Chapter 7 TOPOLOGY CONTROL

Size: px
Start display at page:

Download "Chapter 7 TOPOLOGY CONTROL"

Transcription

1 Chapter TOPOLOGY CONTROL Oeriew Topology Control Gabriel Graph et al. XTC Interference SINR & Schedling Complexity Distribted Compting Grop Mobile Compting Winter 00 / 00 Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer / Topology Control Topology Control as a Trade-Off Sometimes also clstering, Dominating Set constrction (See later) Topology Control Drop long-range neighbors: Redces interference and energy! Bt still stay connected (or een spanner) Network Connectiity Spanner Property d(,) t d TC (,) Consere Energy Redce Interference Sparse Graph, Low Degree Planarity Symmetric Links Less Dynamics Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer / Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer /

2 Gabriel Graph Delanay Trianglation Let disk(,) be a disk with diameter (,) that is determined by the two points,. The Gabriel Graph GG(V) is defined as an ndirected graph (with E being a set of ndirected edges). There is an edge between two nodes, iff the disk(,) inclding bondary contains no other points. disk(,) Let disk(,,w) be a disk defined by the three points,,w. The Delanay Trianglation (Graph) DT(V) is defined as an ndirected graph (with E being a set of ndirected edges). There is a triangle of edges between three nodes,,w iff the disk(,,w) contains no other points. disk(,,w) w As we will see the Gabriel Graph has interesting properties. The Delanay Trianglation is the dal of the Voronoi diagram, and widely sed in arios CS areas; the DT is planar; the distance of a path (s,,t) on the DT is within a constant factor of the s-t distance. Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer / Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer / Other planar graphs Properties of planar graphs Relatie Neighborhood Graph RNG(V) Theorem 1: MST( V) RNG( V) GG( V) DT( V) An edge e = (,) is in the RNG(V) iff there is no node w with (,w) < (,) and (,w) < (,). Corollary: Since the MST(V) is connected and the DT(V) is planar, all the planar graphs in Theorem 1 are connected and planar. Minimm Spanning Tree MST(V) A sbset of E of G of minimm weight which forms a tree on V. Theorem : The Gabriel Graph contains the Minimm Energy Path (for any path loss exponent α ) Corollary: GG(V) UDG(V) contains the Minimm Energy Path in UDG(V) Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer / Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer /

3 More examples XTC: Lightweight Topology Control β-skeleton Generalizing Gabriel (β = 1) and Relatie Neighborhood (β = ) Graph Yao-Graph Each node partitions directions in k cones and then connects to the closest node in each cone Cone-Based Graph Dynamic ersion of the Yao Graph. Neighbors are isited in order of their distance, and sed only if they coer not yet coered angle Topology Control commonly assmes that the node positions are known. What if we do not hae access to position information? XTC algorithm XTC analysis Worst case Aerage case Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer / Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer / XTC: lightweight topology control withot geometry XTC Algorithm (Part ) D F E A 1. C. E. B. F. D. G C B G Each node prodces ranking of neighbors. Examples Distance (closest) Energy (lowest) Link qality (best) Not necessarily depending on explicit positions Nodes exchange rankings with neighbors. A. C. E D 1. F. A. D F E. E. A. B. A. G. D A 1. C. E. B. F. D. G C B. C. G. A G. B. A. C Each node locally goes throgh all neighbors in order of their ranking If the candidate (crrent neighbor) ranks any of yor already processed neighbors higher than yorself, then yo do not need to connect to the candidate. Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer / Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer /1

4 XTC Analysis (Part 1) XTC Analysis (Part 1) Symmetry: A node wants a node as a neighbor if and only if wants. Symmetry: A node wants a node as a neighbor if and only if wants. Proof: Assme 1) and ) Assmption ) w: (i) w and (ii) w Contradicts Assmption 1) Connectiity: If two nodes are connected originally, they will stay so (proided that rankings are based on symmetric link-weights). If the ranking is energy or link qality based, then XTC will choose a topology that rotes arond walls and obstacles. Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer /1 Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer /1 XTC Analysis (Part ) XTC Aerage-Case If the gien graph is a Unit Disk Graph (no obstacles, nodes homogeneos, bt not necessarily niformly distribted), then The degree of each node is at most. The topology is planar. The graph is a sbgraph of the RNG. Relatie Neighborhood Graph RNG(V): An edge e = (,) is in the RNG(V) iff there is no node w with (,w) < (,) and (,w) < (,). Unit Disk Graph XTC Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer /1 Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer /1

5 XTC Aerage-Case (Degrees) XTC Aerage-Case (Stretch Factor) 1. UDG max GG max XTC max Node Degree Network Density [nodes per nit disk] UDG ag GG ag XTC ag Stretch Factor Network Density [nodes per nit disk] XTC s. UDG Eclidean GG s. UDG Eclidean XTC s. UDG Energy GG s. UDG Energy Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer /1 Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer /1 XTC Aerage-Case (Geometric Roting) k-xtc: More connectiity better Performance worse 1 0 connectiity rate GFG/GPSR on GG GOAFR+ on G XTC GOAFR+ on GG 0 1 Network Density [nodes per nit disk] Freqency A graph is k-(node)-connected, if k-1 arbitrary nodes can be remoed, and the graph is still connected. In k-xtc, an edge (,) is only remoed if there exist k nodes w 1,, w k sch that the k edges (w 1, ),, (w k, ), (w 1,),, (w k,) are all better than the original edge (,). Theorem: If the original graph is k-connected, then the prned graph prodced by k-xtc is as well. Proof: Let (,) be the best edge that was remoed by k-xtc. Using the constrction of k-xtc, there is at least one common neighbor w that sries the slaghter of k-1 nodes. By indction assme that this is tre for the j best edges. By the same argment as for the best edge, also the j+1 st edge (, ), since at least one neighbor sries w sries and the edges (,w ) and (,w ) are better. Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer /1 Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer /0

6 Implementing XTC, e.g. BTnodes Implementing XTC, e.g. on mica motes Idea: XTC chooses the reliable links The qality measre is a moing aerage of the receied packet ratio Sorce roting: rote discoery (flooding) oer these reliable links only Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer /1 Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer / Topology Control as a Trade-Off What is Interference? Exact size of interference range does not change the reslts Link-based Interference Model Node-based Interference Model Topology Control Interference Interference Network Connectiity Spanner Property Really?!? Consere Energy Redce Interference Sparse Graph, Low Degree Planarity Symmetric Links Less Dynamics How many nodes are affected by commnication oer a gien link? By how many other nodes can a gien network node be distrbed? Problem statement We want to minimize maximm interference At the same time topology mst be connected or a spanner etc. Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer / Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer /

7 Low Node Degree Topology Control? Let s Stdy the Following Topology! Low node degree does not necessarily imply low interference: from a worst-case perspectie Very low node degree bt hge interference Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer / Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer / Topology Control Algorithms Prodce Bt Interference All known topology control algorithms (with symmetric edges) inclde the nearest neighbor forest as a sbgraph and prodce something like this: Interference does not need to be high The interference of this graph is Ω(n)! This topology has interference O(1)!! Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer / Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer /

8 Link-based Interference Model Interference-optimal topologies: Link-based Interference Model LIFE (Low Interference Forest Establisher) There is no local algorithm that can find a good interference topology The optimal topology will not be planar Preseres Graph Connectiity LIFE Attribte interference ales as weights to edges Compte minimm spanning tree/forest (Krskal s algorithm) LIFE constrcts a minimminterference forest Interference Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer / Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer /0 Link-based Interference Model Link-based Interference Model LISE (Low Interference Spanner Establisher) LocaLISE Scalability Constrcts a spanning sbgraph Constrcts a spanner locally LISE Add edges with increasing interference ntil spanner property flfilled LISE constrcts a minimminterference t-spanner -hop spanner with Interference LocaLISE Nodes collect (t/)-neighborhood Locally compte interferenceminimal paths garanteeing spanner property Only reqest that path to stay in the reslting topology LocaLISE constrcts a minimm-interference t-spanner Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer /1 Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer /

9 Link-based Interference Model Aerage-Case Interference: Presere Connectiity LocaLISE (Low Interference Spanner Establisher) Constrcts a spanner locally LocaLISE Nodes collect (t/)-neighborhood Locally compte interferenceminimal paths garanteeing spanner property Only reqest that path to stay in the reslting topology LocaLISE constrcts a minimm-interference t-spanner Interference 0 0 UDG 0 GG 0 0 RNG LIFE Network Density [nodes per nit disk] Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer / Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer / Aerage-Case Interference: Spanners Link-based Interference Model RNG LLISE, t= Interference 0 1 t= t= t= t= UDG, I = 0 RNG, I = LIFE Network Density [nodes per nit disk] LocaLISE, I = LocaLISE, I = 1 Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer / Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer /

10 Node-based Interference Model Node-based Interference Model Already 1-dimensional node distribtions seem to yield inherently high interference... Connecting linearly reslts in interference O(n) 1 Already 1-dimensional node distribtions seem to yield inherently high interference... Connecting linearly reslts in interference O(n)...bt the exponential node chain can be connected in a better way...bt the exponential node chain can be connected in a better way Interference Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer / Matches an existing lower bond Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer / Node-based Interference Model Arbitrary distribted nodes in one dimension Approximation algorithm with approximation ratio in O( ) Towards a More Realistic Interference Model... Signal-to-interference and noise ratio (SINR) Power leel of node Path-loss exponent Two-dimensional node distribtions Randomized algorithm reslting in interference O( ) No deterministic algorithm so far... Noise Problem statement Distance between two nodes Minimm signal-tointerference ratio Determine a power assignment and a schedle for each node sch that all message transmissions are sccessfl SINR is always assred Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer / Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer /0

11 Qiz: Can these two links transmit simltaneosly? Let s try harder A C D B A C D B 0m 1m 0m 1m Graph-theoretical models: No! Neither in- nor ot-interference SINR model: constant power: No! Node B will receie the transmission of node C SINR model: power according to distance-sqared: No! Node D will receie the transmission of node A Let s forget abot noise first Then the SINR at B is: P A /0 /(P C /0 ) = ρ/, with ρ = P A /P C. And the SINR at D is: P C /1 /(P A /0 ) = 00/ρ. Making both SINR eqal, ρ = 000 ρ = 0. Hge! Let s try with noise N = 1, P A = 0 000, P C = 1 000: Then SINR at B = P A /0 /(P C /0 +1) > And SINR at D = P C /1 /(P A /0 +1) > (Inclde noise directly, and yo get both SINR s aboe.) Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer /1 Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer / A Simple Problem Each node in the network wants to send a message to an arbitrary other node Commonly assmed power assignment schemes Uniform Linear Proportional to (receier distance) α Constant power leel Both lead to a schedle of length A cleer power assignment reslts in a schedle of length This has strong implications to MAC layer protocols Distribted Compting Grop MOBILE COMPUTING R. Wattenhofer /

Chapter 7 TOPOLOGY CONTROL

Chapter 7 TOPOLOGY CONTROL Chapter 7 TOPOLOGY CONTROL Distributed Computing Group Mobile Computing Winter 2005 / 2006 Overview Topology Control Gabriel Graph et al. XTC Interference SINR & Scheduling Complexity Distributed Computing

More information

Does Topology Control Reduce Interference? Martin Burkhart Pascal von Rickenbach Roger Wattenhofer Aaron Zollinger

Does Topology Control Reduce Interference? Martin Burkhart Pascal von Rickenbach Roger Wattenhofer Aaron Zollinger Does Topology Control Reduce Interference? Martin Burkhart Pascal von Rickenbach Roger Wattenhofer Aaron Zollinger Overview What is Topology Control? Context related work Explicit interference model Interference

More information

Localized Delaunay Triangulation with Application in Ad Hoc Wireless Networks

Localized Delaunay Triangulation with Application in Ad Hoc Wireless Networks 1 Localized Delanay Trianglation with Application in Ad Hoc Wireless Networks Xiang-Yang Li Gria Călinesc Peng-Jn Wan Y Wang Department of Compter Science, Illinois Institte of Technology, Chicago, IL

More information

A Unified Energy-Efficient Topology for Unicast and Broadcast

A Unified Energy-Efficient Topology for Unicast and Broadcast A Unified Energy-Efficient Topology for Unicast and Broadcast Xiang-Yang Li Dept. of Compter Science Illinois Institte of Technology, Chicago, IL, USA xli@cs.iit.ed Wen-Zhan Song School of Eng. & Comp.

More information

On Plane Constrained Bounded-Degree Spanners

On Plane Constrained Bounded-Degree Spanners On Plane Constrained Bonded-Degree Spanners Prosenjit Bose 1, Rolf Fagerberg 2, André an Renssen 1, Sander Verdonschot 1 1 School of Compter Science, Carleton Uniersity, Ottaa, Canada. Email: jit@scs.carleton.ca,

More information

On Plane Constrained Bounded-Degree Spanners

On Plane Constrained Bounded-Degree Spanners Algorithmica manscript No. (ill be inserted by the editor) 1 On Plane Constrained Bonded-Degree Spanners 2 3 Prosenjit Bose Rolf Fagerberg André an Renssen Sander Verdonschot 4 5 Receied: date / Accepted:

More information

Constrained Routing Between Non-Visible Vertices

Constrained Routing Between Non-Visible Vertices Constrained Roting Between Non-Visible Vertices Prosenjit Bose 1, Matias Korman 2, André van Renssen 3,4, and Sander Verdonschot 1 1 School of Compter Science, Carleton University, Ottawa, Canada. jit@scs.carleton.ca,

More information

Image Restoration Image Degradation and Restoration

Image Restoration Image Degradation and Restoration Image Degradation and Restoration hxy Image Degradation Model: Spatial domain representation can be modeled by: g x y h x y f x y x y Freqency domain representation can be modeled by: G F N Prepared By:

More information

Lemma 1 Let the components of, Suppose. Trees. A tree is a graph which is. (a) Connected and. (b) has no cycles (acyclic). (b)

Lemma 1 Let the components of, Suppose. Trees. A tree is a graph which is. (a) Connected and. (b) has no cycles (acyclic). (b) Trees Lemma Let the components of ppose "! be (a) $&%('*)+ - )+ / A tree is a graph which is (b) 0 %(')+ - 3)+ / 6 (a) (a) Connected and (b) has no cycles (acyclic) (b) roof Eery path 8 in which is not

More information

Select-and-Protest-based Beaconless Georouting with Guaranteed Delivery in Wireless Sensor Networks

Select-and-Protest-based Beaconless Georouting with Guaranteed Delivery in Wireless Sensor Networks Select-and-Protest-based Beaconless Georoting ith Garanteed Deliery in Wireless Sensor Netorks Hanna Kalosha, Amiya Nayak, Stefan Rührp, Ian Stojmenoić School of Information Technology and Engineering

More information

Mobility Control and Its Applications in Mobile Ad Hoc Networks

Mobility Control and Its Applications in Mobile Ad Hoc Networks Mobility Control and Its Applications in Mobile Ad Hoc Netorks Jie W and Fei Dai Department of Compter Science and Engineering Florida Atlantic Uniersity Boca Raton, FL 3331 Abstract Most existing localized

More information

Maximal Cliques in Unit Disk Graphs: Polynomial Approximation

Maximal Cliques in Unit Disk Graphs: Polynomial Approximation Maximal Cliqes in Unit Disk Graphs: Polynomial Approximation Rajarshi Gpta, Jean Walrand, Oliier Goldschmidt 2 Department of Electrical Engineering and Compter Science Uniersity of California, Berkeley,

More information

The Disciplined Flood Protocol in Sensor Networks

The Disciplined Flood Protocol in Sensor Networks The Disciplined Flood Protocol in Sensor Networks Yong-ri Choi and Mohamed G. Goda Department of Compter Sciences The University of Texas at Astin, U.S.A. fyrchoi, godag@cs.texas.ed Hssein M. Abdel-Wahab

More information

Rectangle-of-influence triangulations

Rectangle-of-influence triangulations CCCG 2016, Vancoer, British Colmbia, Ag 3 5, 2016 Rectangle-of-inflence trianglations Therese Biedl Anna Lbi Saeed Mehrabi Sander Verdonschot 1 Backgrond The concept of rectangle-of-inflence (RI) draings

More information

Minimum Spanning Trees Outline: MST

Minimum Spanning Trees Outline: MST Minimm Spanning Trees Otline: MST Minimm Spanning Tree Generic MST Algorithm Krskal s Algorithm (Edge Based) Prim s Algorithm (Vertex Based) Spanning Tree A spanning tree of G is a sbgraph which is tree

More information

Routing. Geo-Routing. Thanks to Stefan Schmid for slides

Routing. Geo-Routing. Thanks to Stefan Schmid for slides Routing Geo-Routing Thanks to Stefan Schmid for slides 1 Overview Classic routing overview Geo-routing Greedy geo-routing Euclidean and Planar graphs Face Routing Greedy and Face Routing 2 Shortest path

More information

Visibility-Graph-based Shortest-Path Geographic Routing in Sensor Networks

Visibility-Graph-based Shortest-Path Geographic Routing in Sensor Networks Athor manscript, pblished in "INFOCOM 2009 (2009)" Visibility-Graph-based Shortest-Path Geographic Roting in Sensor Networks Gang Tan Marin Bertier Anne-Marie Kermarrec INRIA/IRISA, Rennes, France. Email:

More information

Towards Tight Bounds on Theta-Graphs

Towards Tight Bounds on Theta-Graphs Toards Tight Bonds on Theta-Graphs arxiv:10.633v1 [cs.cg] Apr 01 Prosenjit Bose Jean-Lo De Carfel Pat Morin André van Renssen Sander Verdonschot Abstract We present improved pper and loer bonds on the

More information

Geo-Routing. Chapter 2. Ad Hoc and Sensor Networks Roger Wattenhofer

Geo-Routing. Chapter 2. Ad Hoc and Sensor Networks Roger Wattenhofer Geo-Routing Chapter 2 Ad Hoc and Sensor Networks Roger Wattenhofer 2/1 Application of the Week: Mesh Networking (Roofnet) Sharing Internet access Cheaper for everybody Several gateways fault-tolerance

More information

Planarity-Preserving Clustering and Embedding for Large Planar Graphs

Planarity-Preserving Clustering and Embedding for Large Planar Graphs Planarity-Presering Clstering and Embedding for Large Planar Graphs Christian A. Dncan, Michael T. Goodrich, and Stephen G. Koboro Center for Geometric Compting The Johns Hopkins Uniersity Baltimore, MD

More information

Simulations of the quadrilateral-based localization

Simulations of the quadrilateral-based localization Simulations of the quadrilateral-based localization Cluster success rate v.s. node degree. Each plot represents a simulation run. 9/15/05 Jie Gao CSE590-fall05 1 Random deployment Poisson distribution

More information

v e v 1 C 2 b) Completely assigned T v a) Partially assigned Tv e T v 2 p k

v e v 1 C 2 b) Completely assigned T v a) Partially assigned Tv e T v 2 p k Approximation Algorithms for a Capacitated Network Design Problem R. Hassin 1? and R. Rai 2?? and F. S. Salman 3??? 1 Department of Statistics and Operations Research, Tel-Ai Uniersity, Tel Ai 69978, Israel.

More information

Chapter 5. Plane Graphs and the DCEL

Chapter 5. Plane Graphs and the DCEL Chapter 5 Plane Graphs and the DCEL So far we hae been talking abot geometric strctres sch as trianglations of polygons and arrangements of line segments withot paying mch attention to how to represent

More information

Cautionary Aspects of Cross Layer Design: Context, Architecture and Interactions

Cautionary Aspects of Cross Layer Design: Context, Architecture and Interactions Cationary Aspects of Cross Layer Design: Context, Architectre and Interactions Vikas Kawadia and P. R. Kmar Dept. of Electrical and Compter Engineering, and Coordinated Science Lab University of Illinois,

More information

Efficient Scheduling for Periodic Aggregation Queries in Multihop Sensor Networks

Efficient Scheduling for Periodic Aggregation Queries in Multihop Sensor Networks 1 Efficient Schedling for Periodic Aggregation Qeries in Mltihop Sensor Networks XiaoHa X, Shaojie Tang, Member, IEEE, XiangYang Li, Senior Member, IEEE Abstract In this work, we stdy periodic qery schedling

More information

Digital Image Processing Chapter 5: Image Restoration

Digital Image Processing Chapter 5: Image Restoration Digital Image Processing Chapter 5: Image Restoration Concept of Image Restoration Image restoration is to restore a degraded image back to the original image while image enhancement is to maniplate the

More information

REPLICATION IN BANDWIDTH-SYMMETRIC BITTORRENT NETWORKS. M. Meulpolder, D.H.J. Epema, H.J. Sips

REPLICATION IN BANDWIDTH-SYMMETRIC BITTORRENT NETWORKS. M. Meulpolder, D.H.J. Epema, H.J. Sips REPLICATION IN BANDWIDTH-SYMMETRIC BITTORRENT NETWORKS M. Melpolder, D.H.J. Epema, H.J. Sips Parallel and Distribted Systems Grop Department of Compter Science, Delft University of Technology, the Netherlands

More information

Faster Random Walks By Rewiring Online Social Networks On-The-Fly

Faster Random Walks By Rewiring Online Social Networks On-The-Fly Faster Random Walks By Rewiring Online ocial Networks On-The-Fly Zhojie Zho 1, Nan Zhang 2, Zhigo Gong 3, Gatam Das 4 1,2 Compter cience Department, George Washington Uniersity 1 rexzho@gw.ed 2 nzhang10@gw.ed

More information

arxiv: v1 [cs.cg] 1 Feb 2016

arxiv: v1 [cs.cg] 1 Feb 2016 The Price of Order Prosenjit Bose Pat Morin André van Renssen, arxiv:160.00399v1 [cs.cg] 1 Feb 016 Abstract We present tight bonds on the spanning ratio of a large family of ordered θ-graphs. A θ-graph

More information

Alliances and Bisection Width for Planar Graphs

Alliances and Bisection Width for Planar Graphs Alliances and Bisection Width for Planar Graphs Martin Olsen 1 and Morten Revsbæk 1 AU Herning Aarhs University, Denmark. martino@hih.a.dk MADAGO, Department of Compter Science Aarhs University, Denmark.

More information

Faster Random Walks By Rewiring Online Social Networks On-The-Fly

Faster Random Walks By Rewiring Online Social Networks On-The-Fly 1 Faster Random Walks By Rewiring Online ocial Networks On-The-Fly Zhojie Zho 1, Nan Zhang 2, Zhigo Gong 3, Gatam Das 4 1,2 Compter cience Department, George Washington Uniersity 1 rexzho@gw.ed 2 nzhang10@gw.ed

More information

Today. B-splines. B-splines. B-splines. Computergrafik. Curves NURBS Surfaces. Bilinear patch Bicubic Bézier patch Advanced surface modeling

Today. B-splines. B-splines. B-splines. Computergrafik. Curves NURBS Surfaces. Bilinear patch Bicubic Bézier patch Advanced surface modeling Comptergrafik Matthias Zwicker Uniersität Bern Herbst 29 Cres Srfaces Parametric srfaces Bicbic Bézier patch Adanced srface modeling Piecewise Bézier cres Each segment spans for control points Each segment

More information

Mobility Control and Its Applications in Mobile Ad Hoc Networks

Mobility Control and Its Applications in Mobile Ad Hoc Networks Mobility Control and Its Applications in Mobile Ad Hoc Netorks Jie W and Fei Dai, Florida Atlantic Uniersity Abstract Most eisting localized protocols in mobile ad hoc netorks, sch as data commnication

More information

An Extended Fault-Tolerant Link-State Routing Protocol in the Internet

An Extended Fault-Tolerant Link-State Routing Protocol in the Internet An Extended Falt-Tolerant Link-State Roting Protocol in the Internet Jie W, Xiaola Lin, Jiannong Cao z, and Weijia Jia x Department of Compter Science and Engineering Florida Atlantic Uniersit Boca Raton,

More information

Improving Network Connectivity Using Trusted Nodes and Edges

Improving Network Connectivity Using Trusted Nodes and Edges Improing Network Connectiity Using Trsted Nodes and Edges Waseem Abbas, Aron Laszka, Yegeniy Vorobeychik, and Xenofon Kotsokos Abstract Network connectiity is a primary attribte and a characteristic phenomenon

More information

Localized Algorithms for Energy Efficient Topology in Wireless Ad Hoc Networks

Localized Algorithms for Energy Efficient Topology in Wireless Ad Hoc Networks Localized Algorithms for Energy Efficient Topology in Wireless Ad Hoc Networks Wen-Zhan Song Yu Wang Xiang-Yang Li Ophir Frieder Abstract. Topology control in wireless ad hoc networks is to select a subgraph

More information

TOPOLOGY CONTROL IN WIRELESS SENSOR NETWORKS

TOPOLOGY CONTROL IN WIRELESS SENSOR NETWORKS TOPOLOGY CONTROL IN WIRELESS SENSOR NETWORKS Mathias Becquaert, Bart Scheers, Ben Lauwens Royal Military Academy Department CISS Renaissancelaan 30 B1000 Brussels, Belgium E-mail: mathias.becquaert@mil.be,

More information

Geometric Routing: Of Theory and Practice

Geometric Routing: Of Theory and Practice Geometric Routing: Of Theory and Practice PODC 03 F. Kuhn, R. Wattenhofer, Y. Zhang, A. Zollinger [KWZ 02] [KWZ 03] [KK 00] Asymptotically Optimal Geometric Mobile Ad-Hoc Routing Worst-Case Optimal and

More information

An Adaptive Strategy for Maximizing Throughput in MAC layer Wireless Multicast

An Adaptive Strategy for Maximizing Throughput in MAC layer Wireless Multicast University of Pennsylvania ScholarlyCommons Departmental Papers (ESE) Department of Electrical & Systems Engineering May 24 An Adaptive Strategy for Maximizing Throghpt in MAC layer Wireless Mlticast Prasanna

More information

Computational Geometry in Wireless Networks - Routing. Presented by Heather M. Michaud

Computational Geometry in Wireless Networks - Routing. Presented by Heather M. Michaud Compaional Geomery in Wireless Neworks - Roing Presened by Heaher M. Michad 1 Ad Hoc Wireless Neworks No fixed pre-exising infrasrcre Nodes can be saic or mobile Assme nodes don move dring roing or opology

More information

Ad hoc and Sensor Networks Chapter 10: Topology control

Ad hoc and Sensor Networks Chapter 10: Topology control Ad hoc and Sensor Networks Chapter 10: Topology control Holger Karl Computer Networks Group Universität Paderborn Goals of this chapter Networks can be too dense too many nodes in close (radio) vicinity

More information

Efficient and Accurate Delaunay Triangulation Protocols under Churn

Efficient and Accurate Delaunay Triangulation Protocols under Churn Efficient and Accrate Delanay Trianglation Protocols nder Chrn Dong-Yong Lee and Simon S. Lam Department of Compter Sciences The University of Texas at Astin {dylee, lam}@cs.texas.ed November 9, 2007 Technical

More information

Fault Tolerance in Hypercubes

Fault Tolerance in Hypercubes Falt Tolerance in Hypercbes Shobana Balakrishnan, Füsn Özgüner, and Baback A. Izadi Department of Electrical Engineering, The Ohio State University, Colmbs, OH 40, USA Abstract: This paper describes different

More information

Chapter 5 Network Layer

Chapter 5 Network Layer Chapter Network Layer Network layer Physical layer: moe bit seqence between two adjacent nodes Data link: reliable transmission between two adjacent nodes Network: gides packets from the sorce to destination,

More information

On the Computational Complexity and Effectiveness of N-hub Shortest-Path Routing

On the Computational Complexity and Effectiveness of N-hub Shortest-Path Routing 1 On the Comptational Complexity and Effectiveness of N-hb Shortest-Path Roting Reven Cohen Gabi Nakibli Dept. of Compter Sciences Technion Israel Abstract In this paper we stdy the comptational complexity

More information

On shortest-path all-optical networks without wavelength conversion requirements

On shortest-path all-optical networks without wavelength conversion requirements Research Collection Working Paper On shortest-path all-optical networks withot waelength conersion reqirements Athor(s): Erlebach, Thomas; Stefanakos, Stamatis Pblication Date: 2002 Permanent Link: https://doi.org/10.3929/ethz-a-004446054

More information

Ad hoc and Sensor Networks Topology control

Ad hoc and Sensor Networks Topology control Ad hoc and Sensor Networks Topology control Goals of this chapter Networks can be too dense too many nodes in close (radio) vicinity This chapter looks at methods to deal with such networks by Reducing/controlling

More information

Real-Time Robot Path Planning via a Distance-Propagating Dynamic System with Obstacle Clearance

Real-Time Robot Path Planning via a Distance-Propagating Dynamic System with Obstacle Clearance POSTPRINT OF: IEEE TRANS. SYST., MAN, CYBERN., B, 383), 28, 884 893. 1 Real-Time Robot Path Planning ia a Distance-Propagating Dynamic System with Obstacle Clearance Allan R. Willms, Simon X. Yang Member,

More information

Pushing squares around

Pushing squares around Pshing sqares arond Adrian Dmitresc János Pach Ý Abstract We stdy dynamic self-reconfigration of modlar metamorphic systems. We garantee the feasibility of motion planning in a rectanglar model consisting

More information

Chapter 6 DOMINATING SETS

Chapter 6 DOMINATING SETS Chapter 6 DOMINATING SETS Distributed Computing Group Mobile Computing Summer 2003 Overview Motivation Dominating Set Connected Dominating Set The Greedy Algorithm The Tree Growing Algorithm The Marking

More information

Vertex Guarding in Weak Visibility Polygons

Vertex Guarding in Weak Visibility Polygons Vertex Garding in Weak Visibility Polygons Pritam Bhattacharya, Sbir Kmar Ghosh*, Bodhayan Roy School of Technology and Compter Science Tata Institte of Fndamental Research Mmbai 400005, India arxi:1409.46212

More information

Degraded digital image restoration Spatial domain processing Additive noise Frequency domain Blurred image

Degraded digital image restoration Spatial domain processing Additive noise Frequency domain Blurred image Image Comm. Lab EE/NTHU 1 Chapter 5 Image Restoration Degraded digital image restoration Spatial domain processing Additie noise Freqency domain Blrred image Image Comm. Lab EE/NTHU 2 5. 1 Model of Image

More information

Object Pose from a Single Image

Object Pose from a Single Image Object Pose from a Single Image How Do We See Objects in Depth? Stereo Use differences between images in or left and right eye How mch is this difference for a car at 00 m? Moe or head sideways Or, the

More information

Chapter 8 DOMINATING SETS

Chapter 8 DOMINATING SETS Chapter 8 DOMINATING SETS Distributed Computing Group Mobile Computing Summer 2004 Overview Motivation Dominating Set Connected Dominating Set The Greedy Algorithm The Tree Growing Algorithm The Marking

More information

Drawing Outer-Planar Graphs in O(n log n) Area

Drawing Outer-Planar Graphs in O(n log n) Area Draing Oter-Planar Graphs in O(n log n) Area Therese Biedl School of Compter Science, Uniersity of Waterloo, Waterloo, ON N2L 3G1, Canada, biedl@aterloo.ca Abstract. In this paper, e stdy draings of oter-planar

More information

Stereopsis Raul Queiroz Feitosa

Stereopsis Raul Queiroz Feitosa Stereopsis Ral Qeiroz Feitosa 5/24/2017 Stereopsis 1 Objetie This chapter introdces the basic techniqes for a 3 dimensional scene reconstrction based on a set of projections of indiidal points on two calibrated

More information

Augmenting the edge connectivity of planar straight line graphs to three

Augmenting the edge connectivity of planar straight line graphs to three Agmenting the edge connectivity of planar straight line graphs to three Marwan Al-Jbeh Mashhood Ishaqe Kristóf Rédei Diane L. Sovaine Csaba D. Tóth Pavel Valtr Abstract We characterize the planar straight

More information

Tri-Edge-Connectivity Augmentation for Planar Straight Line Graphs

Tri-Edge-Connectivity Augmentation for Planar Straight Line Graphs Tri-Edge-Connectivity Agmentation for Planar Straight Line Graphs Marwan Al-Jbeh 1, Mashhood Ishaqe 1, Kristóf Rédei 1, Diane L. Sovaine 1, and Csaba D. Tóth 1,2 1 Department of Compter Science, Tfts University,

More information

Chapter 8 DOMINATING SETS

Chapter 8 DOMINATING SETS Distributed Computing Group Chapter 8 DOMINATING SETS Mobile Computing Summer 2004 Overview Motivation Dominating Set Connected Dominating Set The Greedy Algorithm The Tree Growing Algorithm The Marking

More information

Localized Algorithms for Energy Efficient Topology in Wireless Ad Hoc Networks

Localized Algorithms for Energy Efficient Topology in Wireless Ad Hoc Networks Localized Algorithms for Energy Efficient Topology in Wireless Ad Hoc Networks Wen-Zhan Song Yu Wang Xiang-Yang Li Ophir Frieder ABSTRACT We propose several novel localized algorithms to construct energy

More information

arxiv: v2 [cs.cg] 5 Aug 2014

arxiv: v2 [cs.cg] 5 Aug 2014 The θ 5 -graph is a spanner Prosenjit Bose Pat Morin André van Renssen Sander Verdonschot November 5, 2018 arxiv:12120570v2 [cscg] 5 Ag 2014 Abstract Given a set of points in the plane, e sho that the

More information

[1] Hopcroft, J., D. Joseph and S. Whitesides, Movement problems for twodimensional

[1] Hopcroft, J., D. Joseph and S. Whitesides, Movement problems for twodimensional Acknoledgement. The athors thank Bill Lenhart for interesting discssions on the recongration of rlers. References [1] Hopcroft, J., D. Joseph and S. Whitesides, Moement problems for todimensional linkages,

More information

On Bichromatic Triangle Game

On Bichromatic Triangle Game On Bichromatic Triangle Game Gordana Manić Daniel M. Martin Miloš Stojakoić Agst 16, 2012 Abstract We stdy a combinatorial game called Bichromatic Triangle Game, defined as follows. Two players R and B

More information

Localized Topology Control for Heterogeneous Wireless Sensor Networks

Localized Topology Control for Heterogeneous Wireless Sensor Networks Localized Topology Control for Heterogeneous Wireless Sensor Networks Xiang-Yang Li Wen-Zhan Song Yu Wang 2 The paper studies topology control in heterogeneous wireless sensor networks, where different

More information

Millimeter-Wave Multi-Hop Wireless Backhauling for 5G Cellular Networks

Millimeter-Wave Multi-Hop Wireless Backhauling for 5G Cellular Networks 2017 IEEE 85th Vehiclar Technology Conference (VTC-Spring) Millimeter-Wave Mlti-Hop Wireless Backhaling for 5G Celllar Networks B. P. S. Sahoo, Chn-Han Yao, and Hng-Y Wei Gradate Institte of Electrical

More information

Image Compression Compression Fundamentals

Image Compression Compression Fundamentals Compression Fndamentals Data compression refers to the process of redcing the amont of data reqired to represent given qantity of information. Note that data and information are not the same. Data refers

More information

Mathematical model for storing and effective processing of directed graphs in semistructured data management systems

Mathematical model for storing and effective processing of directed graphs in semistructured data management systems Mathematical model for storing and effectie processing of directed graphs in semistrctred data management MALIKOV A, GULEVSKIY Y, PARKHOMENKO D Information Systems and Technologies Department North Cacass

More information

Geographical routing 1

Geographical routing 1 Geographical routing 1 Routing in ad hoc networks Obtain route information between pairs of nodes wishing to communicate. Proactive protocols: maintain routing tables at each node that is updated as changes

More information

Evaluating Influence Diagrams

Evaluating Influence Diagrams Evalating Inflence Diagrams Where we ve been and where we re going Mark Crowley Department of Compter Science University of British Colmbia crowley@cs.bc.ca Agst 31, 2004 Abstract In this paper we will

More information

Non-convex Representations of Graphs

Non-convex Representations of Graphs Non-conex Representations of Graphs Giseppe Di Battista, Fabrizio Frati, and Marizio Patrignani Dip. di Informatica e Atomazione Roma Tre Uniersity Abstract. We sho that eery plane graph admits a planar

More information

COMPOSITION OF STABLE SET POLYHEDRA

COMPOSITION OF STABLE SET POLYHEDRA COMPOSITION OF STABLE SET POLYHEDRA Benjamin McClosky and Illya V. Hicks Department of Comptational and Applied Mathematics Rice University November 30, 2007 Abstract Barahona and Mahjob fond a defining

More information

Topic Continuity for Web Document Categorization and Ranking

Topic Continuity for Web Document Categorization and Ranking Topic Continity for Web ocment Categorization and Ranking B. L. Narayan, C. A. Mrthy and Sankar. Pal Machine Intelligence Unit, Indian Statistical Institte, 03, B. T. Road, olkata - 70008, India. E-mail:

More information

Queries. Inf 2B: Ranking Queries on the WWW. Suppose we have an Inverted Index for a set of webpages. Disclaimer. Kyriakos Kalorkoti

Queries. Inf 2B: Ranking Queries on the WWW. Suppose we have an Inverted Index for a set of webpages. Disclaimer. Kyriakos Kalorkoti Qeries Inf B: Ranking Qeries on the WWW Kyriakos Kalorkoti School of Informatics Uniersity of Edinbrgh Sppose e hae an Inerted Index for a set of ebpages. Disclaimer I Not really the scenario of Lectre.

More information

Point Location. The Slab Method. Optimal Schemes. The Slab Method. Preprocess a planar, polygonal subdivision for point location queries.

Point Location. The Slab Method. Optimal Schemes. The Slab Method. Preprocess a planar, polygonal subdivision for point location queries. Point Location The Slab Method Prerocess a lanar, olygonal sbdiision for oint location qeries. = (18, 11) raw a ertical line throgh each ertex. This decomoses the lane into slabs. In each slab, the ertical

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Introdction (forarding and roting) Reie of qeeing theor Roting algorithms Link state, Distance Vector Roter design and operation IP: Internet Protocol IP4 (datagram format, addressing, ICMP,

More information

Localized Topology Control for Heterogeneous Wireless Sensor Networks

Localized Topology Control for Heterogeneous Wireless Sensor Networks Localized Topology Control for Heterogeneous Wireless Sensor Networks XIANG-YANG LI Illinois Institute of Technology WEN-ZHAN SONG Washington State University and YU WANG University of North Carolina at

More information

arxiv: v1 [cs.cg] 27 Nov 2015

arxiv: v1 [cs.cg] 27 Nov 2015 On Visibility Representations of Non-planar Graphs Therese Biedl 1, Giseppe Liotta 2, Fabrizio Montecchiani 2 David R. Cheriton School of Compter Science, University of Waterloo, Canada biedl@waterloo.ca

More information

Path Planning in Partially-Known Environments. Prof. Brian Williams (help from Ihsiang Shu) /6.834 Cognitive Robotics February 17 th, 2004

Path Planning in Partially-Known Environments. Prof. Brian Williams (help from Ihsiang Shu) /6.834 Cognitive Robotics February 17 th, 2004 Path Planning in Partially-Known Enironments Prof. Brian Williams (help from Ihsiang Sh) 16.41/6.834 Cognitie Robotics Febrary 17 th, 004 Otline Path Planning in Partially Known Enironments. Finding the

More information

arxiv: v3 [math.co] 7 Sep 2018

arxiv: v3 [math.co] 7 Sep 2018 Cts in matchings of 3-connected cbic graphs Kolja Knaer Petr Valicov arxiv:1712.06143v3 [math.co] 7 Sep 2018 September 10, 2018 Abstract We discss conjectres on Hamiltonicity in cbic graphs (Tait, Barnette,

More information

Constructing Multiple Light Multicast Trees in WDM Optical Networks

Constructing Multiple Light Multicast Trees in WDM Optical Networks Constrcting Mltiple Light Mlticast Trees in WDM Optical Networks Weifa Liang Department of Compter Science Astralian National University Canberra ACT 0200 Astralia wliang@csaneda Abstract Mlticast roting

More information

This chapter is based on the following sources, which are all recommended reading:

This chapter is based on the following sources, which are all recommended reading: Bioinformatics I, WS 09-10, D. Hson, December 7, 2009 105 6 Fast String Matching This chapter is based on the following sorces, which are all recommended reading: 1. An earlier version of this chapter

More information

Cost Based Local Forwarding Transmission Schemes for Two-hop Cellular Networks

Cost Based Local Forwarding Transmission Schemes for Two-hop Cellular Networks Cost Based Local Forwarding Transmission Schemes for Two-hop Celllar Networks Zhenggang Zhao, Xming Fang, Yan Long, Xiaopeng H, Ye Zhao Key Lab of Information Coding & Transmission Sothwest Jiaotong University,

More information

Complete Information Pursuit Evasion in Polygonal Environments

Complete Information Pursuit Evasion in Polygonal Environments Complete Information Prsit Easion in Polygonal Enironments Kyle Klein and Sbhash Sri Department of Compter Science Uniersity of California Santa Barbara, CA 9306 Abstract Sppose an npredictable eader is

More information

Multiple Source Shortest Paths in a Genus g Graph

Multiple Source Shortest Paths in a Genus g Graph Mltiple Sorce Shortest Paths in a Gens g Graph Sergio Cabello Erin W. Chambers Abstract We gie an O(g n log n) algorithm to represent the shortest path tree from all the ertices on a single specified face

More information

Multiple-Choice Test Chapter Golden Section Search Method Optimization COMPLETE SOLUTION SET

Multiple-Choice Test Chapter Golden Section Search Method Optimization COMPLETE SOLUTION SET Mltiple-Choice Test Chapter 09.0 Golden Section Search Method Optimization COMPLETE SOLUTION SET. Which o the ollowing statements is incorrect regarding the Eqal Interval Search and Golden Section Search

More information

NETWORK PRESERVATION THROUGH A TOPOLOGY CONTROL ALGORITHM FOR WIRELESS MESH NETWORKS

NETWORK PRESERVATION THROUGH A TOPOLOGY CONTROL ALGORITHM FOR WIRELESS MESH NETWORKS ETWORK PRESERVATIO THROUGH A TOPOLOGY COTROL ALGORITHM FOR WIRELESS MESH ETWORKS F. O. Aron, T. O. Olwal, A. Krien, Y. Hamam Tshwane University of Technology, Pretoria, Soth Africa. Dept of the French

More information

The Domination and Competition Graphs of a Tournament. University of Colorado at Denver, Denver, CO K. Brooks Reid 3

The Domination and Competition Graphs of a Tournament. University of Colorado at Denver, Denver, CO K. Brooks Reid 3 The omination and Competition Graphs of a Tornament avid C. Fisher, J. Richard Lndgren 1, Sarah K. Merz University of Colorado at enver, enver, CO 817 K. rooks Reid California State University, San Marcos,

More information

Fixed-Parameter Algorithms for Cluster Vertex Deletion

Fixed-Parameter Algorithms for Cluster Vertex Deletion Fixed-Parameter Algorithms for Clster Vertex Deletion Falk Hüffner Christian Komsieicz Hannes Moser Rolf Niedermeier Institt für Informatik, Friedrich-Schiller-Uniersität Jena, Ernst-Abbe-Platz 2, D-07743

More information

Digital Image Processing Chapter 5: Image Restoration

Digital Image Processing Chapter 5: Image Restoration Digital Image Processing Chapter 5: Image Restoration Concept of Image Restoration Image restoration is to restore a degraded image back to the original image while image enhancement is to maniplate the

More information

3D SURFACE RECONSTRUCTION BASED ON COMBINED ANALYSIS OF REFLECTANCE AND POLARISATION PROPERTIES: A LOCAL APPROACH

3D SURFACE RECONSTRUCTION BASED ON COMBINED ANALYSIS OF REFLECTANCE AND POLARISATION PROPERTIES: A LOCAL APPROACH 3D SURFACE RECONSTRUCTION BASED ON COMBINED ANALYSIS OF REFLECTANCE AND POLARISATION PROPERTIES: A LOCAL APPROACH Pablo d Angelo and Christian Wöhler DaimlerChrysler Research and Technology, Machine Perception

More information

The final datapath. M u x. Add. 4 Add. Shift left 2. PCSrc. RegWrite. MemToR. MemWrite. Read data 1 I [25-21] Instruction. Read. register 1 Read.

The final datapath. M u x. Add. 4 Add. Shift left 2. PCSrc. RegWrite. MemToR. MemWrite. Read data 1 I [25-21] Instruction. Read. register 1 Read. The final path PC 4 Add Reg Shift left 2 Add PCSrc Instrction [3-] Instrction I [25-2] I [2-6] I [5 - ] register register 2 register 2 Registers ALU Zero Reslt ALUOp em Data emtor RegDst ALUSrc em I [5

More information

Reconstructing Generalized Staircase Polygons with Uniform Step Length

Reconstructing Generalized Staircase Polygons with Uniform Step Length Jornal of Graph Algorithms and Applications http://jgaa.info/ ol. 22, no. 3, pp. 431 459 (2018) DOI: 10.7155/jgaa.00466 Reconstrcting Generalized Staircase Polygons with Uniform Step Length Nodari Sitchinaa

More information

Page 1. CSCE 310J Data Structures & Algorithms. CSCE 310J Data Structures & Algorithms. Greedy Algorithms and Graph Optimization Problems

Page 1. CSCE 310J Data Structures & Algorithms. CSCE 310J Data Structures & Algorithms. Greedy Algorithms and Graph Optimization Problems CSCE J Data Strctres & Algorithms Greedy Algorithms and Graph Optimization Problems Dr. Steve Goddard goddard@cse.nl.ed http://www.cse.nl.ed/~goddard/corses/cscej CSCE J Data Strctres & Algorithms Giving

More information

Subgraph Matching with Set Similarity in a Large Graph Database

Subgraph Matching with Set Similarity in a Large Graph Database 1 Sbgraph Matching with Set Similarity in a Large Graph Database Liang Hong, Lei Zo, Xiang Lian, Philip S. Y Abstract In real-world graphs sch as social networks, Semantic Web and biological networks,

More information

A Survey On Interference In Wireless Ad-Hoc Networks

A Survey On Interference In Wireless Ad-Hoc Networks A Survey On Interference In Wireless Ad-Hoc Networks S.K.Manju Bargavi Research Scholar, Anna University of Technology Coimbatore, India. Dr. G.P.Rajamani Principal, King College of Technology Namakkal,

More information

Localized Construction of Bounded Degree and Planar Spanner for Wireless Ad Hoc Networks

Localized Construction of Bounded Degree and Planar Spanner for Wireless Ad Hoc Networks 1 Localized Construction of Bounded Degree and Planar Spanner for Wireless Ad Hoc Netorks Yu Wang Xiang-Yang Li Department of Computer Science, University of North Carolina at Charlotte, 9201 University

More information

Representing a Cubic Graph as the Intersection Graph of Axis-parallel Boxes in Three Dimensions

Representing a Cubic Graph as the Intersection Graph of Axis-parallel Boxes in Three Dimensions Representing a Cbic Graph as the Intersection Graph of Axis-parallel Boxes in Three Dimensions ABSTRACT Abhijin Adiga Network Dynamics and Simlation Science Laboratory Virginia Bioinformatics Institte,

More information

CS 557 Lecture IX. Drexel University Dept. of Computer Science

CS 557 Lecture IX. Drexel University Dept. of Computer Science CS 7 Lectre IX Dreel Uniersity Dept. of Compter Science Fall 00 Shortest Paths Finding the Shortest Paths in a graph arises in many different application: Transportation Problems: Finding the cheapest

More information

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 5, MAY On the Analysis of the Bluetooth Time Division Duplex Mechanism

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 5, MAY On the Analysis of the Bluetooth Time Division Duplex Mechanism IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 5, MAY 2007 1 On the Analysis of the Bletooth Time Division Dplex Mechanism Gil Zssman Member, IEEE, Adrian Segall Fellow, IEEE, and Uri Yechiali

More information

Wireless Networking Graph Theory Unplugged. Distributed Computing Group Roger Wattenhofer WG 2004

Wireless Networking Graph Theory Unplugged. Distributed Computing Group Roger Wattenhofer WG 2004 Wireless Networking Graph Theory Unplugged Distributed Computing Group Roger Wattenhofer WG 2004 Overview Introduction Ad-Hoc and Sensor Networks Routing / Broadcasting Clustering Topology Control Conclusions

More information