Sphere-geometric aspects of bisector surfaces

Size: px
Start display at page:

Download "Sphere-geometric aspects of bisector surfaces"

Transcription

1 Sphere-geometric aspects of bisector surfaces Martin eternell Vienna University of Technology, AGGM 2006, arcelona, September

2 Definition Smooth oriented objects and in R 3 (points, curves or surfaces) The bisector surface of and is the locus of centers of spheres tangent both to and. p b q Tangents of are the bisectors of tangents of and at corresponding points p and q AGGM 2006, arcelona, September

3 Elementary Examples in R 2 object 1 object 2 bisector point point line of symmetry or. line or. line line of symmetry point line parabola AGGM 2006, arcelona, September

4 Elementary Examples in R 2 The bisector of a point and a circle is a conic. Ellipse: is inside Hyperbola: is outside S(t) S(t) c(t) c(t) AGGM 2006, arcelona, September

5 oint-curve isector in R 2 The bisector of a point = (0, 0) and a curve = c(t) in R 2 is the envelope of all lines of symmetry S(t) : c(t) (x 1 c(t)) = 0. 2 y intersecting s normals with the lines of symmetry the bisector admits the parametrization b(t) = c(t) 1 2 where n = ( ċ 2, ċ 1 ) is a normal vector of. c(t) c(t) c(t) n(t) n(t), AGGM 2006, arcelona, September

6 Elementary examples of bisectors in R 3 point point plane of symmetry point plane paraboloid of revolution or. plane or. plane plane of symmetry AGGM 2006, arcelona, September

7 Elementary examples of bisectors in R 3 point line parabolic cylinder line plane quadratic cone line line hyperbolic paraboloid p(u) n( ) b(u, v) b q(v) AGGM 2006, arcelona, September

8 Offset-invariance of bisectors Let d and d be the offset surfaces of and at oriented distance d. The bisector of d and d is the bisector of and. AGGM 2006, arcelona, September

9 Geometrical optics Consider two smooth surfaces and and their bisector surface. An illumination L orthogonal to is reflected at to an illumination L = L perpendicu- lar to. The bisector is a mirror surface in that sense. AGGM 2006, arcelona, September

10 Curve-curve bisector in R 3 Let and be two curves in R 3 with parametrizations p(u) and q(v). The bisector surface is constructed by b(u, v) = N (u) N (v) S(u, v) N b q(v) where N and N and S is the plane of symmetry of and. p(u) N N The bisector construction is linear. Rational curves, possess a rational bisector. AGGM 2006, arcelona, September

11 Circle-circle bisector in R 3 Let and be two circles in R 3 with parametrizations p(u) and q(v). The bisector surface carries two families of conics in planes through the axes A and A of and. is a double lutel conic surface (Degen, 64, 65, 86, 98). p(u) A A q(v) AGGM 2006, arcelona, September

12 Some related work Choi,J.J., Kim,M-S. and Elber, G.: Computing lanar isector Curves ased on Developable SSI. Dutta, D. and Hoffmann, C. On the skeleton of simple CSG objects. Elber, G. and Kim, M-S.: The isector Surface of Rational Space Curves. Elber, G. and Kim, M-S.: Rational bisectors of CSG rimitives. Farouki, R.T. and Johnstone, J.K.: The bisector of a point and a plane parametric curve. Farouki, R.T. and Johnstone, J.K.: Computing point/curve and curve/curve bisectors. Farouki, R.T. and Ramamurthy, R.: Specified recision Computation of Curve/Curve isectors. Hoffmann, C.: A dimensionality paradigm for surface interrogations, Literature on medial axis, skeleton and voronoi diagrams. AGGM 2006, arcelona, September

13 3D-Sphere Geometry An oriented (or.) sphere S in R 3 is given by S S : (x m) 2 r 2 = 0, E e m and the orientation is determined by or. normals. oints are considered as spheres of radius 0. An oriented plane E in R 3 is given by f F f e E E : e 0 + e 1 x 1 + e 2 x 2 + e 3 x 3 = e 0 + e x = 0. We always assume that e 2 = 1. F S m E and S are said to be in oriented contact iff e 0 + e 1 m 1 + e 2 m 2 + e 3 m 3 + r = e 0 + e m + r = 0, e 2 = 1. AGGM 2006, arcelona, September

14 Lie-sphere geometry in R 3 A Lie-sphere is either an or. sphere or an or. plane or a point in R 3. A point-model of Lie-sphere geometry is given by the quadric model L 5, L : 2X 0 X 5 + X1 2 + X2 2 + X3 2 X4 2 = 0. Lie-spheres X in R 3 are mapped onto points X L 5 by the correspondence sphere (m, r) point (p) M = (1, m, r, 1 2 (m2 r 2 ))R, = (1, p, 0, 1 2 p2 )R, plane (e 0, e) E = (0, e, 1, e 0 )R, with e = 1. oints x R 3 are mapped onto points X in X 4 = 0. lanes E are mapped onto points E X 0 = 0. AGGM 2006, arcelona, September

15 Relations to Laguerre and Möbius geometry Z = (0, 0, 0, 0, 0, 1)R is not an image of a sphere, plane or point of R 3 but is considered as point (one-point compactification). The quadratic cone X 0 = 0, X1 2 + X2 2 + X3 2 X4 2 = 0 consists of images of oriented planes and is referred to as laschke cone (cylinder). The quadric L X 4 = 0 is projectively equivalent to S 3 and is a point model of the Möbius geometry in R 3. A line L corresponds to a pencil of touching spheres or parallel planes. X 0 = 0 Z S 3 X 4 = 0 L AGGM 2006, arcelona, September

16 Lie-transformations and oriented contact A bijective mapping in the set of Lie-spheres which preserves oriented contact of spheres is called a Lie-transformation. The Lie-transformations appear in the quadric model as projective transformations L L. Lie-transformations are not necessarily point-preserving. oint-preserving Lie-transformations are Möbius transformations. lane-preserving Lie-transformations are Laguerre transformations. AGGM 2006, arcelona, September

17 Oriented contact of Lie-spheres olar form of L X, Y = X 0 Y 5 + X 5 Y 0 + X 1 Y 1 + X 2 Y 2 + X 3 Y 3 X 4 Y 4, Two Lie-spheres X, Y are in oriented contact exactly if X, Y = 0, and X, X = 0, Y, Y = 0. Any oriented plane is in contact with, E, Z = 0. Oriented spheres or points are never in contact with, M, Z = 0. AGGM 2006, arcelona, September

18 General bisector construction Surfaces, in R 3 with images (u, v) and (s, t) in L 5. X is tangent to and exactly if, X = 0, u, X = 0, v, X = 0,, X = 0, s, X = 0, t, X = 0, and X, X = 0 (X L) holds, (X 0 0). Eliminating u, v and s, t gives us three equations F (X) = 0, G(X) = 0, X, X = 0. isector pre-image in L is two-dimensional. The bisector is the projection of onto X 4 = X 5 = 0. AGGM 2006, arcelona, September

19 isectors of Lie-spheres Lie-spheres, in R 3 which are not in oriented contact. The bisector pre-image is the intersection L 3 :, X =, X = 0. is a quadric (of revolution) of index 0 in general. is planar if, are spheres of same radius or oriented planes. AGGM 2006, arcelona, September

20 Dupin cyclides Lie-spheres,, R and image points,, R, lane E = R, lane F =, X =, X = R, X = 0, E F : X E and Y F = X, Y = 0 Conic C = E L and conic D = F L. Family of spheres C corr. to C envelope a Dupin cyclide Φ. Family of spheres D corr. to = D envelope Φ too. Φ admits two generations as canal surface. AGGM 2006, arcelona, September

21 Dupin cyclides special cases Or. planes, and R = C are tangent planes of a cone (cylinder) of revolution Φ. D is the family of spheres touching Φ with centers at Φ s axis. AGGM 2006, arcelona, September

22 Lie-canal surfaces A one-parameter family of Lie-spheres C(u) is called a Lie-canal surface and corresponds to a curve C(u) L. The envelope Φ of C(u) is either a canal surface, a developable surface if C X 0 = 0 or a curve if C X 4 = 0. AGGM 2006, arcelona, September

23 isectors of Lie-canal surfaces Lie canal surfaces and with image curves (u), (v) L. Contact conditions, X = 0, u, X = 0,, X = 0, v, X = 0, define a two parameter family of lines G(u, v) in 5. isector pre-image (u, v) = G(u, v) L. AGGM 2006, arcelona, September

24 isector of two Lie-canal surfaces The bisector surface of two Lie canal surfaces, R 3 can be constructed in an elementary way (square roots). The construction is linear if and are both curves or developable surfaces. AGGM 2006, arcelona, September

25 isector of Lie-sphere and general surface General surface and Lie-sphere with images (u, v) and. Contact conditions, X = 0, u, X = 0, v, X = 0,, X = 0. define a two parameter family of lines G(u, v) in 5. isector pre-image (u, v) = G(u, v) L. AGGM 2006, arcelona, September

26 isector of Lie-sphere and general surface The bisector of a general surface R 3 and a Lie-sphere can be constructed in an elementary way. If is a point or an or. plane the construction is linear. If is a rational offset surface, is rational too. ( is shrunk to a point) AGGM 2006, arcelona, September

27 Summary We have presented a general concept for the geometric interpretation of bisector surfaces of two objects in R 3. oints, or. planes and spheres can be treated similarly. Elementary construction of the bisector of two Lie canal surfaces. Elementary construction of the bisector of a Lie sphere and a general surface. Thank you for your attention! AGGM 2006, arcelona, September

Rational Bisectors of CSG Primitives*

Rational Bisectors of CSG Primitives* Rational Bisectors of CSG Primitives* Gershon Elber Department of Computer Science Technion, Israel Institute of Technology Haifa 32000, Israel Myung-Soo Kim Department of Computer Engineering Seoul National

More information

Quadric Surfaces. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Quadric Surfaces Today 1 / 24

Quadric Surfaces. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Quadric Surfaces Today 1 / 24 Quadric Surfaces Philippe B. Laval KSU Today Philippe B. Laval (KSU) Quadric Surfaces Today 1 / 24 Introduction A quadric surface is the graph of a second degree equation in three variables. The general

More information

Quadric Surfaces. Philippe B. Laval. Spring 2012 KSU. Philippe B. Laval (KSU) Quadric Surfaces Spring /

Quadric Surfaces. Philippe B. Laval. Spring 2012 KSU. Philippe B. Laval (KSU) Quadric Surfaces Spring / .... Quadric Surfaces Philippe B. Laval KSU Spring 2012 Philippe B. Laval (KSU) Quadric Surfaces Spring 2012 1 / 15 Introduction A quadric surface is the graph of a second degree equation in three variables.

More information

Chapter 15: Functions of Several Variables

Chapter 15: Functions of Several Variables Chapter 15: Functions of Several Variables Section 15.1 Elementary Examples a. Notation: Two Variables b. Example c. Notation: Three Variables d. Functions of Several Variables e. Examples from the Sciences

More information

Quadric surface. Ellipsoid

Quadric surface. Ellipsoid Quadric surface Quadric surfaces are the graphs of any equation that can be put into the general form 11 = a x + a y + a 33z + a1xy + a13xz + a 3yz + a10x + a 0y + a 30z + a 00 where a ij R,i, j = 0,1,,

More information

4 = 1 which is an ellipse of major axis 2 and minor axis 2. Try the plane z = y2

4 = 1 which is an ellipse of major axis 2 and minor axis 2. Try the plane z = y2 12.6 Quadrics and Cylinder Surfaces: Example: What is y = x? More correctly what is {(x,y,z) R 3 : y = x}? It s a plane. What about y =? Its a cylinder surface. What about y z = Again a cylinder surface

More information

Envelopes Computational Theory and Applications

Envelopes Computational Theory and Applications Envelopes Computational Theory and Applications Category: survey Abstract for points, whose tangent plane maps to a line under the projection. These points form the so-called Based on classical geometric

More information

Quadric Surfaces. Six basic types of quadric surfaces: ellipsoid. cone. elliptic paraboloid. hyperboloid of one sheet. hyperboloid of two sheets

Quadric Surfaces. Six basic types of quadric surfaces: ellipsoid. cone. elliptic paraboloid. hyperboloid of one sheet. hyperboloid of two sheets Quadric Surfaces Six basic types of quadric surfaces: ellipsoid cone elliptic paraboloid hyperboloid of one sheet hyperboloid of two sheets hyperbolic paraboloid (A) (B) (C) (D) (E) (F) 1. For each surface,

More information

Section 12.2: Quadric Surfaces

Section 12.2: Quadric Surfaces Section 12.2: Quadric Surfaces Goals: 1. To recognize and write equations of quadric surfaces 2. To graph quadric surfaces by hand Definitions: 1. A quadric surface is the three-dimensional graph of an

More information

BISECTOR CURVES OF PLANAR RATIONAL CURVES IN LORENTZIAN PLANE

BISECTOR CURVES OF PLANAR RATIONAL CURVES IN LORENTZIAN PLANE INTERNATIONAL JOURNAL OF GEOMETRY Vol. (03), No., 47-53 BISECTOR CURVES OF PLANAR RATIONAL CURVES IN LORENTZIAN PLANE MUSTAFA DEDE, YASIN UNLUTURK AND CUMALI EKICI Abstract. In this paper, the bisector

More information

12.6 Cylinders and Quadric Surfaces

12.6 Cylinders and Quadric Surfaces 12 Vectors and the Geometry of Space 12.6 and Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and We have already looked at two special types of surfaces:

More information

Ortho-Circles of Dupin Cyclides

Ortho-Circles of Dupin Cyclides Journal for Geometry and Graphics Volume 10 (2006), No. 1, 73 98. Ortho-Circles of Dupin Cyclides Michael Schrott, Boris Odehnal Institute of Discrete Mathematics, Vienna University of Technology Wiedner

More information

Chapter 10. Exploring Conic Sections

Chapter 10. Exploring Conic Sections Chapter 10 Exploring Conic Sections Conics A conic section is a curve formed by the intersection of a plane and a hollow cone. Each of these shapes are made by slicing the cone and observing the shape

More information

Vectors and the Geometry of Space

Vectors and the Geometry of Space Vectors and the Geometry of Space In Figure 11.43, consider the line L through the point P(x 1, y 1, z 1 ) and parallel to the vector. The vector v is a direction vector for the line L, and a, b, and c

More information

What you will learn today

What you will learn today What you will learn today Conic Sections (in 2D coordinates) Cylinders (3D) Quadric Surfaces (3D) Vectors and the Geometry of Space 1/24 Parabolas ellipses Hyperbolas Shifted Conics Conic sections result

More information

ü 12.1 Vectors Students should read Sections of Rogawski's Calculus [1] for a detailed discussion of the material presented in this section.

ü 12.1 Vectors Students should read Sections of Rogawski's Calculus [1] for a detailed discussion of the material presented in this section. Chapter 12 Vector Geometry Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible to view 3-D plots generated by Mathematica

More information

CHAPTER 8 QUADRATIC RELATIONS AND CONIC SECTIONS

CHAPTER 8 QUADRATIC RELATIONS AND CONIC SECTIONS CHAPTER 8 QUADRATIC RELATIONS AND CONIC SECTIONS Big IDEAS: 1) Writing equations of conic sections ) Graphing equations of conic sections 3) Solving quadratic systems Section: Essential Question 8-1 Apply

More information

Rewrite the equation in the left column into the format in the middle column. The answers are in the third column. 1. y 4y 4x 4 0 y k 4p x h y 2 4 x 0

Rewrite the equation in the left column into the format in the middle column. The answers are in the third column. 1. y 4y 4x 4 0 y k 4p x h y 2 4 x 0 Pre-Calculus Section 1.1 Completing the Square Rewrite the equation in the left column into the format in the middle column. The answers are in the third column. 1. y 4y 4x 4 0 y k 4p x h y 4 x 0. 3x 3y

More information

Chapter 3. Quadric hypersurfaces. 3.1 Quadric hypersurfaces Denition.

Chapter 3. Quadric hypersurfaces. 3.1 Quadric hypersurfaces Denition. Chapter 3 Quadric hypersurfaces 3.1 Quadric hypersurfaces. 3.1.1 Denition. Denition 1. In an n-dimensional ane space A; given an ane frame fo;! e i g: A quadric hypersurface in A is a set S consisting

More information

Name: Class: Date: Conics Multiple Choice Pre-Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: Conics Multiple Choice Pre-Test. Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Conics Multiple Choice Pre-Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1 Graph the equation x 2 + y 2 = 36. Then describe the

More information

ALGEBRA II UNIT X: Conic Sections Unit Notes Packet

ALGEBRA II UNIT X: Conic Sections Unit Notes Packet Name: Period: ALGEBRA II UNIT X: Conic Sections Unit Notes Packet Algebra II Unit 10 Plan: This plan is subject to change at the teacher s discretion. Section Topic Formative Work Due Date 10.3 Circles

More information

Chapter 9. Linear algebra applications in geometry

Chapter 9. Linear algebra applications in geometry Chapter 9. Linear algebra applications in geometry C.O.S. Sorzano Biomedical Engineering August 25, 2013 9. Linear algebra applications in geometry August 25, 2013 1 / 73 Outline 9 Linear algebra applications

More information

1.6 Quadric Surfaces Brief review of Conic Sections 74 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. Figure 1.18: Parabola y = 2x 2

1.6 Quadric Surfaces Brief review of Conic Sections 74 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. Figure 1.18: Parabola y = 2x 2 7 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.18: Parabola y = x 1.6 Quadric Surfaces Figure 1.19: Parabola x = y 1.6.1 Brief review of Conic Sections You may need to review conic sections for

More information

Surfaces. Ron Goldman Department of Computer Science Rice University

Surfaces. Ron Goldman Department of Computer Science Rice University Surfaces Ron Goldman Department of Computer Science Rice University Representations 1. Parametric Plane, Sphere, Tensor Product x = f (s,t) y = g(s,t) z = h(s,t) 2. Algebraic Plane, Sphere, Torus F(x,

More information

Unit 3 Functions of Several Variables

Unit 3 Functions of Several Variables Unit 3 Functions of Several Variables In this unit, we consider several simple examples of multi-variable functions, quadratic surfaces and projections, level curves and surfaces, partial derivatives of

More information

Applications of Minkowski Actions in CAGD Through Laguerre Geometry. Kira Sushkoff Weiqing Gu, Advisor

Applications of Minkowski Actions in CAGD Through Laguerre Geometry. Kira Sushkoff Weiqing Gu, Advisor Applications of Minkowski Actions in CAGD Through Laguerre Geometry by Kira Sushkoff Weiqing Gu, Advisor Advisor: Second Reader: (Michael E. Orrison) May 2003 Department of Mathematics Abstract Applications

More information

Planes Intersecting Cones: Static Hypertext Version

Planes Intersecting Cones: Static Hypertext Version Page 1 of 12 Planes Intersecting Cones: Static Hypertext Version On this page, we develop some of the details of the plane-slicing-cone picture discussed in the introduction. The relationship between the

More information

The point (x, y) lies on the circle of radius r and center (h, k) iff. x h y k r

The point (x, y) lies on the circle of radius r and center (h, k) iff. x h y k r NOTES +: ANALYTIC GEOMETRY NAME LESSON. GRAPHS OF EQUATIONS IN TWO VARIABLES (CIRCLES). Standard form of a Circle The point (x, y) lies on the circle of radius r and center (h, k) iff x h y k r Center:

More information

Math 126C: Week 3 Review

Math 126C: Week 3 Review Math 126C: Week 3 Review Note: These are in no way meant to be comprehensive reviews; they re meant to highlight the main topics and formulas for the week. Doing homework and extra problems is always the

More information

Conic Sections: Parabolas

Conic Sections: Parabolas Conic Sections: Parabolas Why are the graphs of parabolas, ellipses, and hyperbolas called 'conic sections'? Because if you pass a plane through a double cone, the intersection of the plane and the cone

More information

Cylinders and Quadric Surfaces A cylinder is a three dimensional shape that is determined by

Cylinders and Quadric Surfaces A cylinder is a three dimensional shape that is determined by Cylinders and Quadric Surfaces A cylinder is a three dimensional shape that is determined by a two dimensional (plane) curve C in three dimensional space a line L in a plane not parallel to the one in

More information

On the Representation of Dupin Cyclides in Lie Sphere Geometry with Applications

On the Representation of Dupin Cyclides in Lie Sphere Geometry with Applications Journal for Geometry and Graphics Volume 13 (2009), No. 2, 145 162. On the Representation of Dupin Cyclides in Lie Sphere Geometry with Applications Miroslav Lávička, Jan Vršek Dept. of Mathematics, Faculty

More information

Mathematically, the path or the trajectory of a particle moving in space in described by a function of time.

Mathematically, the path or the trajectory of a particle moving in space in described by a function of time. Module 15 : Vector fields, Gradient, Divergence and Curl Lecture 45 : Curves in space [Section 45.1] Objectives In this section you will learn the following : Concept of curve in space. Parametrization

More information

Surfaces and Integral Curves

Surfaces and Integral Curves MODULE 1: MATHEMATICAL PRELIMINARIES 16 Lecture 3 Surfaces and Integral Curves In Lecture 3, we recall some geometrical concepts that are essential for understanding the nature of solutions of partial

More information

Math 155, Lecture Notes- Bonds

Math 155, Lecture Notes- Bonds Math 155, Lecture Notes- Bonds Name Section 10.1 Conics and Calculus In this section, we will study conic sections from a few different perspectives. We will consider the geometry-based idea that conics

More information

Chapter 8.1 Conic Sections/Parabolas. Honors Pre-Calculus Rogers High School

Chapter 8.1 Conic Sections/Parabolas. Honors Pre-Calculus Rogers High School Chapter 8.1 Conic Sections/Parabolas Honors Pre-Calculus Rogers High School Introduction to Conic Sections Conic sections are defined geometrically as the result of the intersection of a plane with a right

More information

MOS surfaces: Medial Surface Transforms with Rational Domain Boundaries

MOS surfaces: Medial Surface Transforms with Rational Domain Boundaries MOS surfaces: Medial Surface Transforms with Rational Domain Boundaries Jiří Kosinka and Bert Jüttler Johannes Kepler University, Institute of Applied Geometry, Altenberger Str. 69, A 4040 Linz, Austria,

More information

The Voronoi diagram of three arbitrary lines in R 3

The Voronoi diagram of three arbitrary lines in R 3 The Voronoi diagram of three arbitrary lines in R 3 Hazel Everett Christian Gillot Daniel Lazard Sylvain Lazard Marc Pouget Abstract In this paper we study the Voronoi diagram of lines in R 3. The Voronoi

More information

Conic Sections and Locii

Conic Sections and Locii Lesson Summary: Students will investigate the ellipse and the hyperbola as a locus of points. Activity One addresses the ellipse and the hyperbola is covered in lesson two. Key Words: Locus, ellipse, hyperbola

More information

LECTURE 13, THURSDAY APRIL 1, 2004

LECTURE 13, THURSDAY APRIL 1, 2004 LECTURE 13, THURSDAY APRIL 1, 2004 FRANZ LEMMERMEYER 1. Parametrizing Curves of Genus 0 As a special case of the theorem that curves of genus 0, in particular those with the maximal number of double points,

More information

Preliminary Mathematics of Geometric Modeling (3)

Preliminary Mathematics of Geometric Modeling (3) Preliminary Mathematics of Geometric Modeling (3) Hongxin Zhang and Jieqing Feng 2006-11-27 State Key Lab of CAD&CG, Zhejiang University Differential Geometry of Surfaces Tangent plane and surface normal

More information

arxiv: v2 [math.dg] 16 Oct 2014

arxiv: v2 [math.dg] 16 Oct 2014 Curvature line parametrized surfaces and orthogonal coordinate systems. Discretization with Dupin cyclides. arxiv:1101.5955v2 [math.dg] 16 Oct 2014 Alexander I. Bobenko and Emanuel Huhnen-Venedey October

More information

Conic and Cyclidic Sections in Double Conformal Geometric Algebra G 8,2

Conic and Cyclidic Sections in Double Conformal Geometric Algebra G 8,2 Conic and Cyclidic Sections in Double Conformal Geometric Algebra G 8,2 Robert Benjamin Easter 1 and Eckhard Hitzer 2 Abstract: The G 8,2 Geometric Algebra, also called the Double Conformal / Darboux Cyclide

More information

Demo of some simple cylinders and quadratic surfaces

Demo of some simple cylinders and quadratic surfaces Demo of some simple cylinders and quadratic surfaces Yunkai Zhou Department of Mathematics Southern Methodist University (Prepared for Calculus-III, Math 2339) Acknowledgement: The very nice free software

More information

Intersecting a Freeform Surface with a General Swept Surface

Intersecting a Freeform Surface with a General Swept Surface Intersecting a Freeform Surface with a General Swept Surface Joon-Kyung Seong a Ku-Jin Kim b Myung-Soo Kim a,c Gershon Elber d Ralph R. Martin e a School of Computer Science and Engineering, Seoul National

More information

Accelerated Pre-Calculus Unit 1 Task 1: Our Only Focus: Circles & Parabolas Review

Accelerated Pre-Calculus Unit 1 Task 1: Our Only Focus: Circles & Parabolas Review Accelerated Pre-Calculus Unit 1 Task 1: Our Only Focus: Circles & Parabolas Review Name: Date: Period: For most students, you last learned about conic sections in Analytic Geometry, which was a while ago.

More information

Functions of Several Variables

Functions of Several Variables . Functions of Two Variables Functions of Several Variables Rectangular Coordinate System in -Space The rectangular coordinate system in R is formed by mutually perpendicular axes. It is a right handed

More information

Geometry, Topology, and Applications of the Minkowski Product and Action. Micah Smukler Weiqing Gu, Advisor

Geometry, Topology, and Applications of the Minkowski Product and Action. Micah Smukler Weiqing Gu, Advisor Geometry, Topology, and Applications of the Minkowski Product and Action by Micah Smukler Weiqing Gu, Advisor Advisor: Second Reader: (Francis Su) Department of Mathematics Abstract Geometry, Topology,

More information

Standard Equation of a Circle

Standard Equation of a Circle Math 335 Trigonometry Conics We will study all 4 types of conic sections, which are curves that result from the intersection of a right circular cone and a plane that does not contain the vertex. (If the

More information

WHAT YOU SHOULD LEARN

WHAT YOU SHOULD LEARN GRAPHS OF EQUATIONS WHAT YOU SHOULD LEARN Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs of equations. Find equations of and sketch graphs of

More information

Geometric Modeling of Curves

Geometric Modeling of Curves Curves Locus of a point moving with one degree of freedom Locus of a one-dimensional parameter family of point Mathematically defined using: Explicit equations Implicit equations Parametric equations (Hermite,

More information

Copyright. Anna Marie Bouboulis

Copyright. Anna Marie Bouboulis Copyright by Anna Marie Bouboulis 2013 The Report committee for Anna Marie Bouboulis Certifies that this is the approved version of the following report: Poincaré Disc Models in Hyperbolic Geometry APPROVED

More information

Surfaces. U (x; y; z) = k. Indeed, many of the most familiar surfaces are level surfaces of functions of 3 variables.

Surfaces. U (x; y; z) = k. Indeed, many of the most familiar surfaces are level surfaces of functions of 3 variables. Surfaces Level Surfaces One of the goals of this chapter is to use di erential calculus to explore surfaces, in much the same way that we used di erential calculus to study curves in the rst chapter. In

More information

Geometric Queries for Ray Tracing

Geometric Queries for Ray Tracing CSCI 420 Computer Graphics Lecture 16 Geometric Queries for Ray Tracing Ray-Surface Intersection Barycentric Coordinates [Angel Ch. 11] Jernej Barbic University of Southern California 1 Ray-Surface Intersections

More information

Surfaces with rational chord length parameterization

Surfaces with rational chord length parameterization Surfaces with rational chord length parameterization Bohumír Bastl 1, Bert Jüttler 2, Miroslav Lávička 1, and Zbyněk Šír1 1 University of West Bohemia, Faculty of Applied Sciences, Department of Mathematics,

More information

5. y 2 + z 2 + 4z = 0 correct. 6. z 2 + x 2 + 2x = a b = 4 π

5. y 2 + z 2 + 4z = 0 correct. 6. z 2 + x 2 + 2x = a b = 4 π M408D (54690/95/00), Midterm #2 Solutions Multiple choice questions (20 points) See last two pages. Question #1 (25 points) Dene the vector-valued function r(t) = he t ; 2; 3e t i: a) At what point P (x

More information

International Journal of Mathematical Education in Science and Technology. Computing bisectors in a dynamic geometry environment

International Journal of Mathematical Education in Science and Technology. Computing bisectors in a dynamic geometry environment Computing bisectors in a dynamic geometry environment Journal: International Journal of Mathematical Education in Science and Technology Manuscript ID: TMES-0-0.R Manuscript Type: Classroom Notes Keywords:

More information

This blog addresses the question: how do we determine the intersection of two circles in the Cartesian plane?

This blog addresses the question: how do we determine the intersection of two circles in the Cartesian plane? Intersecting Circles This blog addresses the question: how do we determine the intersection of two circles in the Cartesian plane? This is a problem that a programmer might have to solve, for example,

More information

Name. Center axis. Introduction to Conic Sections

Name. Center axis. Introduction to Conic Sections Name Introduction to Conic Sections Center axis This introduction to conic sections is going to focus on what they some of the skills needed to work with their equations and graphs. year, we will only

More information

16.6. Parametric Surfaces. Parametric Surfaces. Parametric Surfaces. Vector Calculus. Parametric Surfaces and Their Areas

16.6. Parametric Surfaces. Parametric Surfaces. Parametric Surfaces. Vector Calculus. Parametric Surfaces and Their Areas 16 Vector Calculus 16.6 and Their Areas Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and Their Areas Here we use vector functions to describe more general

More information

CK 12 Algebra II with Trigonometry Concepts 1

CK 12 Algebra II with Trigonometry Concepts 1 10.1 Parabolas with Vertex at the Origin Answers 1. up 2. left 3. down 4.focus: (0, 0.5), directrix: y = 0.5 5.focus: (0.0625, 0), directrix: x = 0.0625 6.focus: ( 1.25, 0), directrix: x = 1.25 7.focus:

More information

Section 2.5. Functions and Surfaces

Section 2.5. Functions and Surfaces Section 2.5. Functions and Surfaces ² Brief review for one variable functions and curves: A (one variable) function is rule that assigns to each member x in a subset D in R 1 a unique real number denoted

More information

13.1 2/20/2018. Conic Sections. Conic Sections: Parabolas and Circles

13.1 2/20/2018. Conic Sections. Conic Sections: Parabolas and Circles 13 Conic Sections 13.1 Conic Sections: Parabolas and Circles 13.2 Conic Sections: Ellipses 13.3 Conic Sections: Hyperbolas 13.4 Nonlinear Systems of Equations 13.1 Conic Sections: Parabolas and Circles

More information

volume & surface area of a right circular cone cut by a plane parallel to symmetrical axis (Hyperbolic section)

volume & surface area of a right circular cone cut by a plane parallel to symmetrical axis (Hyperbolic section) From the SelectedWorks of Harish Chandra Rajpoot H.C. Rajpoot Winter December 25, 2016 volume & surface area of a right circular cone cut by a plane parallel to symmetrical axis (Hyperbolic section) Harish

More information

Mathematics High School Geometry An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts

Mathematics High School Geometry An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts Mathematics High School Geometry An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts interpreting a schematic drawing, estimating the amount of

More information

We start by looking at a double cone. Think of this as two pointy ice cream cones that are connected at the small tips:

We start by looking at a double cone. Think of this as two pointy ice cream cones that are connected at the small tips: Math 1330 Conic Sections In this chapter, we will study conic sections (or conics). It is helpful to know exactly what a conic section is. This topic is covered in Chapter 8 of the online text. We start

More information

The Contribution of Discrete Differential Geometry to Contemporary Architecture

The Contribution of Discrete Differential Geometry to Contemporary Architecture The Contribution of Discrete Differential Geometry to Contemporary Architecture Helmut Pottmann Vienna University of Technology, Austria 1 Project in Seoul, Hadid Architects 2 Lilium Tower Warsaw, Hadid

More information

Conic Sections and Analytic Geometry

Conic Sections and Analytic Geometry Chapter 9 Conic Sections and Analytic Geometry Chapter 9 Conic Sections and Analytic Geometry 9.1 The Ellipse 9.2 The Hyperbola 9.3 The Parabola 9.4 Rotation of Axes 9.5 Parametric Equations 9.6 Conic

More information

Conic Sections. College Algebra

Conic Sections. College Algebra Conic Sections College Algebra Conic Sections A conic section, or conic, is a shape resulting from intersecting a right circular cone with a plane. The angle at which the plane intersects the cone determines

More information

Graphing Techniques. Domain (, ) Range (, ) Squaring Function f(x) = x 2 Domain (, ) Range [, ) f( x) = x 2

Graphing Techniques. Domain (, ) Range (, ) Squaring Function f(x) = x 2 Domain (, ) Range [, ) f( x) = x 2 Graphing Techniques In this chapter, we will take our knowledge of graphs of basic functions and expand our ability to graph polynomial and rational functions using common sense, zeros, y-intercepts, stretching

More information

Curves D.A. Forsyth, with slides from John Hart

Curves D.A. Forsyth, with slides from John Hart Curves D.A. Forsyth, with slides from John Hart Central issues in modelling Construct families of curves, surfaces and volumes that can represent common objects usefully; are easy to interact with; interaction

More information

A Transformation Based on the Cubic Parabola y = x 3

A Transformation Based on the Cubic Parabola y = x 3 Journal for Geometry and Graphics Volume 10 (2006), No. 1, 15 21. A Transformation Based on the Cubic Parabola y = x 3 Eugeniusz Korczak ul. św. Rocha 6B m. 5, PL 61-142 Poznań, Poland email: ekorczak@math.put.poznan.pl

More information

This is called the vertex form of the quadratic equation. To graph the equation

This is called the vertex form of the quadratic equation. To graph the equation Name Period Date: Topic: 7-5 Graphing ( ) Essential Question: What is the vertex of a parabola, and what is its axis of symmetry? Standard: F-IF.7a Objective: Graph linear and quadratic functions and show

More information

Curvilinear Coordinates

Curvilinear Coordinates Curvilinear Coordinates Cylindrical Coordinates A 3-dimensional coordinate transformation is a mapping of the form T (u; v; w) = hx (u; v; w) ; y (u; v; w) ; z (u; v; w)i Correspondingly, a 3-dimensional

More information

Discrete differential geometry: Surfaces made from Circles

Discrete differential geometry: Surfaces made from Circles Discrete differential geometry: Alexander Bobenko (TU Berlin) with help of Tim Hoffmann, Boris Springborn, Ulrich Pinkall, Ulrike Scheerer, Daniel Matthes, Yuri Suris, Kevin Bauer Papers A.I. Bobenko,

More information

Key Idea. It is not helpful to plot points to sketch a surface. Mainly we use traces and intercepts to sketch

Key Idea. It is not helpful to plot points to sketch a surface. Mainly we use traces and intercepts to sketch Section 12.7 Quadric surfaces 12.7 1 Learning outcomes After completing this section, you will inshaallah be able to 1. know what are quadric surfaces 2. how to sketch quadric surfaces 3. how to identify

More information

Each point P in the xy-plane corresponds to an ordered pair (x, y) of real numbers called the coordinates of P.

Each point P in the xy-plane corresponds to an ordered pair (x, y) of real numbers called the coordinates of P. Lecture 7, Part I: Section 1.1 Rectangular Coordinates Rectangular or Cartesian coordinate system Pythagorean theorem Distance formula Midpoint formula Lecture 7, Part II: Section 1.2 Graph of Equations

More information

Bezier Curves. An Introduction. Detlef Reimers

Bezier Curves. An Introduction. Detlef Reimers Bezier Curves An Introduction Detlef Reimers detlefreimers@gmx.de http://detlefreimers.de September 1, 2011 Chapter 1 Bezier Curve Basics 1.1 Linear Interpolation This section will give you a basic introduction

More information

CS-9645 Introduction to Computer Vision Techniques Winter 2019

CS-9645 Introduction to Computer Vision Techniques Winter 2019 Table of Contents Projective Geometry... 1 Definitions...1 Axioms of Projective Geometry... Ideal Points...3 Geometric Interpretation... 3 Fundamental Transformations of Projective Geometry... 4 The D

More information

Curvature line parametrized surfaces and orthogonal coordinate systems Discretization with Dupin cyclides

Curvature line parametrized surfaces and orthogonal coordinate systems Discretization with Dupin cyclides Curvature line parametrized surfaces and orthogonal coordinate systems Discretization with Dupin cyclides Emanuel Huhnen-Venedey, TU Berlin Diploma thesis supervised by A.I. Bobenko Structure of the talk

More information

Mathematics High School Geometry

Mathematics High School Geometry Mathematics High School Geometry An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts interpreting a schematic drawing, estimating the amount of

More information

Chapter 11. Parametric Equations And Polar Coordinates

Chapter 11. Parametric Equations And Polar Coordinates Instructor: Prof. Dr. Ayman H. Sakka Chapter 11 Parametric Equations And Polar Coordinates In this chapter we study new ways to define curves in the plane, give geometric definitions of parabolas, ellipses,

More information

16.6 Parametric Surfaces and Their Areas

16.6 Parametric Surfaces and Their Areas SECTION 6.6 PARAMETRIC SURFACES AND THEIR AREAS i j k (b) From (a), v = w r = =( ) i +( ) j +( ) k = i + j i j k (c) curl v = v = = () () i + ( ) () j + () ( ) k =[ ( )] k = k =w 9. For any continuous

More information

Developable Surface Fitting to Point Clouds

Developable Surface Fitting to Point Clouds Developable Surface Fitting to Point Clouds Martin Peternell Vienna University of Technology, Institute of Discrete Mathematics and Geometry, Wiedner Hauptstr. 8 10, A 1040 Vienna, Austria Abstract Given

More information

The Manifold of Planes that Intersect Four Straight Lines in Points of a Circle

The Manifold of Planes that Intersect Four Straight Lines in Points of a Circle Journal for Geometry and Graphics Volume 8 (2004), No. 1, 59 68. The Manifold of Planes that Intersect Four Straight Lines in Points of a Circle Hans-Peter Schröcker Institute of Discrete Mathematics and

More information

Computer Graphics Ray Casting. Matthias Teschner

Computer Graphics Ray Casting. Matthias Teschner Computer Graphics Ray Casting Matthias Teschner Outline Context Implicit surfaces Parametric surfaces Combined objects Triangles Axis-aligned boxes Iso-surfaces in grids Summary University of Freiburg

More information

Design and Communication Graphics

Design and Communication Graphics An approach to teaching and learning Design and Communication Graphics Solids in Contact Syllabus Learning Outcomes: Construct views of up to three solids having curved surfaces and/or plane surfaces in

More information

Chapter 9 Topics in Analytic Geometry

Chapter 9 Topics in Analytic Geometry Chapter 9 Topics in Analytic Geometry What You ll Learn: 9.1 Introduction to Conics: Parabolas 9.2 Ellipses 9.3 Hyperbolas 9.5 Parametric Equations 9.6 Polar Coordinates 9.7 Graphs of Polar Equations 9.1

More information

ENTIRELY CIRCULAR QUARTICS IN THE PSEUDO-EUCLIDEAN PLANE

ENTIRELY CIRCULAR QUARTICS IN THE PSEUDO-EUCLIDEAN PLANE Acta Math. Hungar., 134 (4) (2012), 571 582 DOI: 10.1007/s10474-011-0174-3 First published online November 29, 2011 ENTIRELY CIRCULAR QUARTICS IN THE PSEUDO-EUCLIDEAN PLANE E. JURKIN and N. KOVAČEVIĆ Faculty

More information

Proof of Constant Width of Spheroform with Tetrahedral Symmetry

Proof of Constant Width of Spheroform with Tetrahedral Symmetry Proof of Constant Width of Spheroform with Tetrahedral Symmetry Patrick Roberts Corvallis, Oregon August 20, 2012 The four faces of the Reuleaux tetrahedron are sections of sphere surface, each centered

More information

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2013 3D Object Representations Raw data Point cloud Range image Polygon soup Surfaces Mesh Subdivision Parametric Implicit Solids Voxels

More information

The Voronoi diagram of three arbitrary lines in R3

The Voronoi diagram of three arbitrary lines in R3 The Voronoi diagram of three arbitrary lines in R3 Hazel Everett, Christian Gillot, Daniel Lazard, Sylvain Lazard, Marc Pouget To cite this version: Hazel Everett, Christian Gillot, Daniel Lazard, Sylvain

More information

Unit 12 Topics in Analytic Geometry - Classwork

Unit 12 Topics in Analytic Geometry - Classwork Unit 1 Topics in Analytic Geometry - Classwork Back in Unit 7, we delved into the algebra and geometry of lines. We showed that lines can be written in several forms: a) the general form: Ax + By + C =

More information

Unit #3: Quadratic Functions Lesson #13: The Almighty Parabola. Day #1

Unit #3: Quadratic Functions Lesson #13: The Almighty Parabola. Day #1 Algebra I Unit #3: Quadratic Functions Lesson #13: The Almighty Parabola Name Period Date Day #1 There are some important features about the graphs of quadratic functions we are going to explore over the

More information

Geometry. Cluster: Experiment with transformations in the plane. G.CO.1 G.CO.2. Common Core Institute

Geometry. Cluster: Experiment with transformations in the plane. G.CO.1 G.CO.2. Common Core Institute Geometry Cluster: Experiment with transformations in the plane. G.CO.1: Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of

More information

Ellipse, Hyperbola and Their Conjunction

Ellipse, Hyperbola and Their Conjunction Ellipse, Hyperbola and Their Conjunction arxiv:1805.02111v1 [math.ho] 5 May 2018 Arkadiusz Kobiera Warsaw University of Technology Abstract The article presents simple analysis of cones which are used

More information

We start by looking at a double cone. Think of this as two pointy ice cream cones that are connected at the small tips:

We start by looking at a double cone. Think of this as two pointy ice cream cones that are connected at the small tips: Math 1330 Chapter 8 Conic Sections In this chapter, we will study conic sections (or conics). It is helpful to know exactly what a conic section is. This topic is covered in Chapter 8 of the online text.

More information

Algebra II Quadratic Functions

Algebra II Quadratic Functions 1 Algebra II Quadratic Functions 2014-10-14 www.njctl.org 2 Ta b le o f C o n te n t Key Terms click on the topic to go to that section Explain Characteristics of Quadratic Functions Combining Transformations

More information

In what follows, we will focus on Voronoi diagrams in Euclidean space. Later, we will generalize to other distance spaces.

In what follows, we will focus on Voronoi diagrams in Euclidean space. Later, we will generalize to other distance spaces. Voronoi Diagrams 4 A city builds a set of post offices, and now needs to determine which houses will be served by which office. It would be wasteful for a postman to go out of their way to make a delivery

More information

Flank Millable Surface Design with Conical and Barrel Tools

Flank Millable Surface Design with Conical and Barrel Tools 461 Computer-Aided Design and Applications 2008 CAD Solutions, LLC http://www.cadanda.com Flank Millable Surface Design with Conical and Barrel Tools Chenggang Li 1, Sanjeev Bedi 2 and Stephen Mann 3 1

More information