorial Medip v.1.0.0.9 01/2018, Revision 1.0.0.2 List of Contents 1. Introduction......................................................... 2 2. Overview..............................................................

More information

The Use ofvrml to Integrate Design and Solid Freeform Fabrication

The Use ofvrml to Integrate Design and Solid Freeform Fabrication The Use ofvrml to ntegrate Design and Solid Freeform Fabrication Yanshuo Wang Jian Dong * Harris L. Marcus Solid Freeform Fabrication Laboratory University ofconnecticut Storrs, CT 06269 ABSTRACT The Virtual

More information

LAPLACIAN MESH SMOOTHING FOR TETRAHEDRA BASED VOLUME VISUALIZATION 1. INTRODUCTION

LAPLACIAN MESH SMOOTHING FOR TETRAHEDRA BASED VOLUME VISUALIZATION 1. INTRODUCTION JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol.4/2002, ISSN 642-6037 Rafał STĘGIERSKI *, Paweł MIKOŁAJCZAK * volume data,triangle mesh generation, mesh smoothing, marching tetrahedra LAPLACIAN MESH

More information

Review of Computer Aided Design (CAD) Data Transformation in Rapid Prototyping Technology

Review of Computer Aided Design (CAD) Data Transformation in Rapid Prototyping Technology International Journal of Information & Computation Technology. ISSN 0974-2255 Volume 1, Number 2 (2011), pp. 11-16 International Research Publications House http://www.irphouse.com Review of Computer Aided

More information

A Survey of Volumetric Visualization Techniques for Medical Images

A Survey of Volumetric Visualization Techniques for Medical Images International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Volume 2, Issue 4, April 2015, PP 34-39 ISSN 2349-4840 (Print) & ISSN 2349-4859 (Online) www.arcjournals.org A Survey

More information

Visualisation : Lecture 1. So what is visualisation? Visualisation

Visualisation : Lecture 1. So what is visualisation? Visualisation So what is visualisation? UG4 / M.Sc. Course 2006 toby.breckon@ed.ac.uk Computer Vision Lab. Institute for Perception, Action & Behaviour Introducing 1 Application of interactive 3D computer graphics to

More information

3D Surface Reconstruction of the Brain based on Level Set Method

3D Surface Reconstruction of the Brain based on Level Set Method 3D Surface Reconstruction of the Brain based on Level Set Method Shijun Tang, Bill P. Buckles, and Kamesh Namuduri Department of Computer Science & Engineering Department of Electrical Engineering University

More information

Rapid Fabrication of Large-sized Solid Shape using Variable Lamination Manufacturing and Multi-functional Hotwire Cutting System D.Y. Yang 1, H.C.

Rapid Fabrication of Large-sized Solid Shape using Variable Lamination Manufacturing and Multi-functional Hotwire Cutting System D.Y. Yang 1, H.C. Rapid Fabrication of Large-sized Solid Shape using Variable Lamination Manufacturing and Multi-functional Hotwire Cutting System D.Y. Yang 1, H.C.Kim 1, S.H.Lee 1,*, D.G.Ahn 1,** S.K.Park 2 1 Dept. of

More information

REVERSE ENGINEERING APPROACH FOR RAPID MANUFACTURING OF FREEFORM COMPONENTS

REVERSE ENGINEERING APPROACH FOR RAPID MANUFACTURING OF FREEFORM COMPONENTS REVERSE ENGINEERING APPROACH FOR RAPID MANUFACTURING OF FREEFORM COMPONENTS Rahul Shrivastava 1, Yashwant Kumar Modi 2 1 PG Scholar, 2 Assistant Professor, Department of Mechanical Engineering, Jaypee

More information

Three Dimensional Finite Element Mesh Generation for Maxillary Second Premolar Chun-Li Lin, Chih-Han Chang, *Chia-Shin Cheng, *Huey-Er Lee ABSTRACT

Three Dimensional Finite Element Mesh Generation for Maxillary Second Premolar Chun-Li Lin, Chih-Han Chang, *Chia-Shin Cheng, *Huey-Er Lee ABSTRACT Three Dimensional Finite Element Mesh Generation for Maxillary Second Premolar Chun-Li Lin, Chih-Han Chang, *Chia-Shin Cheng, *Huey-Er Lee Institute of Biomedical Engineering, National Cheng Kung University,

More information

Proceeding, International Seminar on Industrial Engineering and Management ISSN : 1978-774X OPTIMIZATION OF REVERSE ENGINEERING PROCESS FOR CONSTRUCTING ROTATIONAL PART MODEL USING RESPONSE SURFACE METHODOLOGY

More information

2D Rigid Registration of MR Scans using the 1d Binary Projections

2D Rigid Registration of MR Scans using the 1d Binary Projections 2D Rigid Registration of MR Scans using the 1d Binary Projections Panos D. Kotsas Abstract This paper presents the application of a signal intensity independent registration criterion for 2D rigid body

More information

PROCESSING TECHNIQUES OF POINT CLOUD DATA ON SMALL-SIZED OBJECTS WITH COMPLEX FREE-FORM SURFACE

PROCESSING TECHNIQUES OF POINT CLOUD DATA ON SMALL-SIZED OBJECTS WITH COMPLEX FREE-FORM SURFACE Engineering Review, Vol. 36, Issue 2, 175-179, 2016. 175 PROCESSING TECHNIQUES OF POINT CLOUD DATA ON SMALL-SIZED OBJECTS WITH COMPLEX FREE-FORM SURFACE Wei He 1* Bai Shan 1 Ke Sun 2 1 Ocean College of

More information

3D Object Scanning to Support Computer-Aided Conceptual Design

3D Object Scanning to Support Computer-Aided Conceptual Design ABSTRACT 3D Object Scanning to Support Computer-Aided Conceptual Design J.S.M. Vergeest and I. Horváth Delft University of Technology Faculty of Design, Engineering and Production Jaffalaan 9, NL-2628

More information

A Case Study of Reverse Engineering Integrated in an Automated Design Process

A Case Study of Reverse Engineering Integrated in an Automated Design Process IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS A Case Study of Reverse Engineering Integrated in an Automated Design Process To cite this article: R Pescaru et al 2016 IOP Conf.

More information

SANGAM PROJECT BROCHURE:

SANGAM PROJECT BROCHURE: SANGAM PROJECT BROCHURE: Real-Time 3D Object Reconstruction using Kinect By: Sudharshan Suresh Narendar Sriram Senthil Hariharan Anjana Gayathri Spider R & D Introduction In a year where astronauts in

More information

manufactured parts carry good precision, excellent surface precision and high flexibility. This Baan-Chyan, Taipei, Taiwan, 220, R.O.C.

manufactured parts carry good precision, excellent surface precision and high flexibility. This Baan-Chyan, Taipei, Taiwan, 220, R.O.C. The Approach of Complex Insert Packaging Fabrication in Stereolithography Y. Y. Chiu * and J. H. Chang ++ Department of Industrial and Commercial Design, Oriental Institute of Technology, 58, Sec. 2, Syh-Chuan

More information

Reasoning Boolean Operation for Modeling, Simulation and Fabrication of Heterogeneous Objects. Abstract

Reasoning Boolean Operation for Modeling, Simulation and Fabrication of Heterogeneous Objects. Abstract Reasoning Boolean Operation for Modeling, Simulation and Fabrication of Heterogeneous Objects X. Hu, T. Jiang, F. Lin, and W. Sun Department of Mechanical Engineering and Mechanics, Drexel University,

More information

ECE 480: Design Team #9 Application Note Designing Box with AutoCAD

ECE 480: Design Team #9 Application Note Designing Box with AutoCAD ECE 480: Design Team #9 Application Note Designing Box with AutoCAD By: Radhika Somayya Due Date: Friday, March 28, 2014 1 S o m a y y a Table of Contents Executive Summary... 3 Keywords... 3 Introduction...

More information

Methods for increasing customization in rapid machining patient-specific bone implants

Methods for increasing customization in rapid machining patient-specific bone implants Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2011 Methods for increasing customization in rapid machining patient-specific bone implants Shawn Spencer Iowa

More information

A MULTI-MATERIAL VIRTUAL PROTOTYPING SYSTEM

A MULTI-MATERIAL VIRTUAL PROTOTYPING SYSTEM A MULTI-MATERIAL VIRTUAL PROTOTYPING SYSTEM S. H. Choi and H.H. Cheung Department of Industrial and Manufacturing Systems Engineering The University of Hong Kong, Pokfulam Road, Hong Kong. Reviewed, accepted

More information

Computer Aided Engineering Applications

Computer Aided Engineering Applications Computer Aided Engineering Applications 1A.Geometric Modeling 1.1 Geometric modelling methods 1.2 Data representation 1.3 Modeling functions 1.4 Structure of a CAD system Engi 6928 - Fall 2014 1.Geometric

More information

ACCURACY EVALUATION OF 3D RECONSTRUCTION FROM CT-SCAN IMAGES FOR INSPECTION OF INDUSTRIAL PARTS. Institut Francais du Petrole

ACCURACY EVALUATION OF 3D RECONSTRUCTION FROM CT-SCAN IMAGES FOR INSPECTION OF INDUSTRIAL PARTS. Institut Francais du Petrole ACCURACY EVALUATION OF 3D RECONSTRUCTION FROM CT-SCAN IMAGES FOR INSPECTION OF INDUSTRIAL PARTS H. Delingette y,o.seguin z,r.perrocheau z,p.menegazzi z yinria Sophia-Antipolis 2004, Route des Lucioles

More information

Development of Cranium Using Mimics and Rapid Prototyping Using ANSYS

Development of Cranium Using Mimics and Rapid Prototyping Using ANSYS Development of Cranium Using Mimics and Rapid Prototyping Using ANSYS Sadhasivam.C 1, Sai Krishna Gunda 2 1 Assistant Professor, Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha

More information

Study on Improving the Quality of Reconstructed NURBS Surfaces

Study on Improving the Quality of Reconstructed NURBS Surfaces Study on Improving the Quality of Reconstructed NURBS Surfaces Shufeng jiang, Shigang Wang, Yong Yan School of Mechatronic Engineering, Qiqihar University, Qiqihar 161006, China Abstract In aspect of surface

More information

3D PRINTER USING ARDUINO 644p FIRMWARE

3D PRINTER USING ARDUINO 644p FIRMWARE International Journal of Recent Innovation in Engineering and Research Scientific Journal Impact Factor - 3.605 by SJIF e- ISSN: 2456 2084 3D PRINTER USING ARDUINO 644p FIRMWARE Samarshi Baidya 1, Manyala

More information

Generation of Hulls Encompassing Neuronal Pathways Based on Tetrahedralization and 3D Alpha Shapes

Generation of Hulls Encompassing Neuronal Pathways Based on Tetrahedralization and 3D Alpha Shapes Generation of Hulls Encompassing Neuronal Pathways Based on Tetrahedralization and 3D Alpha Shapes Dorit Merhof 1,2, Martin Meister 1, Ezgi Bingöl 1, Peter Hastreiter 1,2, Christopher Nimsky 2,3, Günther

More information

CONVERTING CAD TO STL

CONVERTING CAD TO STL Overview How CAD files are exported to STL is an important process for accurate building of parts. The step by step process for converting CAD files to STL was taken straight from the mentioned companies

More information

Real World to Virtual World. With Geomagic Design X

Real World to Virtual World. With Geomagic Design X Real World to Virtual World With Geomagic Design X About OR3D OR3D based in UK with offices in Wrexham (Wales) and Bristol (England) Cover the UK and Internationally UK s largest supplier of Geomagic software

More information

The Modeling of 3D Tibia Bone Using the CT Images and Printing

The Modeling of 3D Tibia Bone Using the CT Images and Printing 2016 Published in 4th International Symposium on Innovative Technologies in Engineering and Science 3-5 November 2016 (ISITES2016 Alanya/Antalya - Turkey) The Modeling of 3D Tibia Bone Using the CT Images

More information

Successful STLs for 3D Printing

Successful STLs for 3D Printing HOW-TO GUIDE Successful STLs for 3D Printing OVERVIEW This document will help 3D printing users ensure their STL files produce successful 3D printed parts. It will help them become familiar with popular

More information

Contours & Implicit Modelling 1

Contours & Implicit Modelling 1 Contouring & Implicit Modelling Visualisation Lecture 8 Institute for Perception, Action & Behaviour School of Informatics Contours & Implicit Modelling 1 Brief Recap Contouring Implicit Functions lecture

More information

MODERN DIMENSIONAL MEASURING TECHNIQUES BASED ON OPTICAL PRINCIPLES

MODERN DIMENSIONAL MEASURING TECHNIQUES BASED ON OPTICAL PRINCIPLES MODERN DIMENSIONAL MEASURING TECHNIQUES BASED ON OPTICAL PRINCIPLES J. Reichweger 1, J. Enzendorfer 1 and E. Müller 2 1 Steyr Daimler Puch Engineering Center Steyr GmbH Schönauerstrasse 5, A-4400 Steyr,

More information

Finite Element Analysis of Three Dimensional Medical Model Generated from CT Scan data.

Finite Element Analysis of Three Dimensional Medical Model Generated from CT Scan data. Finite Element Analysis of Three Dimensional Medical Model Generated from CT Scan data. Ashish B. Deoghare 1*, P.M.Padole 2 1 Department of Mechanical Engineering, Visvesvaraya National Institute Of Technology,

More information

Rapid Prototyping Rev II

Rapid Prototyping Rev II Rapid Prototyping Rev II D R. T A R E K A. T U T U N J I R E V E R S E E N G I N E E R I N G P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N 2 0 1 5 Prototype A prototype can be defined as a model

More information

Exploiting Typical Clinical Imaging Constraints for 3D Outer Bone Surface Segmentation

Exploiting Typical Clinical Imaging Constraints for 3D Outer Bone Surface Segmentation Exploiting Typical Clinical Imaging Constraints for 3D Outer Bone Surface Segmentation Chris Mack, Vishali Mogallapu, Andrew Willis, Thomas P. Weldon UNC Charlotte, Department of Electrical and Computer

More information

Manipulating the Boundary Mesh

Manipulating the Boundary Mesh Chapter 7. Manipulating the Boundary Mesh The first step in producing an unstructured grid is to define the shape of the domain boundaries. Using a preprocessor (GAMBIT or a third-party CAD package) you

More information

Data sharing of shape model with VRML environment

Data sharing of shape model with VRML environment Data sharing of shape model with VRML environment K. G. Kobayasht, K. Ujihara, M. Hayamizu, and M. Fujii" Japan Society for Precision Engineering Toyama Prefectural University, Dept. of Mech. Systems Eng.

More information

Minimum Surface Area Based Complex Hole Filling Algorithm of 3D Mesh

Minimum Surface Area Based Complex Hole Filling Algorithm of 3D Mesh Minimum Surface Area Based Complex Hole Filling Algorithm of 3D Mesh Enkhbayar Altantsetseg 1) Katsutsugu Matsuyama ) Kouichi Konno ) 1) National University of Mongolia ) Iwate University {enkhbayar.a}

More information

Point-based Simplification Algorithm

Point-based Simplification Algorithm Point-based Simplification Algorithm Pai-Feng Lee 1, Bin-Shyan Jong 2 Department of Information Management, Hsing Wu College 1 Dept. of Information and Computer Engineering Engineering, Chung Yuan Christian

More information

Computer-Aided Diagnosis in Abdominal and Cardiac Radiology Using Neural Networks

Computer-Aided Diagnosis in Abdominal and Cardiac Radiology Using Neural Networks Computer-Aided Diagnosis in Abdominal and Cardiac Radiology Using Neural Networks Du-Yih Tsai, Masaru Sekiya and Yongbum Lee Department of Radiological Technology, School of Health Sciences, Faculty of

More information

13.472J/1.128J/2.158J/16.940J COMPUTATIONAL GEOMETRY

13.472J/1.128J/2.158J/16.940J COMPUTATIONAL GEOMETRY 13.472J/1.128J/2.158J/16.940J COMPUTATIONAL GEOMETRY Lecture 23 Dr. W. Cho Prof. N. M. Patrikalakis Copyright c 2003 Massachusetts Institute of Technology Contents 23 F.E. and B.E. Meshing Algorithms 2

More information

Visualization tools for design support in SFF

Visualization tools for design support in SFF Visualization tools for design support in SFF R. Ian Campbell*, Haeseong J. Jee # and H. S. Lee* *School of Mech, Mats and Manu Engineering, University of Nottingham, NG7 2RD, UK. # Dept. of Mech Engineering,

More information

Accurate Trajectory Control for Five-Axis Tool-Path Planning

Accurate Trajectory Control for Five-Axis Tool-Path Planning Accurate Trajectory Control for Five-Axis Tool-Path Planning Rong-Shine Lin* and Cheng-Bing Ye Abstract Computer-Aided Manufacturing technology has been widely used for three-axis CNC machining in industry

More information

PEC University of Technology Chandigarh, India

PEC University of Technology Chandigarh, India 3D Scanning - Medical Image Processing - 3D Printing - Design & Development of Medical Devices Centre of Excellence In Industrial and Product Design PEC University of Technology Chandigarh, India The prototyping

More information

SFF-Oriented Modeling and Process Planning of Functionally Graded Materials using a Novel Equal Distance Offset Approach

SFF-Oriented Modeling and Process Planning of Functionally Graded Materials using a Novel Equal Distance Offset Approach SFF-Oriented Modeling and Process Planning of Functionally Graded Materials using a Novel Equal Distance Offset Approach Anping Xu and Leon L. Shaw 2 School of Mechanical Engineering, Hebei University

More information

Convergent Modeling and Reverse Engineering

Convergent Modeling and Reverse Engineering Convergent Modeling and Reverse Engineering 25 October 2017 Realize innovation. Tod Parrella NX Design Product Management Product Engineering Solutions tod.parrella@siemens.com Realize innovation. Siemens

More information

PROSTATE CANCER DETECTION USING LABEL IMAGE CONSTRAINED MULTIATLAS SELECTION

PROSTATE CANCER DETECTION USING LABEL IMAGE CONSTRAINED MULTIATLAS SELECTION PROSTATE CANCER DETECTION USING LABEL IMAGE CONSTRAINED MULTIATLAS SELECTION Ms. Vaibhavi Nandkumar Jagtap 1, Mr. Santosh D. Kale 2 1 PG Scholar, 2 Assistant Professor, Department of Electronics and Telecommunication,

More information

LASER ADDITIVE MANUFACTURING PROCESS PLANNING AND AUTOMATION

LASER ADDITIVE MANUFACTURING PROCESS PLANNING AND AUTOMATION LASER ADDITIVE MANUFACTURING PROCESS PLANNING AND AUTOMATION Jun Zhang, Jianzhong Ruan, Frank Liou Department of Mechanical and Aerospace Engineering and Engineering Mechanics Intelligent Systems Center

More information

arxiv: v1 [math.na] 2 Aug 2013

arxiv: v1 [math.na] 2 Aug 2013 arxiv:1308.0387 [math.na] 2 Aug 2013 3D Volume Calculation For the Marching Cubes Algorithm in Cartesian Coordinates Contents Shuqiang Wang 06/20/2013 1 Introduction 1 2 Method 2 2.1 Volume Calculations

More information