Design & Optimization Fuzzy Logic Controller for General Helicopter Model

Size: px
Start display at page:

Download "Design & Optimization Fuzzy Logic Controller for General Helicopter Model"

Transcription

1 Design & Optimization Fuzzy Logic Controller for General Helicopter Model Hasan A. AbuMeteir Graduated Student of Control Engineering IUG Gaza-Palestine Abstract Helicopter aviation is a difficult task that requires simultaneous manipulation of several controls in order to achieve a desired movement. Development of knowledge and skills are required for a person to be able to safely and efficiently navigate a helicopter. Therefore, the question was raised on whether there is a possibility to develop a robust agent that will act as an intermediate between the user and the helicopter conventional controls, which will enable even inexperienced users to fly a helicopter. Fuzzy Logic control is found suitable for this application, as it provides possibility to model human experience and skills. The helicopter fuzzy logic controller that was developed is capable to control the vertical displacement and orientation of a developed mathematical helicopter model. A Graphic User s Interface (GUI) has also been implemented to provide ability to the user to interactively change the parameters of the simulation, and perform different experiments and simulations. The GUI is also used to convey information back to the user by graphical representations or numerical displays. The whole system, mathematical helicopter model, fuzzy logic controller and GUI were developed using Matlab and its tools (Simulink, Fuzzy Logic Toolbox, and GUI Toolbox). The performance of the controller was found satisfactory as both the desired altitude and the heading are achieved and maintained. This first step has set the basis for further study and development of a fully autonomous aerial vehicle. The purpose of this paper design and optimization fuzzy logic control for general helicopter model. Keyword: Helicopter Model, Fuzzy Logic Control, PID Controller I. Introduction THE helicopter is specific in regards to other transportation means, not just by its structure but also by its motion possibilities. The helicopter can move vertically, float in the air, turn in place, move forward and lateral, and can perform these movements in combinations. Because of this, helicopter dynamics modeling is a very complex problem. In the present, problems in helicopter flight dynamics are mostly solved in aid of modern computers and software. In many complex problems, computers do not make it possible to understand the physical nature of the problem. Fortunately, many problems considering helicopters can be analyzed without overly complex calculus and with the use of simple formulas. Certain assumptions are taken into consideration in order to simplify the modeling procedure, such as that atmospheric and other disturbances are ignored. II. Problem Description and formulation A helicopter is generally and mainly controlled by three operating controls. Those controls are throttle, the collective pitch controller and the cyclic pitch controller. The collective pitch angle of a rotor blade is the angle between the chord line and a reference plane determined by the rotor 1

2 hub or the plane of rotation (Figure 1). The cyclic pitch angle is between the rotor disk and the air speed caused by tilting the rotor disk either up (positive) or down (negative) (Figure 2). The throttle main purpose is to control the angular speed of the main rotor. In this helicopter model, we are going to assume constant angular speed in order to focus more on the effect of the other controllers. The collective pitch control angles all blades equally and simultaneously and allows the aircraft to rise vertically (Figure3). The cyclic pitch control allows each blade to be angled individually and allows the aircraft to move forward or backward, nose upward or downward, and roll from side to side (Figure 4). A tail rotor is used to maintain yaw control and counteract the torque effect. By changing the pitch of the tail rotor's blades, this rotor will produce a side force that turns the helicopter nose left or right (Figure 5). There is also a coupling effect when using the cyclic pitch due to the angled lift that consists of vertical and horizontal force components. In this model, the helicopter will be controlled by entering four inputs: main rotor collective pitch angle, tail rotor collective pitch angle, longitudinal cyclic pitch angle and lateral cyclic pitch angle. The purpose of this paper is to design a controller able to stabilize the nonlinear helicopter model. Intelligent Autonomous Systems., two possible choices of control-strategies are available: Robust control and optimal control. As the use of robust control gives system-stability guarantees within defined boundaries, this choice of control would probably be suitable for autonomous helicopter applications because of the critical stability demands to these systems. However, robust control is likely to give a controller-performance reduction, compared to what is possible with optimal control. Because of the magnitude of the above-mentioned modelling task, the somewhat more challenging task of designing a robust controller for the helicopter system is considered to be beyond the scope of this project. Thus, fuzzy logic control is applied to the non-linear helicopter model. The two main purposes of the paper are summarized here: Development of a minimum-complexity helicopter simulation math model and implementation of this in the simulation environment SIMULINK. Design of a controller, using fuzzy logic control, to stabilize the model in a hover man oeuvre. To solve the above-mentioned tasks, several objectives need to be achieved: 2

3 1- Design of non-linear helicopter model: The first part which needs to be devised is a nonlinear model of the helicopter system. This model must approximate the behavior of the actual helicopter system as closely as possible. 2- Implementation of non-linear model: The non-linear model needs to be implemented in SIMULINK, for testing of the devised controller. 3- Design of linear helicopter-model: To design a linear controller, a linearized model is required. This model will be linearized using small-angle approximations and operating point linearization. 4- Design of fuzzy controller: Given the linear model, a fuzzy controller is designed. This controller must be able to stabilize the helicopter model in hover. 5- Test of fuzzy controller: Lastly the fuzzy controller needs to be tested to examine whether or not it is able to stabilize the model, and to determine the robustness of the controller. III. System Molding Considering the helicopter equations of motion in nonlinear form given by:,, In 6 degree of freedom form, the motion states and controls are:,,,,,,,,,, Starting from the following non-linearized form of equations of motion: By using the small perturbation theory in the form and by writing all forces in the following approximate form: Then the linearized equations of motion for the full six degrees of freedom can be written as: In fully expanded form, the system and control matrices can be written as: 3

4 The final model of the helicopter will be performed using SIMULINK. The entire model consists of three boxes in which the equations used in the model are derived and represented, this is sketched in Figure.6 Figure 6 (helicopter model with input output). IV. Fuzzy Controller The task of modeling and simulating human knowledge and intelligence has occupied a great part of the research world in the last decades. There are various examples of procedures were the knowledge for a formulated relation between the inputs and the outputs is unknown and therefore control cannot be achieved with conventional methods. Still, experienced users manage to efficiently control such processes without having absolute knowledge of the physics or mechanics behind them. In practice, the user consciously or subconsciously, uses rules that he has learned and which he constantly updates. These rules are the result of experience acquired out of continuous exposure and practice of the user to the certain process. The sum of all these rules that describe how a process should be controlled result to an intuitive model. Intelligent fuzzy controllers make use of these experience models and the description of the control rules is not analytic, but it is expressed in linguistic rules. The basic problems in the design of such a fuzzy controller are the representation of such an experienced model and knowledge in a concise and computational treatable way. To be able to succeed in such an attempt it is necessary to distinguish the different parts of our experience model. The basic parts of every fuzzy (experienced) model are displayed in the following Figure 7. For the development and implementation of a fuzzy controller, the required inputs and outputs must be determined first. The next step is to determine (approximately) the number, shape and width of the membership functions of the fuzzy inputs and outputs. 4

5 Figure7: Basic parts of a Fuzzy Controller. Then, the fuzzy rules must be set in a linguistic form that will describe the relation between the inputs and the outputs. An example of such a linguistic rule is the following where there are two inputs (speed, acceleration) and one output (action). If speed is reached and acceleration is increasing then action is brake When a values appear in the inputs of the fuzzy controller, certain fuzzy membership functions are enabled, each with a certain contribution rate (μj). Then, the rule base is determined which outputs membership functions are enabled from the inputs and what values should be applied to them. And according of the defuzzyfication method that was chosen, a unique discrete value is computed for each output. V. Design Fuzzy Controller Fuzzy Controller for longitude (X_Direction): The longitude (main rotor) control system consists of one fuzzy logic controller figure 8 which controls the main rotor collective command according to the required vertical displacement. Figure 8 Fuzzy Controller for longitude (X_Direction) As it can be view in the above figure the output of the S- function HeadingFuzzy (Heightpositional controller) is connected with and integrating scheme. There are also several of saturators before and after the controllers. The first fuzzy logic control consist of two input (Error, ErrorRate), and one output (LongConX). The inputs of the controller are the Error, which represents the difference between the current and the requested altitude of the helicopter model, and the ErrorRate, which is the rate that this error changes. The input Error consists of the following seven membership functions as displayed in Figure 9 5

6 -Big Negative Error (BNE): When the helicopter s altitude is a lot bigger than the controller s height set point value. Represents values of [-inf 1] m. - Negative Error(NEG): When the helicopter s altitude is a little bigger than the controller s height set point value. Represents values of [-5 1] m. -Small Negative Error (SNE): When the helicopter s altitude is a little bigger than the controller s height set point value. Represents values of [-1 0.1] m. - Zero (Zero): When the helicopter s altitude angle is the same as the controller s height set point value. Represents values of [ ] m. - Small Positive Error (SPE): When the helicopter s altitude is a little smaller than the controller s height set point value. Represents values of [0 1] m. -Positive Error (POS):When the helicopter s altitude is a little bigger than the controller s height set point value. Represents values of [.1 5 ] - Big Positive Error (BPE): ): When the helicopter s altitude is a lot smaller than the controller s height set point value. Represents values of [1 +inf] m. Figure 9 Error Input of X_Direction position Fuzzy Controller. The ErrorRate input, which represents the rate of the error input, also consists of seven membership functions as displayed in Figure 10 - Big NegativeErrorRate (BNER): When the error in altitude is decreasing very fast. Represents the values of [-inf 1] m/sec. - NegativeErrorRate(NEGR): When the error in altitude is decreasing fast. Represents the values of [-5.1] m/sec. - Small NegativeErrorRate (SNER): When the error in altitude is decreasing. Represents the error values of [-1 0 ] m/sec. - Zero Acceleration (Zero): When the error of the heading angle is not increasing or decreasing. Represents values of [ ] m/sec. - Small PositiveErrorRatre (SPER): When the error of in altitude is increasing. Represents values of [0.1] m/sec. - PositiveErrorRate (PER): When the error of in altitude is increasing. Represents values of [.1 5] m/sec. 6

7 - Big PositiveErrorRate (BPER): When the error of in altitude is increasing very fast. Represents values of [1 +inf] m/sec. Figure 10 ErrorRate The LongConX output of the main rotor collective fuzzy controller consists of seven membership functions as displayed in Figure 11 - Big Negative longitude (BNL): Big reduction of the main rotor s angle. Represents the angle values of [-inf 3.34] degrees. - Medium Negative longitude (EMNL): Normal reduction of the main rotor s angle. Represents values of [-5 1] degrees. - Small Negative longitude (SNL): Small reduction of the main rotor s angle. Represents the angle values of [-3 -.1] degrees. - Zero(Zero): No change of the main rotor s angle. Represents the values of [ ]. - SmallPositive longitude (SPL): Small increase of the main rotor s angle. Represents the angle values of [1 3] degrees. - Medium Positive longitude (PMNL): Normal increase of the main rotor s angle. Represents the angle values of [1 5] degrees. - Big Positive longitude (BPL): Big increase of the main rotor s angle. Represents the angle values of [3.34 +inf] degrees. Figure 11: Longitude Control X_ Direction Output The rules to for the Longitude control are simple. The helicopter pilot increases the collective angle when there is need to gain Longitude, and decreases it when there is need to lose Longitude. The collective command is kept in a certain angle when the pilot wants to hover. Each altitude has a different hovering angle as air density and temperature contribute greatly to the thrust of the helicopter s main rotor blades. 7

8 VI. Results After simulate helicopter model in GUI Matla we can see if we introduce a desired input to the stabilized system the response is unstable like: After designing a PD controller of block diagram like: atitude Y D_Y D_X set piont Out1 feedback PD Distance y set point Out1 feedback PD Distance X u_lat u_long position Y B_1c Z X altitude Z B_1c To Workspace3 Flapping 1c Helicopter_translation Helicopter_rotation flapping s 1 flapping c 1 VR system1 D_altitude set point Out1 feedback PD altitude u_col velocity position1 X speed 9 speed 8 speed 7 angular velocity B_1s u_pedal u_ped Subsystem atitude1 B_1s To Workspace4 Flapping 1s speed 12 speed 11 speed 10 PD Control signal _XDirection PD Control signal _ZDirection PD Control signal _YDirection cntx To Workspace cnty To Workspace1 cntz To Workspace2 Translatory velocities Rotary velocities Attitude 8

9 The system still unstable: The problem of the complex system was not solved so we are going to design a fuzzy controller The problem of the complex system was not solved so we are going to design a fuzzy controller of 4 rule base sets and compare results 9

10 VII. Conclusion As we see, we apply different approach in the helicopter model (open loop, open PID,and fuzzy controller ). In open loop the response in not staple, and open PID. In fuzzy controller, we apply different rules bases and getting result better than from the first and second approach VIII. References [1] Fahad A Al Mahmood, Constructing & Simulating a Mathematical Model of Longitudinal Helicopter Flight Dynamics. [2] H. AbuMeteir & M.deep, Design Fuzzy Controller for Helicopter Model,2009 [3] Dimitrios Iakovou, Fuzzy Control for Helicopter Aviation,

Design and Development of Unmanned Tilt T-Tri Rotor Aerial Vehicle

Design and Development of Unmanned Tilt T-Tri Rotor Aerial Vehicle Design and Development of Unmanned Tilt T-Tri Rotor Aerial Vehicle K. Senthil Kumar, Mohammad Rasheed, and T.Anand Abstract Helicopter offers the capability of hover, slow forward movement, vertical take-off

More information

State Space System Modeling of a Quad Copter UAV

State Space System Modeling of a Quad Copter UAV Indian Journal of Science Technology, Vol 9(27), DOI: 10.17485/ijst/2016/v9i27/95239, July 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 State Space System Modeling of a Quad Copter UAV Zaid

More information

Dynamical Modeling and Controlof Quadrotor

Dynamical Modeling and Controlof Quadrotor Dynamical Modeling and Controlof Quadrotor Faizan Shahid NUST PNEC Pakistan engr.faizan_shahid@hotmail.com Muhammad Bilal Kadri, Nasir Aziz Jumani, Zaid Pirwani PAF KIET Pakistan bilal.kadri@pafkiet.edu.pk

More information

EE6102 Multivariable Control Systems

EE6102 Multivariable Control Systems EE612 Multivariable Control Systems Homework Assignments for Part 2 Prepared by Ben M. Chen Department of Electrical & Computer Engineering National University of Singapore April 21, 212 EE612 Multivariable

More information

A Simplified Vehicle and Driver Model for Vehicle Systems Development

A Simplified Vehicle and Driver Model for Vehicle Systems Development A Simplified Vehicle and Driver Model for Vehicle Systems Development Martin Bayliss Cranfield University School of Engineering Bedfordshire MK43 0AL UK Abstract For the purposes of vehicle systems controller

More information

Aircraft Stability and Performance 2nd Year, Aerospace Engineering. Dr. M. Turner

Aircraft Stability and Performance 2nd Year, Aerospace Engineering. Dr. M. Turner Aircraft Stability and Performance 2nd Year, Aerospace Engineering Dr. M. Turner Basic Info Timetable 15.00-16.00 Monday ENG LT1 16.00-17.00 Monday ENG LT1 Typical structure of lectures Part 1 Theory Part

More information

1. INTRODUCTION. Constrained Control Allocation for Systems with Redundant Control Effectors

1. INTRODUCTION. Constrained Control Allocation for Systems with Redundant Control Effectors 1. INTRODUCTION Control allocation algorithms determine how the controls of a system should be positioned so that they produce some desired effect. Constrained controls have limits on their maximum positions

More information

Modeling and Control of a Simulated Flight of a Mini Helicopter Using Matlab/Simulink

Modeling and Control of a Simulated Flight of a Mini Helicopter Using Matlab/Simulink International Conference on Computer, Communications and Information Technology (CCIT 2014) Modeling and Control of a Simulated Flight of a Mini Helicopter Using Matlab/Simulink Mohamed Yacine Chachou,

More information

Modeling and Fuzzy Logic Control of a Quadrotor UAV

Modeling and Fuzzy Logic Control of a Quadrotor UAV Modeling and Fuzzy Logic Control of a Quadrotor UAV Muhammad Awais Sattar 1, Dr Abdulla Ismail 2 1Graduate Student, Dept. of Electrical Engineering, Rochester Institute of Technology, Dubai, UAE 2Professor,

More information

Autonomous Control of Tilt Tri-Rotor Unmanned Aerial Vehicle

Autonomous Control of Tilt Tri-Rotor Unmanned Aerial Vehicle Indian Journal of Science and Technology, Vol 9(36), DOI: 10.17485/ijst/2016/v9i36/102160, September 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Autonomous Control of Tilt Tri-Rotor Unmanned

More information

Mobile Robotics. Mathematics, Models, and Methods. HI Cambridge. Alonzo Kelly. Carnegie Mellon University UNIVERSITY PRESS

Mobile Robotics. Mathematics, Models, and Methods. HI Cambridge. Alonzo Kelly. Carnegie Mellon University UNIVERSITY PRESS Mobile Robotics Mathematics, Models, and Methods Alonzo Kelly Carnegie Mellon University HI Cambridge UNIVERSITY PRESS Contents Preface page xiii 1 Introduction 1 1.1 Applications of Mobile Robots 2 1.2

More information

CHAPTER 2 SENSOR DATA SIMULATION: A KINEMATIC APPROACH

CHAPTER 2 SENSOR DATA SIMULATION: A KINEMATIC APPROACH 27 CHAPTER 2 SENSOR DATA SIMULATION: A KINEMATIC APPROACH 2.1 INTRODUCTION The standard technique of generating sensor data for navigation is the dynamic approach. As revealed in the literature (John Blakelock

More information

A Basic Flight Simulator in Excel #3 calculating the

A Basic Flight Simulator in Excel #3 calculating the A Basic Flight Simulator in Excel #3 calculating the scene rotation and translation as a result of the plane movement - This section of the tutorial explains a simple method of creating the effect of a

More information

QUANSER Flight Control Systems Design. 2DOF Helicopter 3DOF Helicopter 3DOF Hover 3DOF Gyroscope. Quanser Education Solutions Powered by

QUANSER Flight Control Systems Design. 2DOF Helicopter 3DOF Helicopter 3DOF Hover 3DOF Gyroscope. Quanser Education Solutions Powered by QUANSER Flight Control Systems Design 2DOF Helicopter 3DOF Helicopter 3DOF Hover 3DOF Gyroscope Quanser Education Solutions Powered by 2 DOF Helicopter What does it represent? Classic helicopter with main

More information

Beikrit Samia Falaschini Clara Abdolhosseini Mahyar Capotescu Florin. Qball Quadrotor Helicopter

Beikrit Samia Falaschini Clara Abdolhosseini Mahyar Capotescu Florin. Qball Quadrotor Helicopter Beikrit Samia Falaschini Clara Abdolhosseini Mahyar Capotescu Florin Qball Quadrotor Helicopter Flight Control Systems Project : Objectives for the Qball quadrotor helicopter 1) Develop non linear and

More information

Unmanned Aerial Vehicles

Unmanned Aerial Vehicles Unmanned Aerial Vehicles Embedded Control Edited by Rogelio Lozano WILEY Table of Contents Chapter 1. Aerodynamic Configurations and Dynamic Models 1 Pedro CASTILLO and Alejandro DZUL 1.1. Aerodynamic

More information

Adaptive back-stepping control applied on octocopter under recoil disturbance

Adaptive back-stepping control applied on octocopter under recoil disturbance Journal of Engineering Science and Military Technologies ISSN: 2357-0954 DOI: 10.21608/ejmtc.2017.401.1004 Adaptive back-stepping control applied on octocopter under recoil disturbance GuangXue Zhang 1

More information

DYNAMICS OF A VORTEX RING AROUND A MAIN ROTOR HELICOPTER

DYNAMICS OF A VORTEX RING AROUND A MAIN ROTOR HELICOPTER DYNAMICS OF A VORTEX RING AROUND A MAIN ROTOR HELICOPTER Katarzyna Surmacz Instytut Lotnictwa Keywords: VORTEX RING STATE, HELICOPTER DESCENT, NUMERICAL ANALYSIS, FLOW VISUALIZATION Abstract The main goal

More information

Model predictive control to autonomous helicopter flight

Model predictive control to autonomous helicopter flight Model predictive control to autonomous helicopter flight Zillinger Molenaar, P.J.H. Published: 01/01/2007 Document Version Publisher s PDF, also known as Version of Record (includes final page, issue and

More information

Navigational Aids 1 st Semester/2007/TF 7:30 PM -9:00 PM

Navigational Aids 1 st Semester/2007/TF 7:30 PM -9:00 PM Glossary of Navigation Terms accelerometer. A device that senses inertial reaction to measure linear or angular acceleration. In its simplest form, it consists of a case-mounted spring and mass arrangement

More information

This was written by a designer of inertial guidance machines, & is correct. **********************************************************************

This was written by a designer of inertial guidance machines, & is correct. ********************************************************************** EXPLANATORY NOTES ON THE SIMPLE INERTIAL NAVIGATION MACHINE How does the missile know where it is at all times? It knows this because it knows where it isn't. By subtracting where it is from where it isn't

More information

An object in 3D space

An object in 3D space An object in 3D space An object's viewpoint Every Alice object has a viewpoint. The viewpoint of an object is determined by: The position of the object in 3D space. The orientation of the object relative

More information

[3] Rigid Body Analysis

[3] Rigid Body Analysis [3] Rigid Body Analysis Page 1 of 53 [3] Rigid Body Analysis [3.1] Equilibrium of a Rigid Body [3.2] Equations of Equilibrium [3.3] Equilibrium in 3-D [3.4] Simple Trusses [3.5] The Method of Joints [3.6]

More information

Simulation-Based Design of Robotic Systems

Simulation-Based Design of Robotic Systems Simulation-Based Design of Robotic Systems Shadi Mohammad Munshi* & Erik Van Voorthuysen School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052 shadimunshi@hotmail.com,

More information

Mechanism Kinematics and Dynamics

Mechanism Kinematics and Dynamics Mechanism Kinematics and Dynamics Final Project 1. The window shield wiper For the window wiper, (1). Select the length of all links such that the wiper tip X p (t) can cover a 120 cm window width. (2).

More information

APPENDIX 1 READING AND PROCESSING MOVIES IN MATLAB

APPENDIX 1 READING AND PROCESSING MOVIES IN MATLAB 185 APPENDIX 1 READING AND PROCESSING MOVIES IN MATLAB The discussion in the Chapter 4 on the position and attitude estimation of a UAV from the images acquired by an on-board camera required the frames

More information

Fuzzy Control of an Autonomous Helicopter

Fuzzy Control of an Autonomous Helicopter Fuzzy Control of an Autonomous Helicopter B. Kadmiry Dept. of Computer Sci. Linkoping University 581 83 Linkoping, Sweden bouka@ida.liu.se D. Driankov Dept. of Computer Sci. Linkoping University 581 83

More information

Design and Analysis of Quadcopter Classical Controller Ahmed H. Ahmed*, Ahmed N. Ouda*, Ahmed M.Kamel*, Y. Z. Elhalwagy*

Design and Analysis of Quadcopter Classical Controller Ahmed H. Ahmed*, Ahmed N. Ouda*, Ahmed M.Kamel*, Y. Z. Elhalwagy* 16 th International Conference on AEROSPACE SCIENCES & AVIATION TECHNOLOGY, ASAT - 16 May 26-28, 2015, E-Mail: asat@mtc.edu.eg Military Technical College, Kobry Elkobbah, Cairo, Egypt Tel : +(202) 24025292

More information

IMPROVING QUADROTOR 3-AXES STABILIZATION RESULTS USING EMPIRICAL RESULTS AND SYSTEM IDENTIFICATION

IMPROVING QUADROTOR 3-AXES STABILIZATION RESULTS USING EMPIRICAL RESULTS AND SYSTEM IDENTIFICATION IMPROVING QUADROTOR 3-AXES STABILIZATION RESULTS USING EMPIRICAL RESULTS AND SYSTEM IDENTIFICATION Övünç Elbir & Electronics Eng. oelbir@etu.edu.tr Anıl Ufuk Batmaz & Electronics Eng. aubatmaz@etu.edu.tr

More information

ALGORITHMS FOR DETECTING DISORDERS OF THE BLDC MOTOR WITH DIRECT CONTROL

ALGORITHMS FOR DETECTING DISORDERS OF THE BLDC MOTOR WITH DIRECT CONTROL Journal of KONES Powertrain and Transport, Vol. 23, No. 4 2016 ALGORITHMS FOR DETECTING DISORDERS OF THE BLDC MOTOR WITH DIRECT CONTROL Marcin Chodnicki, Przemysław Kordowski Mirosław Nowakowski, Grzegorz

More information

METR4202: ROBOTICS & AUTOMATION

METR4202: ROBOTICS & AUTOMATION Sort Pattern A This exam paper must not be removed from the venue School of Information Technology and Electrical Engineering Mid-Term Quiz METR4202: ROBOTICS & AUTOMATION September 20, 2017 First Name:

More information

IMPLEMENTATION OF BALL-AND-BEAM CONTROL SYSTEM AS AN INSTANCE OF SIMULINK TO 32-BIT MICROCONTROLLER INTERFACE

IMPLEMENTATION OF BALL-AND-BEAM CONTROL SYSTEM AS AN INSTANCE OF SIMULINK TO 32-BIT MICROCONTROLLER INTERFACE POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 76 Electrical Engineering 2013 Krzysztof NOWOPOLSKI* IMPLEMENTATION OF BALL-AND-BEAM CONTROL SYSTEM AS AN INSTANCE OF SIMULINK TO 32-BIT MICROCONTROLLER

More information

FUZZY LOGIC CONTROL. Helsinki University of Technology Control Engineering Laboratory

FUZZY LOGIC CONTROL. Helsinki University of Technology Control Engineering Laboratory FUZZY LOGIC CONTROL FUZZY LOGIC CONTROL (FLC) Control applications most common FL applications Control actions based on rules Rules in linguistic form Reasoning with fuzzy logic FLC is (on the surface)

More information

Robust Controller Design for an Autonomous Underwater Vehicle

Robust Controller Design for an Autonomous Underwater Vehicle DRC04 Robust Controller Design for an Autonomous Underwater Vehicle Pakpong Jantapremjit 1, * 1 Department of Mechanical Engineering, Faculty of Engineering, Burapha University, Chonburi, 20131 * E-mail:

More information

General model and control of an n rotor helicopter

General model and control of an n rotor helicopter Downloaded from orbit.dtu.dk on: Jun 29, 218 General model and control of an n rotor helicopter Zsurzsan, Adriana Gabriela; Brogaard, Rune Yding; Andersen, Nils Axel; Ravn, Ole Published in: Journal of

More information

Elective in Robotics. Quadrotor Modeling (Marilena Vendittelli)

Elective in Robotics. Quadrotor Modeling (Marilena Vendittelli) Elective in Robotics Quadrotor Modeling (Marilena Vendittelli) Introduction Modeling Control Problems Models for control Main control approaches Elective in Robotics - Quadrotor Modeling (M. Vendittelli)

More information

Vector Decomposition

Vector Decomposition Projectile Motion AP Physics 1 Vector Decomposition 1 Coordinate Systems A coordinate system is an artificially imposed grid that you place on a problem. You are free to choose: Where to place the origin,

More information

SUPPORTING LINEAR MOTION: A COMPLETE GUIDE TO IMPLEMENTING DYNAMIC LOAD SUPPORT FOR LINEAR MOTION SYSTEMS

SUPPORTING LINEAR MOTION: A COMPLETE GUIDE TO IMPLEMENTING DYNAMIC LOAD SUPPORT FOR LINEAR MOTION SYSTEMS SUPPORTING LINEAR MOTION: A COMPLETE GUIDE TO IMPLEMENTING DYNAMIC LOAD SUPPORT FOR LINEAR MOTION SYSTEMS Released by: Keith Knight Catalyst Motion Group Engineering Team Members info@catalystmotiongroup.com

More information

The Dynamic Characteristics Analysis of Rotor Blade Based on ANSYS

The Dynamic Characteristics Analysis of Rotor Blade Based on ANSYS The Dynamic Characteristics Analysis of Rotor Blade Based on ANSYS Nian-zhao Jiang, Xiang-lin Ma, Zhi-qing Zhang The Research Institute of Simulation Technology of Nanjing, No. 766 Zhujiang Road, Nanjing,210016,

More information

Research and implementation of a simulation method of electric transmission line inspection using UAV based on virtual reality

Research and implementation of a simulation method of electric transmission line inspection using UAV based on virtual reality Acta Technica 6 (017), No. 6A, 7 36 c 017 Institute of Thermomechanics CAS, v.v.i. Research and implementation of a simulation method of electric transmission line inspection using UAV based on virtual

More information

An Experimental Study of the Autonomous Helicopter Landing Problem

An Experimental Study of the Autonomous Helicopter Landing Problem An Experimental Study of the Autonomous Helicopter Landing Problem Srikanth Saripalli 1, Gaurav S. Sukhatme 1, and James F. Montgomery 2 1 Department of Computer Science, University of Southern California,

More information

Design and Analysis of Control Bay Used in Guided Missile

Design and Analysis of Control Bay Used in Guided Missile Design and Analysis of Control Bay Used in Guided Missile Ragam Prashanth 1, D.Muppala 2, Nirmith Mishra 3 1PG Student, Department of Aerospace, MLR Inst of Tech and Management, Hyderabad, Telangana, India

More information

Control of a quadrotor manipulating a beam (2 projects available)

Control of a quadrotor manipulating a beam (2 projects available) Control of a quadrotor manipulating a beam (2 projects available) Supervisor: Emanuele Garone (egarone@ulb.ac.be), Tam Nguyen, Laurent Catoire General Goal: The goal of this project is to complete from

More information

An Affine Parameter Dependent Controller of An Helicopter for Various Forward Velocity Conditions İsmail Hakki Şahin 1,2, a, Coşku Kasnakoğlu 1,b

An Affine Parameter Dependent Controller of An Helicopter for Various Forward Velocity Conditions İsmail Hakki Şahin 1,2, a, Coşku Kasnakoğlu 1,b Applied Mechanics and Materials Vols. 789-79 (215) pp 167-172 (215) Trans Tech Publications, Switzerland doi:1.428/www.scientific.net/amm.789-79.167 An Affine Parameter Dependent Controller of An Helicopter

More information

Multi-core implementation of F-16 flight surface control system using GA based multiple model reference adaptive control algorithm

Multi-core implementation of F-16 flight surface control system using GA based multiple model reference adaptive control algorithm The University of Toledo The University of Toledo Digital Repository Theses and Dissertations 2011 Multi-core implementation of F-16 flight surface control system using GA based multiple model reference

More information

OPTIMIZED TRAJECTORY TRACKING FOR A HYPERSONIC VEHICLE IN VERTICAL FLIGHT

OPTIMIZED TRAJECTORY TRACKING FOR A HYPERSONIC VEHICLE IN VERTICAL FLIGHT OPTIMIZED TRAJECTORY TRACKING FOR A HYPERSONIC VEHICLE IN VERTICAL FLIGHT By ERIK J. KITTRELL A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

More information

Flight Control System Design and Test for Unmanned Rotorcraft

Flight Control System Design and Test for Unmanned Rotorcraft IEEE Santa Clara Valley Control Systems Society Technical Meeting September 2, 2 Flight Control System Design and Test for Unmanned Rotorcraft Chad R. Frost Flight Control and Cockpit Integration Branch

More information

Kuper Virtual Axes Convention and Data Interchange

Kuper Virtual Axes Convention and Data Interchange Kuper Virtual Axes Convention and Data Interchange Properly calibrated, a Kuper is capable of producing extremely accurate moves in Cartesian space, via virtual (synthetic) axis synthesis. All modes, programming,

More information

Non-symmetric membership function for Fuzzy-based visual servoing onboard a UAV

Non-symmetric membership function for Fuzzy-based visual servoing onboard a UAV 1 Non-symmetric membership function for Fuzzy-based visual servoing onboard a UAV M. A. Olivares-Méndez and P. Campoy and C. Martínez and I. F. Mondragón B. Computer Vision Group, DISAM, Universidad Politécnica

More information

Estimation of Altitude and Vertical Velocity for Multirotor Aerial Vehicle using Kalman Filter

Estimation of Altitude and Vertical Velocity for Multirotor Aerial Vehicle using Kalman Filter Estimation of Altitude and Vertical Velocity for Multirotor Aerial Vehicle using Kalman Filter Przemys law G asior, Stanis law Gardecki, Jaros law Gośliński and Wojciech Giernacki Poznan University of

More information

Experiment 6 SIMULINK

Experiment 6 SIMULINK Experiment 6 SIMULINK Simulink Introduction to simulink SIMULINK is an interactive environment for modeling, analyzing, and simulating a wide variety of dynamic systems. SIMULINK provides a graphical user

More information

Epic Made Easy The Redesigned 350 QX3

Epic Made Easy The Redesigned 350 QX3 Available November 2014 350 QX3 AP Combo BLH8160 (APC) Epic Made Easy The Redesigned 350 QX3 Capturing spectacular aerial video and stills is even easier with the new Blade 350 QX3. Its simplified controls,

More information

STUDY ABOUT THE STABILITY AND CONTROL OF A ROTOR AIRPLANE

STUDY ABOUT THE STABILITY AND CONTROL OF A ROTOR AIRPLANE STUDY ABOUT THE STABILITY AND CONTROL OF A ROTOR AIRPLANE Victor Stafy Aristeu Silveira Neto victorstafy@aero.ufu.br aristeus@ufu.br Fluid Mechanics Laboratory- MFlab, Federal University of Uberlândia-

More information

EFFECT OF YAW-TILTED HINGE AXIS ON DEPLOYMENT ROBUSTNESS OF MARS AIRPLANE

EFFECT OF YAW-TILTED HINGE AXIS ON DEPLOYMENT ROBUSTNESS OF MARS AIRPLANE EFFET OF YAW-TILTED HINGE AXIS ON DEPLOYMENT ROBUSTNESS OF MARS AIRPLANE Koji Fujita* Hiroki Nagai** and Akira Oyama* * Institute of Space and Astronautical Science Japan Aerospace Exploration Agency --

More information

Construction, Modeling and Automatic Control of a UAV Helicopter

Construction, Modeling and Automatic Control of a UAV Helicopter Construction, Modeling and Automatic Control of a UAV Helicopter BEN M. CHENHEN EN M. C Department of Electrical and Computer Engineering National University of Singapore 1 Outline of This Presentation

More information

Critical Design Review. Almog Dov Assaf Aloush Bar Ovadia Dafna Lavi Orad Eldar. Supervisor: Dror Artzi

Critical Design Review. Almog Dov Assaf Aloush Bar Ovadia Dafna Lavi Orad Eldar. Supervisor: Dror Artzi Critical Design Review Almog Dov Assaf Aloush Bar Ovadia Dafna Lavi Orad Eldar Supervisor: Dror Artzi Man-portable UAV Over the hill / Urban surveillance Fast field deployment Endurance: 3 min Simple to

More information

AIR LOAD CALCULATION FOR ISTANBUL TECHNICAL UNIVERSITY (ITU), LIGHT COMMERCIAL HELICOPTER (LCH) DESIGN ABSTRACT

AIR LOAD CALCULATION FOR ISTANBUL TECHNICAL UNIVERSITY (ITU), LIGHT COMMERCIAL HELICOPTER (LCH) DESIGN ABSTRACT AIR LOAD CALCULATION FOR ISTANBUL TECHNICAL UNIVERSITY (ITU), LIGHT COMMERCIAL HELICOPTER (LCH) DESIGN Adeel Khalid *, Daniel P. Schrage + School of Aerospace Engineering, Georgia Institute of Technology

More information

FlightGear application for flight simulation of a mini-uav

FlightGear application for flight simulation of a mini-uav FlightGear application for flight simulation of a mini-uav Tomáš Vogeltanz and Roman Jašek Citation: AIP Conference Proceedings 1648, 550014 (2015); doi: 10.1063/1.4912769 View online: http://dx.doi.org/10.1063/1.4912769

More information

1. Introduction 1 2. Mathematical Representation of Robots

1. Introduction 1 2. Mathematical Representation of Robots 1. Introduction 1 1.1 Introduction 1 1.2 Brief History 1 1.3 Types of Robots 7 1.4 Technology of Robots 9 1.5 Basic Principles in Robotics 12 1.6 Notation 15 1.7 Symbolic Computation and Numerical Analysis

More information

Designing flapping wings as oscillating structures

Designing flapping wings as oscillating structures th World Congress on Structural and Multidisciplinary Optimization May 9-4,, Orlando, Florida, USA Designing flapping wings as oscillating structures Zhiyuan Zhang, Ashok V. Kumar, Raphael T. Haftka University

More information

Introduction to Control Systems Design

Introduction to Control Systems Design Experiment One Introduction to Control Systems Design Control Systems Laboratory Dr. Zaer Abo Hammour Dr. Zaer Abo Hammour Control Systems Laboratory 1.1 Control System Design The design of control systems

More information

A NOUVELLE MOTION STATE-FEEDBACK CONTROL SCHEME FOR RIGID ROBOTIC MANIPULATORS

A NOUVELLE MOTION STATE-FEEDBACK CONTROL SCHEME FOR RIGID ROBOTIC MANIPULATORS A NOUVELLE MOTION STATE-FEEDBACK CONTROL SCHEME FOR RIGID ROBOTIC MANIPULATORS Ahmad Manasra, 135037@ppu.edu.ps Department of Mechanical Engineering, Palestine Polytechnic University, Hebron, Palestine

More information

Learning Helicopter Model Through Examples

Learning Helicopter Model Through Examples Learning Helicopter Model Through Examples TITO G. AMARAL EST-Setúbal, Instituto Politécnico de Setúbal Instituto de Sistemas e Robótica UC, Pólo II Rua Vale de Chaves, Estefanilha 294-508 Setúbal PORTUGAL

More information

ROBOT TEAMS CH 12. Experiments with Cooperative Aerial-Ground Robots

ROBOT TEAMS CH 12. Experiments with Cooperative Aerial-Ground Robots ROBOT TEAMS CH 12 Experiments with Cooperative Aerial-Ground Robots Gaurav S. Sukhatme, James F. Montgomery, and Richard T. Vaughan Speaker: Jeff Barnett Paper Focus Heterogeneous Teams for Surveillance

More information

Horizontal Flight Dynamics Simulations using a Simplified Airplane Model and Considering Wind Perturbation

Horizontal Flight Dynamics Simulations using a Simplified Airplane Model and Considering Wind Perturbation Horizontal Flight Dynamics Simulations using a Simplified Airplane Model and Considering Wind Perturbation Dan N. DUMITRIU*,1,2, Andrei CRAIFALEANU 2, Ion STROE 2 *Corresponding author *,1 SIMULTEC INGINERIE

More information

Research on time optimal trajectory planning of 7-DOF manipulator based on genetic algorithm

Research on time optimal trajectory planning of 7-DOF manipulator based on genetic algorithm Acta Technica 61, No. 4A/2016, 189 200 c 2017 Institute of Thermomechanics CAS, v.v.i. Research on time optimal trajectory planning of 7-DOF manipulator based on genetic algorithm Jianrong Bu 1, Junyan

More information

Identification of a UAV and Design of a Hardware-in-the-Loop System for Nonlinear Control Purposes

Identification of a UAV and Design of a Hardware-in-the-Loop System for Nonlinear Control Purposes Identification of a UAV and Design of a Hardware-in-the-Loop System for Nonlinear Control Purposes Myriam Manaï and André Desbiens LOOP, Université Laval, Quebec City, Quebec, G1K 7P4, Canada Eric Gagnon

More information

Keywords: UAV, Formation flight, Virtual Pursuit Point

Keywords: UAV, Formation flight, Virtual Pursuit Point DESIGN THE GUIDANCE LAW FOR FORMATION FLIGHT OF MULTIPLE UAVS Heemin Shin*, Hyungi Kim*, Jaehyun Lee*, David Hyunchul Shim* *Korea Advanced Institute of Science and Technology (KAIST) Keywords: UAV, Formation

More information

Trajectory Planning for Reentry Maneuverable Ballistic Missiles

Trajectory Planning for Reentry Maneuverable Ballistic Missiles International Conference on Manufacturing Science and Engineering (ICMSE 215) rajectory Planning for Reentry Maneuverable Ballistic Missiles XIE Yu1, a *, PAN Liang1,b and YUAN ianbao2,c 1 College of mechatronic

More information

MINISTAB SYSTEM DESCRIPTION

MINISTAB SYSTEM DESCRIPTION MINISTAB SYSTEM DESCRIPTION Quote From Grampaw Pettibone: When you are flying a helicopter with an AFCS, you re not flying the helicopter you are flying the AFCS! The sooner you learn that, the sooner

More information

Figure (2) The arrows show the directions of the hinge vectors and the hinge orientation angles (φ h )

Figure (2) The arrows show the directions of the hinge vectors and the hinge orientation angles (φ h ) In this example we will analyze a rocket vehicle during level flight. It is controlled by five aerosurfaces and a fixed engine, similar to the vehicle shown in Figure (1). The control surfaces are: two

More information

Zero Launch Angle. since θ=0, then v oy =0 and v ox = v o. The time required to reach the water. independent of v o!!

Zero Launch Angle. since θ=0, then v oy =0 and v ox = v o. The time required to reach the water. independent of v o!! Zero Launch Angle y h since θ=0, then v oy =0 and v ox = v o and based on our coordinate system we have x o =0, y o =h x The time required to reach the water independent of v o!! 1 2 Combining Eliminating

More information

N. Gachadoit 1, A. El Hadri 2, A. Benallegue 2, A. Seba 3, B.Vidalie 1

N. Gachadoit 1, A. El Hadri 2, A. Benallegue 2, A. Seba 3, B.Vidalie 1 Advanced modeling with a Symbolic based approach Application to the modeling, control design and real-time control and HIL simulation of a quadrotor helicopter N. Gachadoit 1, A. El Hadri 2, A. Benallegue

More information

Embedded Real-Time Systems

Embedded Real-Time Systems Embedded Real-Time Systems Reinhard von Hanxleden Christian-Albrechts-Universität zu Kiel Based on slides kindly provided by Edward A. Lee & Sanjit Seshia, UC Berkeley, All rights reserved Lecture 2: Model-Based

More information

Dynamic Modelling and Simulation of a Vectored Thrust Quad-Rotor

Dynamic Modelling and Simulation of a Vectored Thrust Quad-Rotor Dynamic Modelling and Simulation of a Vectored Thrust Quad-Rotor Benjamin Faul School of Mechanical and Manufacturing Engineering University of New South Wales Sydney, NSW 252 Email: benjaminfaul@bigpond.com

More information

MATH 31A HOMEWORK 9 (DUE 12/6) PARTS (A) AND (B) SECTION 5.4. f(x) = x + 1 x 2 + 9, F (7) = 0

MATH 31A HOMEWORK 9 (DUE 12/6) PARTS (A) AND (B) SECTION 5.4. f(x) = x + 1 x 2 + 9, F (7) = 0 FROM ROGAWSKI S CALCULUS (2ND ED.) SECTION 5.4 18.) Express the antiderivative F (x) of f(x) satisfying the given initial condition as an integral. f(x) = x + 1 x 2 + 9, F (7) = 28.) Find G (1), where

More information

VIBRATION ISOLATION USING A MULTI-AXIS ROBOTIC PLATFORM G.

VIBRATION ISOLATION USING A MULTI-AXIS ROBOTIC PLATFORM G. VIBRATION ISOLATION USING A MULTI-AXIS ROBOTIC PLATFORM G. Satheesh Kumar, Y. G. Srinivasa and T. Nagarajan Precision Engineering and Instrumentation Laboratory Department of Mechanical Engineering Indian

More information

MODELING AND SIMULATION OF A DISTRIBUTED MULTI-BEHAVIORAL CONTROL FOR FULLY AUTONOMOUS QUADROTORS. CHRISTIAN MICKLISCH and NATHAN HILLIARD

MODELING AND SIMULATION OF A DISTRIBUTED MULTI-BEHAVIORAL CONTROL FOR FULLY AUTONOMOUS QUADROTORS. CHRISTIAN MICKLISCH and NATHAN HILLIARD MODELING AND SIMULATION OF A DISTRIBUTED MULTI-BEHAVIORAL CONTROL FOR FULLY AUTONOMOUS QUADROTORS by CHRISTIAN MICKLISCH and NATHAN HILLIARD Advisor DR. HALA ELAARAG A senior research paper submitted in

More information

1 General description

1 General description 1 General description OAD OAD was set up to develop and sell ADS, which stands for Aircraft Design Software. This software is dedicated to take you through nearly the entire aircraft design process for

More information

Keywords: CFD, aerofoil, URANS modeling, flapping, reciprocating movement

Keywords: CFD, aerofoil, URANS modeling, flapping, reciprocating movement L.I. Garipova *, A.N. Kusyumov *, G. Barakos ** * Kazan National Research Technical University n.a. A.N.Tupolev, ** School of Engineering - The University of Liverpool Keywords: CFD, aerofoil, URANS modeling,

More information

Comparison of PID and LQR controllers on a quadrotor helicopter

Comparison of PID and LQR controllers on a quadrotor helicopter Comparison of PID and LQR controllers on a quadrotor helicopter Demet Canpolat Tosun 1, Yasemin Işık 2, Hakan Korul 3 Abstract This paper focuses on a quadrotor model, named as Qball-X4 developed by Quanser.

More information

Guidelines for proper use of Plate elements

Guidelines for proper use of Plate elements Guidelines for proper use of Plate elements In structural analysis using finite element method, the analysis model is created by dividing the entire structure into finite elements. This procedure is known

More information

Design and Research on Mechanism of Bionic Flapping-wing Air Vehicle

Design and Research on Mechanism of Bionic Flapping-wing Air Vehicle Vol.8, No.4 (2015), pp. 299-306 http://dx.doi.org/10.14257/ijhit.2015.8.4.31 Design and Research on Mechanism of Bionic Flapping-wing Air Vehicle Yang Yonggang, Xie Youzeng and Huo Lipeng School of Aeronautics

More information

Exterior Orientation Parameters

Exterior Orientation Parameters Exterior Orientation Parameters PERS 12/2001 pp 1321-1332 Karsten Jacobsen, Institute for Photogrammetry and GeoInformation, University of Hannover, Germany The georeference of any photogrammetric product

More information

SIMULATION ENVIRONMENT PROPOSAL, ANALYSIS AND CONTROL OF A STEWART PLATFORM MANIPULATOR

SIMULATION ENVIRONMENT PROPOSAL, ANALYSIS AND CONTROL OF A STEWART PLATFORM MANIPULATOR SIMULATION ENVIRONMENT PROPOSAL, ANALYSIS AND CONTROL OF A STEWART PLATFORM MANIPULATOR Fabian Andres Lara Molina, Joao Mauricio Rosario, Oscar Fernando Aviles Sanchez UNICAMP (DPM-FEM), Campinas-SP, Brazil,

More information

Reference Variables Generation Using a Fuzzy Trajectory Controller for PM Tubular Linear Synchronous Motor Drive

Reference Variables Generation Using a Fuzzy Trajectory Controller for PM Tubular Linear Synchronous Motor Drive Reference Variables Generation Using a Fuzzy Trajectory Controller for PM Tubular Linear Synchronous Motor Drive R. LUÍS J.C. QUADRADO ISEL, R. Conselheiro Emídio Navarro, 1950-072 LISBOA CAUTL, R. Rovisco

More information

SIGNALS AND LINEAR SYSTEMS LABORATORY EELE

SIGNALS AND LINEAR SYSTEMS LABORATORY EELE The Islamic University of Gaza Faculty of Engineering Electrical Engineering Department SIGNALS AND LINEAR SYSTEMS LABORATORY EELE 3110 Experiment (5): Simulink Prepared by: Eng. Mohammed S. Abuwarda Eng.

More information

Using RecurDyn. Contents

Using RecurDyn. Contents Using RecurDyn Contents 1.0 Multibody Dynamics Overview... 2 2.0 Multibody Dynamics Applications... 3 3.0 What is RecurDyn and how is it different?... 4 4.0 Types of RecurDyn Analysis... 5 5.0 MBD Simulation

More information

Math Learning Center Boise State 2010, Quadratic Modeling STEM 10

Math Learning Center Boise State 2010, Quadratic Modeling STEM 10 Quadratic Modeling STEM 10 Today we are going to put together an understanding of the two physics equations we have been using. Distance: Height : Recall the variables: o acceleration o gravitation force

More information

Preview. Two-Dimensional Motion and Vectors Section 1. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion

Preview. Two-Dimensional Motion and Vectors Section 1. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion Two-Dimensional Motion and Vectors Section 1 Preview Section 1 Introduction to Vectors Section 2 Vector Operations Section 3 Projectile Motion Section 4 Relative Motion Two-Dimensional Motion and Vectors

More information

Estimating Vertical Drag on Helicopter Fuselage during Hovering

Estimating Vertical Drag on Helicopter Fuselage during Hovering Estimating Vertical Drag on Helicopter Fuselage during Hovering A. A. Wahab * and M.Hafiz Ismail ** Aeronautical & Automotive Dept., Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310

More information

Design of a Three-Axis Rotary Platform

Design of a Three-Axis Rotary Platform Design of a Three-Axis Rotary Platform William Mendez, Yuniesky Rodriguez, Lee Brady, Sabri Tosunoglu Mechanics and Materials Engineering, Florida International University 10555 W Flagler Street, Miami,

More information

CFD Post-Processing of Rampressor Rotor Compressor

CFD Post-Processing of Rampressor Rotor Compressor Gas Turbine Industrial Fellowship Program 2006 CFD Post-Processing of Rampressor Rotor Compressor Curtis Memory, Brigham Young niversity Ramgen Power Systems Mentor: Rob Steele I. Introduction Recent movements

More information

10/11/07 1. Motion Control (wheeled robots) Representing Robot Position ( ) ( ) [ ] T

10/11/07 1. Motion Control (wheeled robots) Representing Robot Position ( ) ( ) [ ] T 3 3 Motion Control (wheeled robots) Introduction: Mobile Robot Kinematics Requirements for Motion Control Kinematic / dynamic model of the robot Model of the interaction between the wheel and the ground

More information

Integrated Computational and Experimental Studies of Flapping-wing Micro Air Vehicle Aerodynamics

Integrated Computational and Experimental Studies of Flapping-wing Micro Air Vehicle Aerodynamics Integrated Computational and Experimental Studies of Flapping-wing Micro Air Vehicle Aerodynamics Kevin Knowles, Peter Wilkins, Salman Ansari, Rafal Zbikowski Department of Aerospace, Power and Sensors

More information

Table of Contents. Introduction.*.. 7. Part /: Getting Started With MATLAB 5. Chapter 1: Introducing MATLAB and Its Many Uses 7

Table of Contents. Introduction.*.. 7. Part /: Getting Started With MATLAB 5. Chapter 1: Introducing MATLAB and Its Many Uses 7 MATLAB Table of Contents Introduction.*.. 7 About This Book 1 Foolish Assumptions 2 Icons Used in This Book 3 Beyond the Book 3 Where to Go from Here 4 Part /: Getting Started With MATLAB 5 Chapter 1:

More information

Motion estimation of unmanned marine vehicles Massimo Caccia

Motion estimation of unmanned marine vehicles Massimo Caccia Motion estimation of unmanned marine vehicles Massimo Caccia Consiglio Nazionale delle Ricerche Istituto di Studi sui Sistemi Intelligenti per l Automazione Via Amendola 122 D/O, 70126, Bari, Italy massimo.caccia@ge.issia.cnr.it

More information

Structural Configurations of Manipulators

Structural Configurations of Manipulators Structural Configurations of Manipulators 1 In this homework, I have given information about the basic structural configurations of the manipulators with the concerned illustrations. 1) The Manipulator

More information

FUZZY INFERENCE SYSTEMS

FUZZY INFERENCE SYSTEMS CHAPTER-IV FUZZY INFERENCE SYSTEMS Fuzzy inference is the process of formulating the mapping from a given input to an output using fuzzy logic. The mapping then provides a basis from which decisions can

More information

Control System Design for An Autonomous Helicopter Model in Hovering Using Pole Placement Method

Control System Design for An Autonomous Helicopter Model in Hovering Using Pole Placement Method Control System Design for An Autonomous Helicopter Model in Hovering Using Pole Placement Method Abas Ab. Wahab 1, Rosbi Mamat 2 and Syariful Syafiq Shamsudin 3 Universiti Teknologi Malaysia, 81310 Skudai,

More information