Three Points Make a Triangle Or a Circle

Size: px
Start display at page:

Download "Three Points Make a Triangle Or a Circle"

Transcription

1 Three Points Make a Triangle Or a Circle Peter Schröder joint work with Liliya Kharevych, Boris Springborn, Alexander Bobenko 1

2 In This Section Circles as basic primitive it s all about the underlying geometry! Euclidean: triangles conformal: circles two examples conformal parameterization discrete curvature energies 2

3 Geometries The Erlangen program (1872) geometry through symmetries affine, perspective conformal CA CA =R 2 C A A Möbius xform 3

4 Conformal Mappings Piecewise Linear Surfaces map to domain discrete conformal preserve angles as well as possible circles as primitives 4

5 Paramaterizations An old problem can t have it all keep angles keep areas Our setup Mercator ( ); Frontispiece of Atlas Sive Cosmographicae ( ) USGS Map Projections Site find discrete conformal map from triangle mesh to Euclidean domain 5

6 Conformal Maps Mathematical basis Riemann mapping theorem unique (up to Möbius xforms) e* y e x x y 6

7 Conformal Maps Mathematical basis Riemann mapping theorem unique (up to Möbius xforms) Intrinsic angles in original mesh Texture coordinates 7

8 Sounds Great! You knew there was a catch Laplace problem Dirichlet or Neumann bndry. cond. 8

9 Sounds Great! You knew there was a catch Laplace problem Dirichlet or Neumann bndry. cond. too much control or too little 9

10 An Old Idea Riemann mapping theorem conformal maps map infinitesimal circles to infinitesimal circles Thurston (85) finite circles circle packing Ken Stephenson 10

11 An Old Idea Riemann mapping theorem conformal maps map infinitesimal circles to infinitesimal circles Thurston (85) finite circles circle packing Ken Stephenson 11

12 An Old Idea Riemann mapping theorem conformal maps map infinitesimal circles to infinitesimal circles Thurston (85) finite circles circle packing Stephenson s CirclePack Ken Stephenson 12

13 History Theory early: Koebe 36; Andreev 70 modern: Rudin & Sullivan 87 (hex packing); He & Schramm 98 (C convgce.) variational approaches de Verdière, Brägger, Rivin, Leibon, Bobenko & Springborn 13

14 Basic Setup Given a mesh local geometry around an edge 14

15 Circle Pattern Problem Rivin 94, Bobenko & Springborn 04 given a triangulation K an angle assignment sum conditions 15

16 Circle Pattern Problem Rivin 94, Bobenko & Springborn 04 given a triangulation K an angle assignment sum conditions 16

17 Circle Pattern Problem Uniquely realizable iff a coherent angle system exists linear feasibility problem 17

18 Geometry at an Edge Relationship between variables angle and radii 18

19 Energy Solution is unique minimum! convex energy in easy gradients and Hessians! 19

20 Algorithm Angle assignment quadratic program boundary curvatures free, prescribed Minimize energy Lay out circles angles and radii determine layout 20

21 Results Disk boundary Prescribed boundary Free boundary 37.9k F 39.6k F 12.6k F 28+8s 26+9s 7+2s 21

22 Boundary Control You get to control curvature 22

23 Quasi-Conformal Distr. 23

24 Quasi-Conformal Distr. 24

25 Robustness 25

26 Problems The price to pay want angles (nearly) preserved must suffer large area distortion 26

27 Piecewise Flat Back to first principles what does the mesh give us? everywhere flat with some exceptions Euclidean metric with cone singularities 27

28 Cone Singularities Circle pattern approach allows for cone singularities! set cone vertices rest of machinery works as before 28

29 Examples 29

30 Examples 30

31 Properties Circle patterns with cone sing. discrete conformal 31

32 Properties Circle patterns with cone sing. discrete conformal low area distortion arbitrary topology no cutting a priori! globally continuous 32

33 Summary Discrete conformal mappings formulate as circle pattern problem solution is min. of convex energy simple gradient and Hessian cone singularities no cutting a priori & arbitrary topology You can have both: area & angle! 33

34 More Fun with Circles Willmore energy of a surface vanishes iff surface is sphere 35

35 More Fun with Circles Willmore energy of a surface Möbius invariant of interest: minimizers theory of surfaces Conformal Geometry 36

36 More Fun with Circles Willmore energy of a surface of interest: minimizers theory of surfaces geometric modeling Conformal Geometry 37

37 More Fun with Circles Willmore energy of a surface of interest: minimizers theory of surfaces geometric modeling physical modeling Conformal Geometry 38

38 Discrete Willmore Flow Approach simplicial 2-manifolds preserve symmetries Möbius invariance non-linear formulation semi-implicit integration boundary conditions 39

39 Previous Work Discrete setting Discrete Differential Geometry 4 th order flows [SK01] [XPB05] [YB02] use existing lower order operators discretized continuous setting level set [TWBO03] [DR04] FEM [DDE03] [HGR01] [CDD*04] 40

40 Disc. Willmore Energy Definition [B05] object of conformal geometry use circles and angles at each vertex 41

41 Properties I Discrete Willmore energy vanishes iff co-spherical & convex 42

42 Properties I Discrete Willmore energy vanishes iff co-spherical & convex 43

43 Properties I Discrete Willmore energy vanishes iff co-spherical & convex 44

44 Properties II Discrete Willmore energy smooth limit discrete continuous independent of κ 1,2 45

45 Properties II Discrete Willmore energy smooth limit discrete continuous independent of κ 1,2 R 1 with equality for curvature line parameterizations 46

46 Properties III Evaluation symmetry 47

47 Properties III Evaluation symmetry derivatives gradient N x N linear system in (a,b,c,d) 48

48 Properties III Evaluation symmetry derivatives gradient N x N linear system in (a,b,c,d) 49

49 Properties III Evaluation symmetry derivatives gradient N x N linear system in (a,b,c,d) 50

50 Properties III Evaluation symmetry derivatives gradient N x N linear system in (a,b,c,d) 51

51 Properties III Evaluation symmetry derivatives gradient N x N linear system in (a,b,c,d) exact Hessian is 3N x 3N 52

52 Properties IV Gradient singularity what about csc(β)? direction of decrease Boundary conditions fixed: easy 53

53 Properties IV Gradient singularity what about csc(β)? direction of decrease Boundary conditions fixed: easy free: add vertex at boundary edge β 54

54 Properties IV Gradient singularity what about csc(β)? direction of decrease Boundary conditions fixed: easy free: add vertex at boundary edge β 55

55 Properties IV Gradient singularity what about csc(β)? direction of decrease Boundary conditions fixed: easy free: add vertex at boundary edge β 56

56 Results I Simple tests sphere 57

57 Results I Simple tests sphere boundaries 58

58 Results I Simple tests sphere boundaries 59

59 Results I Simple tests sphere boundaries 60

60 Results I Simple tests sphere boundaries 61

61 Results I Simple tests sphere boundaries 62

62 Results I Simple tests sphere boundaries 63

63 Results II Curvature alignment 64

64 Results III Hole filling 65

65 Results III Hole filling 66

66 Results III Hole filling 67

67 Results III Hole filling 68

68 Results III Hole filling 69

69 Results III Hole filling 70

70 Results III Hole filling Inpainting 71

71 Results III Hole filling Inpainting 72

72 Results III Hole filling Inpainting 73

73 Results III Hole filling Inpainting 74

74 Results IV Shrinkage free denoising 75

75 Summary Discrete Willmore flow preserve symmetries: Möbius semi-implicit time stepping relevance in many geo. proc. areas surface theory variational geometric modeling physical modeling 76

76 Outlook Future work more boundary conditions incorporate reference curvature control of triangle quality variational subdivision numerical robustness 77

77 Circle Summary Obey the geometry what geometry do the objects of interest belong to? conformal parameterization curvature energies circles and the angles they make with one another complete non-linear treatment 78

Discrete Conformal Structures

Discrete Conformal Structures Discrete Conformal Structures Boris Springborn (TUB) Ulrich Pinkall (TUB) Peter Schröder (Caltech) 1 The Problem Find nice texture maps simplicial surface metric data satisfy triangle inequality 2 The

More information

DISCRETE DIFFERENTIAL GEOMETRY

DISCRETE DIFFERENTIAL GEOMETRY AMS SHORT COURSE DISCRETE DIFFERENTIAL GEOMETRY Joint Mathematics Meeting San Diego, CA January 2018 DISCRETE CONFORMAL GEOMETRY AMS SHORT COURSE DISCRETE DIFFERENTIAL GEOMETRY Joint Mathematics Meeting

More information

Discrete differential geometry: Surfaces made from Circles

Discrete differential geometry: Surfaces made from Circles Discrete differential geometry: Alexander Bobenko (TU Berlin) with help of Tim Hoffmann, Boris Springborn, Ulrich Pinkall, Ulrike Scheerer, Daniel Matthes, Yuri Suris, Kevin Bauer Papers A.I. Bobenko,

More information

Implementation of Circle Pattern Parameterization

Implementation of Circle Pattern Parameterization Implementation of Circle Pattern Parameterization Thesis by Liliya Kharevych In Partial Fulfillment of the Requirements for the Degree of Master of Science California Institute of Technology Pasadena,

More information

Discrete Differential Geometry: An Applied Introduction

Discrete Differential Geometry: An Applied Introduction Discrete Differential Geometry: An Applied Introduction Eitan Grinspun with Mathieu Desbrun, Konrad Polthier, Peter Schröder, & Ari Stern 1 Differential Geometry Why do we care? geometry of surfaces Springborn

More information

Two Connections between Combinatorial and Differential Geometry

Two Connections between Combinatorial and Differential Geometry Two Connections between Combinatorial and Differential Geometry John M. Sullivan Institut für Mathematik, Technische Universität Berlin Berlin Mathematical School DFG Research Group Polyhedral Surfaces

More information

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder]

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Preliminaries Recall: Given a smooth function f:r R, the function

More information

Differential Geometry: Circle Packings. [A Circle Packing Algorithm, Collins and Stephenson] [CirclePack, Ken Stephenson]

Differential Geometry: Circle Packings. [A Circle Packing Algorithm, Collins and Stephenson] [CirclePack, Ken Stephenson] Differential Geometry: Circle Packings [A Circle Packing Algorithm, Collins and Stephenson] [CirclePack, Ken Stephenson] Conformal Maps Recall: Given a domain Ω R 2, the map F:Ω R 2 is conformal if it

More information

Digital Geometry Processing Parameterization I

Digital Geometry Processing Parameterization I Problem Definition Given a surface (mesh) S in R 3 and a domain find a bective F: S Typical Domains Cutting to a Disk disk = genus zero + boundary sphere = closed genus zero Creates artificial boundary

More information

Optimal Möbius Transformation for Information Visualization and Meshing

Optimal Möbius Transformation for Information Visualization and Meshing Optimal Möbius Transformation for Information Visualization and Meshing Marshall Bern Xerox Palo Alto Research Ctr. David Eppstein Univ. of California, Irvine Dept. of Information and Computer Science

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

Discrete Differential Geometry. Differential Geometry

Discrete Differential Geometry. Differential Geometry Discrete Differential Geometry Yiying Tong CSE 891 Sect 004 Differential Geometry Why do we care? theory: special surfaces minimal, CMC, integrable, etc. computation: simulation/processing Grape (u. of

More information

Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia

Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia 2008 1 Non-Convex Non Convex Boundary Convex boundary creates significant distortion Free boundary is better 2 Fixed

More information

Parameterization of Meshes

Parameterization of Meshes 2-Manifold Parameterization of Meshes What makes for a smooth manifold? locally looks like Euclidian space collection of charts mutually compatible on their overlaps form an atlas Parameterizations are

More information

Computational Conformal Geometry and Its Applications

Computational Conformal Geometry and Its Applications Computational Conformal Geometry and Its Applications Wei Zeng Institute of Computing Technology Chinese Academy of Sciences zengwei@cs.sunysb.edu Thesis Proposal Advisor: Harry Shum Co-advisor: Xianfeng

More information

Surface Parameterization

Surface Parameterization Surface Parameterization A Tutorial and Survey Michael Floater and Kai Hormann Presented by Afra Zomorodian CS 468 10/19/5 1 Problem 1-1 mapping from domain to surface Original application: Texture mapping

More information

CS 468 (Spring 2013) Discrete Differential Geometry

CS 468 (Spring 2013) Discrete Differential Geometry Lecturer: Adrian Butscher, Justin Solomon Scribe: Adrian Buganza-Tepole CS 468 (Spring 2013) Discrete Differential Geometry Lecture 19: Conformal Geometry Conformal maps In previous lectures we have explored

More information

Ph.D. Student Vintescu Ana-Maria

Ph.D. Student Vintescu Ana-Maria Ph.D. Student Vintescu Ana-Maria Context Background Problem Statement Strategy Metric Distortion Conformal parameterization techniques Cone singularities Our algorithm Experiments Perspectives Digital

More information

Conformal Geometry of Simplicial Surfaces (ROUGH DRAFT)

Conformal Geometry of Simplicial Surfaces (ROUGH DRAFT) Conformal Geometry of Simplicial Surfaces (ROUGH DRAFT) Keenan Crane Last updated: September 11, 2018 WARNING: This document is a rough draft of course notes from the AMS Short Course on Discrete Differential

More information

Conformal Surface Parameterization Using Euclidean Ricci Flow

Conformal Surface Parameterization Using Euclidean Ricci Flow Conformal Surface Parameterization Using Euclidean Ricci Flow Miao Jin, Juhno Kim, Feng Luo, Seungyong Lee, Xianfeng Gu Rutgers University Pohang University of Science and Technology State University of

More information

Discrete Surface Ricci Flow

Discrete Surface Ricci Flow TO APPEAR IN IEEE TVCG 1 Discrete Surface Ricci Flow Miao Jin 1, Junho Kim 1,3,FengLuo 2, and Xianfeng Gu 1 1 Stony Brook University 2 Rutgers University 3 Dong-Eui University Abstract This work introduces

More information

Simplicial Hyperbolic Surfaces

Simplicial Hyperbolic Surfaces Simplicial Hyperbolic Surfaces Talk by Ken Bromberg August 21, 2007 1-Lipschitz Surfaces- In this lecture we will discuss geometrically meaningful ways of mapping a surface S into a hyperbolic manifold

More information

Greedy Routing with Guaranteed Delivery Using Ricci Flow

Greedy Routing with Guaranteed Delivery Using Ricci Flow Greedy Routing with Guaranteed Delivery Using Ricci Flow Jie Gao Stony Brook University Joint work with Rik Sarkar, Xiaotian Yin, Wei Zeng, Feng Luo, Xianfeng David Gu Greedy Routing Assign coordinatesto

More information

The Contribution of Discrete Differential Geometry to Contemporary Architecture

The Contribution of Discrete Differential Geometry to Contemporary Architecture The Contribution of Discrete Differential Geometry to Contemporary Architecture Helmut Pottmann Vienna University of Technology, Austria 1 Project in Seoul, Hadid Architects 2 Lilium Tower Warsaw, Hadid

More information

Greedy Routing in Wireless Networks. Jie Gao Stony Brook University

Greedy Routing in Wireless Networks. Jie Gao Stony Brook University Greedy Routing in Wireless Networks Jie Gao Stony Brook University A generic sensor node CPU. On-board flash memory or external memory Sensors: thermometer, camera, motion, light sensor, etc. Wireless

More information

VARIATIONAL PRINCIPLES FOR CIRCLE PATTERNS AND KOEBE S THEOREM

VARIATIONAL PRINCIPLES FOR CIRCLE PATTERNS AND KOEBE S THEOREM TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 356, Number, Pages 659 689 S 000-9947030339- Article electronically published on September, 003 VARIATIONAL PRINCIPLES FOR CIRCLE PATTERNS AND KOEBE

More information

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo 05 - Surfaces Acknowledgements: Olga Sorkine-Hornung Reminder Curves Turning Number Theorem Continuous world Discrete world k: Curvature is scale dependent is scale-independent Discrete Curvature Integrated

More information

Weighted Triangulations for Geometry Processing

Weighted Triangulations for Geometry Processing Weighted Triangulations for Geometry Processing Fernando de Goes Caltech and Pooran Memari CNRS-LTCI Telecom ParisTech and Patrick Mullen Caltech and Mathieu Desbrun Caltech In this paper, we investigate

More information

Manifold Splines with Single Extraordinary Point

Manifold Splines with Single Extraordinary Point Manifold Splines with Single Extraordinary Point Xianfeng Gu Stony Brook Ying He NTU Miao Jin Stony Brook Feng Luo Rutgers Hong Qin Stony Brook Shing-Tung Yau Harvard Abstract This paper develops a novel

More information

Investigating Disease in the Human Brain with Conformal Maps and Conformal Invariants

Investigating Disease in the Human Brain with Conformal Maps and Conformal Invariants AMMP Workshop: Conformal Geometry in Mapping, Imaging and Sensing Imperial College London South Kensington Campus, London June 20-21, 2013 Investigating Disease in the Human Brain with Conformal Maps and

More information

Discrete Geometry Processing

Discrete Geometry Processing Non Convex Boundary Convex boundary creates significant distortion Free boundary is better Some slides from the Mesh Parameterization Course (Siggraph Asia 008) 1 Fixed vs Free Boundary Fixed vs Free Boundary

More information

2018 AMS short course Discrete Differential Geometry. Discrete Mappings. Yaron Lipman Weizmann Institute of Science

2018 AMS short course Discrete Differential Geometry. Discrete Mappings. Yaron Lipman Weizmann Institute of Science 2018 AMS short course Discrete Differential Geometry 1 Discrete Mappings Yaron Lipman Weizmann Institute of Science 2 Surfaces as triangulations Triangles stitched to build a surface. 3 Surfaces as triangulations

More information

Geometric Modeling Mortenson Chapter 11. Complex Model Construction

Geometric Modeling Mortenson Chapter 11. Complex Model Construction Geometric Modeling 91.580.201 Mortenson Chapter 11 Complex Model Construction Topics Topology of Models Connectivity and other intrinsic properties Graph-Based Models Emphasize topological structure Boolean

More information

Geometry and Gravitation

Geometry and Gravitation Chapter 15 Geometry and Gravitation 15.1 Introduction to Geometry Geometry is one of the oldest branches of mathematics, competing with number theory for historical primacy. Like all good science, its

More information

Möbius Transformations in Scientific Computing. David Eppstein

Möbius Transformations in Scientific Computing. David Eppstein Möbius Transformations in Scientific Computing David Eppstein Univ. of California, Irvine School of Information and Computer Science (including joint work with Marshall Bern from WADS 01 and SODA 03) Outline

More information

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011 CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell 2/15/2011 1 Motivation Geometry processing: understand geometric characteristics,

More information

EXPERIENCING GEOMETRY

EXPERIENCING GEOMETRY EXPERIENCING GEOMETRY EUCLIDEAN AND NON-EUCLIDEAN WITH HISTORY THIRD EDITION David W. Henderson Daina Taimina Cornell University, Ithaca, New York PEARSON Prentice Hall Upper Saddle River, New Jersey 07458

More information

Surfaces: notes on Geometry & Topology

Surfaces: notes on Geometry & Topology Surfaces: notes on Geometry & Topology 1 Surfaces A 2-dimensional region of 3D space A portion of space having length and breadth but no thickness 2 Defining Surfaces Analytically... Parametric surfaces

More information

Manifold T-spline. Ying He 1 Kexiang Wang 2 Hongyu Wang 2 Xianfeng David Gu 2 Hong Qin 2. Geometric Modeling and Processing 2006

Manifold T-spline. Ying He 1 Kexiang Wang 2 Hongyu Wang 2 Xianfeng David Gu 2 Hong Qin 2. Geometric Modeling and Processing 2006 Ying He 1 Kexiang Wang 2 Hongyu Wang 2 Xianfeng David Gu 2 Hong Qin 2 1 School of Computer Engineering Nanyang Technological University, Singapore 2 Center for Visual Computing (CVC) Stony Brook University,

More information

From isothermic triangulated surfaces to discrete holomorphicity

From isothermic triangulated surfaces to discrete holomorphicity From isothermic triangulated surfaces to discrete holomorphicity Wai Yeung Lam TU Berlin Oberwolfach, 2 March 2015 Joint work with Ulrich Pinkall Wai Yeung Lam (TU Berlin) isothermic triangulated surfaces

More information

A Conformal Energy for Simplicial Surfaces

A Conformal Energy for Simplicial Surfaces Combinatorial and Computational Geometry MSRI Publications Volume 52, 2005 A Conformal Energy for Simplicial Surfaces ALEXANDER I. BOBENKO Abstract. A new functional for simplicial surfaces is suggested.

More information

274 Curves on Surfaces, Lecture 5

274 Curves on Surfaces, Lecture 5 274 Curves on Surfaces, Lecture 5 Dylan Thurston Notes by Qiaochu Yuan Fall 2012 5 Ideal polygons Previously we discussed three models of the hyperbolic plane: the Poincaré disk, the upper half-plane,

More information

Lectures in Discrete Differential Geometry 3 Discrete Surfaces

Lectures in Discrete Differential Geometry 3 Discrete Surfaces Lectures in Discrete Differential Geometry 3 Discrete Surfaces Etienne Vouga March 19, 2014 1 Triangle Meshes We will now study discrete surfaces and build up a parallel theory of curvature that mimics

More information

Geometric and Solid Modeling. Problems

Geometric and Solid Modeling. Problems Geometric and Solid Modeling Problems Define a Solid Define Representation Schemes Devise Data Structures Construct Solids Page 1 Mathematical Models Points Curves Surfaces Solids A shape is a set of Points

More information

CORTICAL SURFACE FLATTENING: A DISCRETE CONFORMAL APPROACH USING CIRCLE PACKINGS

CORTICAL SURFACE FLATTENING: A DISCRETE CONFORMAL APPROACH USING CIRCLE PACKINGS CORTICAL SURFACE FLATTENING: A DISCRETE CONFORMAL APPROACH USING CIRCLE PACKINGS MONICA K. HURDAL 1, KEN STEPHENSON 2, PHILIP L. BOWERS 1, DE WITT L. SUMNERS 1, AND DAVID A. ROTTENBERG 3,4 1 Department

More information

Hyperbolic structures and triangulations

Hyperbolic structures and triangulations CHAPTER Hyperbolic structures and triangulations In chapter 3, we learned that hyperbolic structures lead to developing maps and holonomy, and that the developing map is a covering map if and only if the

More information

Geometric structures on 2-orbifolds

Geometric structures on 2-orbifolds Geometric structures on 2-orbifolds Section 1: Manifolds and differentiable structures S. Choi Department of Mathematical Science KAIST, Daejeon, South Korea 2010 Fall, Lectures at KAIST S. Choi (KAIST)

More information

Parameterization of Triangular Meshes with Virtual Boundaries

Parameterization of Triangular Meshes with Virtual Boundaries Parameterization of Triangular Meshes with Virtual Boundaries Yunjin Lee 1;Λ Hyoung Seok Kim 2;y Seungyong Lee 1;z 1 Department of Computer Science and Engineering Pohang University of Science and Technology

More information

Discrete minimal surfaces of Koebe type

Discrete minimal surfaces of Koebe type Discrete minimal surfaces of Koebe type Alexander I. Bobenko, Ulrike Bücking, Stefan Sechelmann March 5, 2018 1 Introduction Minimal surfaces have been studied for a long time, but still contain unsolved

More information

Discrete Ricci Flow and Its Applications

Discrete Ricci Flow and Its Applications Discrete Ricci Flow and Its Applications State University of New York 1 Motivation Ricci flow is a powerful tool for designing Riemannian metrics, which lays down the theoretic foundation for many crucial

More information

Hyperbolic Geometry. Thomas Prince. Imperial College London. 21 January 2017

Hyperbolic Geometry. Thomas Prince. Imperial College London. 21 January 2017 Hyperbolic Geometry Thomas Prince Imperial College London 21 January 2017 Thomas Prince (Imperial College London) Hyperbolic Planes 21 January 2017 1 / 31 Introducing Geometry What does the word geometry

More information

Cannon s conjecture, subdivision rules, and expansion complexes

Cannon s conjecture, subdivision rules, and expansion complexes Cannon s conjecture, subdivision rules, and expansion complexes W. Floyd (joint work with J. Cannon and W. Parry) Department of Mathematics Virginia Tech UNC Greensboro: November, 2014 Motivation from

More information

Research Proposal: Computational Geometry with Applications on Medical Images

Research Proposal: Computational Geometry with Applications on Medical Images Research Proposal: Computational Geometry with Applications on Medical Images MEI-HENG YUEH yueh@nctu.edu.tw National Chiao Tung University 1 Introduction My research mainly focuses on the issues of computational

More information

(Discrete) Differential Geometry

(Discrete) Differential Geometry (Discrete) Differential Geometry Motivation Understand the structure of the surface Properties: smoothness, curviness, important directions How to modify the surface to change these properties What properties

More information

Geodesic and curvature of piecewise flat Finsler surfaces

Geodesic and curvature of piecewise flat Finsler surfaces Geodesic and curvature of piecewise flat Finsler surfaces Ming Xu Capital Normal University (based on a joint work with S. Deng) in Southwest Jiaotong University, Emei, July 2018 Outline 1 Background Definition

More information

arxiv: v2 [math.cv] 31 Mar 2017

arxiv: v2 [math.cv] 31 Mar 2017 Quasiconformal dilatation of projective transformations and discrete conformal maps Stefan Born, Ulrike Bücking, Boris Springborn arxiv:1505.01341v2 [math.cv] 31 Mar 2017 Abstract We consider the quasiconformal

More information

Subdivision in Willmore Flow Problems

Subdivision in Willmore Flow Problems Subdivision in Willmore Flow Problems Jingmin Chen 1 Sara Grundel 2 Rob Kusner 3 Thomas Yu 1 Andrew Zigerelli 1 1 Drexel University, Philadelphia 2 New York University and Max Planck Institute Magdeburg

More information

The Duality of Geodesic Voronoi/Delaunay Diagrams For An Intrinsic Discrete Laplace-Beltrami Operator on Simplicial Surfaces

The Duality of Geodesic Voronoi/Delaunay Diagrams For An Intrinsic Discrete Laplace-Beltrami Operator on Simplicial Surfaces CCCG 2014, Halifax, Nova Scotia, August 11 13, 2014 The Duality of Geodesic Voronoi/Delaunay Diagrams For An Intrinsic Discrete Laplace-Beltrami Operator on Simplicial Surfaces Yong-Jin Liu, Chun-Xu Xu

More information

Mesh Processing Pipeline

Mesh Processing Pipeline Mesh Smoothing 1 Mesh Processing Pipeline... Scan Reconstruct Clean Remesh 2 Mesh Quality Visual inspection of sensitive attributes Specular shading Flat Shading Gouraud Shading Phong Shading 3 Mesh Quality

More information

Segmentation & Constraints

Segmentation & Constraints Siggraph Course Mesh Parameterization Theory and Practice Segmentation & Constraints Segmentation Necessary for closed and high genus meshes Reduce parametric distortion Chartification Texture Atlas Segmentation

More information

1.7.1 Laplacian Smoothing

1.7.1 Laplacian Smoothing 1.7.1 Laplacian Smoothing 320491: Advanced Graphics - Chapter 1 434 Theory Minimize energy functional total curvature estimate by polynomial-fitting non-linear (very slow!) 320491: Advanced Graphics -

More information

Barycentric Coordinates and Parameterization

Barycentric Coordinates and Parameterization Barycentric Coordinates and Parameterization Center of Mass Geometric center of object Center of Mass Geometric center of object Object can be balanced on CoM How to calculate? Finding the Center of Mass

More information

Discrete Exterior Calculus How to Turn Your Mesh into a Computational Structure. Discrete Differential Geometry

Discrete Exterior Calculus How to Turn Your Mesh into a Computational Structure. Discrete Differential Geometry Discrete Exterior Calculus How to Turn Your Mesh into a Computational Structure Discrete Differential Geometry Big Picture Deriving a whole Discrete Calculus you need first a discrete domain will induce

More information

Expansion complexes for finite subdivision rules

Expansion complexes for finite subdivision rules Expansion complexes for finite subdivision rules W. Floyd (joint work with J. Cannon and W. Parry) Department of Mathematics Virginia Tech Spring Topology and Dynamics Conference : March, 2013 Definition

More information

Introduction to geometry

Introduction to geometry 1 2 Manifolds A topological space in which every point has a neighborhood homeomorphic to (topological disc) is called an n-dimensional (or n-) manifold Introduction to geometry The German way 2-manifold

More information

Overview. Applications of DEC: Fluid Mechanics and Meshing. Fluid Models (I) Part I. Computational Fluids with DEC. Fluid Models (II) Fluid Models (I)

Overview. Applications of DEC: Fluid Mechanics and Meshing. Fluid Models (I) Part I. Computational Fluids with DEC. Fluid Models (II) Fluid Models (I) Applications of DEC: Fluid Mechanics and Meshing Mathieu Desbrun Applied Geometry Lab Overview Putting DEC to good use Fluids, fluids, fluids geometric interpretation of classical models discrete geometric

More information

CAT(0)-spaces. Münster, June 22, 2004

CAT(0)-spaces. Münster, June 22, 2004 CAT(0)-spaces Münster, June 22, 2004 CAT(0)-space is a term invented by Gromov. Also, called Hadamard space. Roughly, a space which is nonpositively curved and simply connected. C = Comparison or Cartan

More information

Mathematical Research Letters 1, (1994) MÖBIUS CONE STRUCTURES ON 3-DIMENSIONAL MANIFOLDS. Feng Luo

Mathematical Research Letters 1, (1994) MÖBIUS CONE STRUCTURES ON 3-DIMENSIONAL MANIFOLDS. Feng Luo Mathematical Research Letters 1, 257 261 (1994) MÖBIUS CONE STRUCTURES ON 3-DIMENSIONAL MANIFOLDS Feng Luo Abstract. We show that for any given angle α (0, 2π), any closed 3- manifold has a Möbius cone

More information

Gauss images of hyperbolic cusps with convex polyhedral boundary

Gauss images of hyperbolic cusps with convex polyhedral boundary Gauss images of hyperbolic cusps with convex polyhedral boundary François Fillastre, Ivan Izmestiev To cite this version: François Fillastre, Ivan Izmestiev. Gauss images of hyperbolic cusps with convex

More information

Manifold Splines with Single Extraordinary Point

Manifold Splines with Single Extraordinary Point Manifold Splines with Single Extraordinary Point Xianfeng Gu a,ying He b,,miaojin a,fengluo c, Hong Qin a, Shing-Tung Yau d a Computer Science Department, Stony Brook University, NY, USA. b School of Computer

More information

Reversible Hyperbolic Triangulations

Reversible Hyperbolic Triangulations Reversible Hyperbolic Triangulations Circle Packing and Random Walk Tom Hutchcroft 1 Joint work with O. Angel 1, A. Nachmias 1 and G. Ray 2 1 University of British Columbia 2 University of Cambridge Probability

More information

SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS

SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS JIAN LIANG AND HONGKAI ZHAO Abstract. In this paper we present a general framework for solving partial differential equations on manifolds represented

More information

Discrete uniformiza0on theorem for polyhedral surfaces and hyperbolic convex polytopes

Discrete uniformiza0on theorem for polyhedral surfaces and hyperbolic convex polytopes Discrete uniformiza0on theorem for polyhedral surfaces and hyperbolic convex polytopes Feng Luo Quantum invariants and low- dimensional topology Matrix Ins0tute, Australia Joint work with D. Gu (Stony

More information

Generalized Barycentric Coordinates

Generalized Barycentric Coordinates Generalized Barycentric Coordinates Kai Hormann Faculty of Informatics University of Lugano Cartesian coordinates y 3 2 ( 3,1) 1 3 2 1 1 2 3 (2,2) (0,0) 1 2 3 (1, 2) x René Descartes (1596 1650) Appendix

More information

Optimizing triangular meshes to have the incrircle packing property

Optimizing triangular meshes to have the incrircle packing property Packing Circles and Spheres on Surfaces Ali Mahdavi-Amiri Introduction Optimizing triangular meshes to have p g g the incrircle packing property Our Motivation PYXIS project Geometry Nature Geometry Isoperimetry

More information

A Primer on Laplacians. Max Wardetzky. Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany

A Primer on Laplacians. Max Wardetzky. Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany A Primer on Laplacians Max Wardetzky Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany Warm-up: Euclidean case Warm-up The Euclidean case Chladni s vibrating plates

More information

CS 523: Computer Graphics, Spring Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2009 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2009 3/4/2009 Recap Differential Geometry of Curves Andrew Nealen, Rutgers, 2009 3/4/2009

More information

Minimal surfaces from circle patterns: Geometry from combinatorics

Minimal surfaces from circle patterns: Geometry from combinatorics Minimal surfaces from circle patterns: Geometry from combinatorics Alexander I. Bobenko Tim Hoffmann Boris A. Springborn December 18, 2003 1 Introduction The theory of polyhedral surfaces and, more generally,

More information

GAUSS-BONNET FOR DISCRETE SURFACES

GAUSS-BONNET FOR DISCRETE SURFACES GAUSS-BONNET FOR DISCRETE SURFACES SOHINI UPADHYAY Abstract. Gauss-Bonnet is a deep result in differential geometry that illustrates a fundamental relationship between the curvature of a surface and its

More information

A Flavor of Topology. Shireen Elhabian and Aly A. Farag University of Louisville January 2010

A Flavor of Topology. Shireen Elhabian and Aly A. Farag University of Louisville January 2010 A Flavor of Topology Shireen Elhabian and Aly A. Farag University of Louisville January 2010 In 1670 s I believe that we need another analysis properly geometric or linear, which treats place directly

More information

A New Smoothing Algorithm for Quadrilateral and Hexahedral Meshes

A New Smoothing Algorithm for Quadrilateral and Hexahedral Meshes A New Smoothing Algorithm for Quadrilateral and Hexahedral Meshes Sanjay Kumar Khattri Department of Mathematics, University of Bergen, Norway sanjay@mi.uib.no http://www.mi.uib.no/ sanjay Abstract. Mesh

More information

William P. Thurston. The Geometry and Topology of Three-Manifolds

William P. Thurston. The Geometry and Topology of Three-Manifolds William P. Thurston The Geometry and Topology of Three-Manifolds Electronic version 1.1 - March 2002 http://www.msri.org/publications/books/gt3m/ This is an electronic edition of the 1980 notes distributed

More information

Geometrization and the Poincaré conjecture

Geometrization and the Poincaré conjecture Geometrization and the Poincaré conjecture Jan Metzger BRIGFOS, 2008 History of the Poincaré conjecture In 1904 Poincaré formulated his conjecture. It is a statement about three dimensional geometric objects,

More information

Reflection groups 4. Mike Davis. May 19, Sao Paulo

Reflection groups 4. Mike Davis. May 19, Sao Paulo Reflection groups 4 Mike Davis Sao Paulo May 19, 2014 https://people.math.osu.edu/davis.12/slides.html 1 2 Exotic fundamental gps Nonsmoothable aspherical manifolds 3 Let (W, S) be a Coxeter system. S

More information

Topic: Orientation, Surfaces, and Euler characteristic

Topic: Orientation, Surfaces, and Euler characteristic Topic: Orientation, Surfaces, and Euler characteristic The material in these notes is motivated by Chapter 2 of Cromwell. A source I used for smooth manifolds is do Carmo s Riemannian Geometry. Ideas of

More information

Discrete Surfaces. David Gu. Tsinghua University. Tsinghua University. 1 Mathematics Science Center

Discrete Surfaces. David Gu. Tsinghua University. Tsinghua University. 1 Mathematics Science Center Discrete Surfaces 1 1 Mathematics Science Center Tsinghua University Tsinghua University Discrete Surface Discrete Surfaces Acquired using 3D scanner. Discrete Surfaces Our group has developed high speed

More information

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College Topological Data Analysis - I Afra Zomorodian Department of Computer Science Dartmouth College September 3, 2007 1 Acquisition Vision: Images (2D) GIS: Terrains (3D) Graphics: Surfaces (3D) Medicine: MRI

More information

Constrained Willmore Tori in the 4 Sphere

Constrained Willmore Tori in the 4 Sphere (Technische Universität Berlin) 16 August 2006 London Mathematical Society Durham Symposium Methods of Integrable Systems in Geometry Constrained Willmore Surfaces The Main Result Strategy of Proof Constrained

More information

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU /858B Fall 2017

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU /858B Fall 2017 DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU 15-458/858B Fall 2017 LECTURE 10: DISCRETE CURVATURE DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU 15-458/858B

More information

Lecture 2 Unstructured Mesh Generation

Lecture 2 Unstructured Mesh Generation Lecture 2 Unstructured Mesh Generation MIT 16.930 Advanced Topics in Numerical Methods for Partial Differential Equations Per-Olof Persson (persson@mit.edu) February 13, 2006 1 Mesh Generation Given a

More information

COMPUTING SURFACE UNIFORMIZATION USING DISCRETE BELTRAMI FLOW

COMPUTING SURFACE UNIFORMIZATION USING DISCRETE BELTRAMI FLOW COMPUTING SURFACE UNIFORMIZATION USING DISCRETE BELTRAMI FLOW Abstract. In this paper, we propose a novel algorithm for computing surface uniformization for surfaces with arbitrary topology. According

More information

Parameterization of triangular meshes

Parameterization of triangular meshes Parameterization of triangular meshes Michael S. Floater November 10, 2009 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to

More information

Rational maps, subdivision rules, and Kleinian groups

Rational maps, subdivision rules, and Kleinian groups Rational maps, subdivision rules, and Kleinian groups J. Cannon 1 W. Floyd 2 W. Parry 3 1 Department of Mathematics Brigham Young University 2 Department of Mathematics Virginia Tech 3 Department of Mathematics

More information

Brain Surface Conformal Spherical Mapping

Brain Surface Conformal Spherical Mapping Brain Surface Conformal Spherical Mapping Min Zhang Department of Industrial Engineering, Arizona State University mzhang33@asu.edu Abstract It is well known and proved that any genus zero surface can

More information

Dual Interpolants for Finite Element Methods

Dual Interpolants for Finite Element Methods Dual Interpolants for Finite Element Methods Andrew Gillette joint work with Chandrajit Bajaj and Alexander Rand Department of Mathematics Institute of Computational Engineering and Sciences University

More information

arxiv:math/ v3 [math.dg] 24 Feb 2006

arxiv:math/ v3 [math.dg] 24 Feb 2006 A discrete Laplace-Beltrami operator for simplicial surfaces arxiv:math/0503219v3 [math.dg] 24 Feb 2006 Alexander I. Bobenko February 24, 2006 Boris A. Springborn Institut für Mathematik, Technische Universität

More information

Computing Geodesic Spectra of Surfaces

Computing Geodesic Spectra of Surfaces Computing Geodesic Spectra of Surfaces Miao Jin Stony Brook University Feng Luo Rutgers University Shing-Tung Yau Harvard University Xianfeng Gu Stony Brook University Abstract Surface classification is

More information

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research Tiling Three-Dimensional Space with Simplices Shankar Krishnan AT&T Labs - Research What is a Tiling? Partition of an infinite space into pieces having a finite number of distinct shapes usually Euclidean

More information

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2013 3D Object Representations Raw data Point cloud Range image Polygon soup Surfaces Mesh Subdivision Parametric Implicit Solids Voxels

More information

Teichmüller Space and Fenchel-Nielsen Coordinates

Teichmüller Space and Fenchel-Nielsen Coordinates Teichmüller Space and Fenchel-Nielsen Coordinates Nathan Lopez November 30, 2015 Abstract Here we give an overview of Teichmüller space and its realization as a smooth manifold through Fenchel- Nielsen

More information