Flat Surfaces, Teichmueller Discs, Veech Groups, and the Veech Tessellation

Size: px
Start display at page:

Download "Flat Surfaces, Teichmueller Discs, Veech Groups, and the Veech Tessellation"

Transcription

1 Flat Surfaces, Teichmueller Discs, Veech Groups, and the Veech Tessellation S. Allen Broughton - Rose-Hulman Institute of Technology Chris Judge - Indiana University AMS Regional Meeting at Pennsylvania State October 2009

2 credits and agenda some credits current work is joint with Chris Judge. original and many subsequent investigations by W. Veech papers of M. Troyanov are a good background source. lots of interest in applications of flat surfaces to the study of "zero divisor strata of quadratic differentials" in Teichmueller space. Interesting pictures of the Veech tesselation have been drawn by Josh Bowman (see web link reference at the end of the talk).

3 credits and agenda agenda geometric definition of flat surfaces analytic definition of flat surfaces relation to Teichmueller discs Veech groups Veech tesselation

4 first definition and examples informal definition/construction of flat surfaces Definition Let P 1,..., P n be a sequence of polygons such that every side of every polygon is matched with exactly one side (same edge length) of another polygon. The match may be to another side of the same polygon. The compact space S, obtained by gluing the polygons together via the matching, is called a flat surface. We assume the surface is connected.

5 first definition and examples flat surfaces - examples - 1 Here are some examples of flat surfaces. any of the platonic surfaces flat torus double pentagon (show on the board)

6 first definition and examples flat surfaces - examples - 2 Veech used the ideas of flat surfaces to discuss billiard trajectories consider the surface formed from the development of a convex table whose corner angles are rational multiples of π show and tell with PentagonPeriodic.pdf and PentagonDense.pdf (end of.pdf)

7 first definition and examples flat surfaces - examples - 3 the billiard trajectories are geodesics on the developed flat surface the billiard trajectory can be periodic or dense (uniquely ergodic) Veech dichotomy: in certain circumstances all trajectories are periodic or uniquely ergodic

8 first definition and examples flat surface geometry - 1 A flat surface has three types of points: interior points of polygons hinge points where two polygons meet along the interior of an edge cone points at the vertices of polygons The first two types of points are regular points on the surface. A neigbourhood of a hinge point can be made to look like a flat piece of plane by flattening. The cone points are usually considered to be singular. They cannot be flattened unless the total angle is 2π. denote the collection of cone points by F.

9 first definition and examples flat surface geometry - 2 The local geometry is determined as follows: Each regular point has a neighbourhood with the regular flat plane geometry, flattening a hinge as needed. Cone points need a measure of non-regularity, called the cone angle. If α 1,..., α s are the angles at a cone point v j F, then the (total) cone angle at v j is θ j = s α i. i=1 A cone point is regular if and only the cone angle equals 2π (lies flat).

10 first definition and examples flat surface geometry - 3 Here are some examples of cone angles. Example A cube has 8 cone points with cone angle 3π/2. An icosahedron has 12 cone points with cone angle 5π/3. The torus has no singular cone points.

11 first definition and examples Euler s formula Proposition Suppose a flat surface has genus g and v cone points with cone angles θ j. Then v θ j = 2π(2g 2 + v). j=1

12 second definition and examples complex analytic definition Definition A closed Riemann surface S with finite singular point set F has a flat analytic structure if there is an complex analytic atlas {u α } on S\F such that the transition maps are affine linear u α (P) = au β (P) + b, a, b C the transition maps are rigid: a = 1. S is the completion of S\F in the pulled back metric from C If a = 1 then S is called a translation surface and {u α } is called a translation structure. If a = ±1 then {u α } is called a demi-translation structure.

13 second definition and examples structures from forms Let ω = fdz q be a q-differential with divisor in F and at worst simple poles. Then an atlas {u α } may be defined as follows u α (P) = P P 0 f 1/q (z)dz If ω is a 1-form then {u α } is a translation structure. If ω is a quadratic differential then {u α } is a demi-translation structure.

14 automorphisms and deformation of structures automorphism of structures For any surface with automorphism group G, let ω be an invariant q-differential. Define as before an atlas {u α } as follows u α (P) = P P 0 f 1/q (z)dz The flat structure defined above will have G as a group of automorphisms.

15 automorphisms and deformation of structures deformation of structures Let {u α } be defined by a quadratic differential ω, and let g PSL 2 (R). Then {gu α } is a demi-translation structure as gu α (P) = g(au β (P) + b) = agu β (P) + gb) Let S g be the corresponding surface. If g SO(2) then S and S g are conformally equivalent. g S g is a map of H = PSL 2 (R)/SO(2) into the appropriate Teichmueller space T. Think of the image as a complex geodesic in T, through S in the direction ω.

16 automorphisms and deformation of structures Teichmueller disc The corresponding disc in T is typically called a Teichmueller disc. The image of a Teichmueller disc in the moduli space is a curve. Otherwise you get something analogous to an irrational line on a torus.

17 definition of Veech group Veech group and Teichmueller disc The Veech group is essentially the set of all g PSL 2 (R) such that S and S g are conformally equivalent. Specifically interested in those deformations in which the Veech group is a lattice in PSL 2 (R). The corresponding disc in T is typically called a Teichmueller disc. The image of a Teichmueller disc in the moduli space is a curve. Otherwise you get something analogous to an irrational line on a torus. the canonical example is PSL 2 (Z) acting on the upper half plane.

18 Voronoi and Delaunay Tilings Voronoi Decomposition of a Flat Surface Given a flat surface S construct the Voronoi tiling with respect to the singular points F. Show and tell quadrilateral example on board. cells are points closest to a unique singular point edges are points closest to two singular points vertices are points closest to three or more singular points

19 Voronoi and Delaunay Tilings Delaunay Decomposition of a Flat Surface The Delaunay decomposition is dual to Voronoi decomposition. The vertices are the singular points. Every polygon in a Delaunay tiling is cyclic (by construction). The Delaunay decomposition is a canonical polygon construction for a flat surface. Generically the decomposition is by triangles. Show and tell quadrilateral example on board.

20 Voronoi and Delaunay Tilings Veech Tesselation -1 The Delaunay decomposition of S g will vary in a Teichmueller disc. Locally constant, generically a triangle decomposition. Transitions are generically quadrilateral flips Show and tell quadrilateral flip on the board for quadrilateral flip. Mark all the transitions on a hyperbolic disc. Show picture of tesselation by Bowman from the web.

21 Voronoi and Delaunay Tilings Veech Tesselation - 2 Here is a paraphrasal of a theorem due to Veech. Theorem The transition points in the hyperbolic disc are portions of geodesics. back to picture of tesselation by Bowman from the web.

22 Voronoi and Delaunay Tilings current work Tangent Star Lemma. Analysis of stratification of Teichmueller space of flat surfaces by the Delaunay decomposition. Relation of the Veech group and the automorphism group of the Veech Tessellation.

23 done references and links William Veech A tessellation associated to a quadratic differential. Preliminary report. Abstracts of the AMS M. Troyanov, On the Moduli Space of Singular Euclidean Surfaces, arxiv:math/ v2 Josh Bowman s website bowman/

24 done Any Questions?

25

26

Dynamics on some Z 2 -covers of half-translation surfaces

Dynamics on some Z 2 -covers of half-translation surfaces Dynamics on some Z 2 -covers of half-translation surfaces Chris Johnson Clemson University April 27, 2011 Outline Background The windtree model HLT s recurrence result The folded plane Panov s density

More information

Translation surfaces: saddle connections, triangles and covering constructions

Translation surfaces: saddle connections, triangles and covering constructions Translation surfaces: saddle connections, triangles and covering constructions Chenxi Wu Cornell University July 29, 2016 Translation surfaces A (compact) translation surface is: a compact surface with

More information

Geometry of Flat Surfaces

Geometry of Flat Surfaces Geometry of Flat Surfaces Marcelo iana IMPA - Rio de Janeiro Xi an Jiaotong University 2005 Geometry of Flat Surfaces p.1/43 Some (non-flat) surfaces Sphere (g = 0) Torus (g = 1) Bitorus (g = 2) Geometry

More information

7. The Gauss-Bonnet theorem

7. The Gauss-Bonnet theorem 7. The Gauss-Bonnet theorem 7.1 Hyperbolic polygons In Euclidean geometry, an n-sided polygon is a subset of the Euclidean plane bounded by n straight lines. Thus the edges of a Euclidean polygon are formed

More information

Geometric structures on manifolds

Geometric structures on manifolds CHAPTER 3 Geometric structures on manifolds In this chapter, we give our first examples of hyperbolic manifolds, combining ideas from the previous two chapters. 3.1. Geometric structures 3.1.1. Introductory

More information

274 Curves on Surfaces, Lecture 5

274 Curves on Surfaces, Lecture 5 274 Curves on Surfaces, Lecture 5 Dylan Thurston Notes by Qiaochu Yuan Fall 2012 5 Ideal polygons Previously we discussed three models of the hyperbolic plane: the Poincaré disk, the upper half-plane,

More information

Some irrational polygons have many periodic billiard paths

Some irrational polygons have many periodic billiard paths Some irrational polygons have many periodic billiard paths W. Patrick Hooper Northwestern University Spring Topology and Dynamics Conference Milwaukee, Wisconsin March 5, 8 Lower bounds on growth rates

More information

MULTIPLE SADDLE CONNECTIONS ON FLAT SURFACES AND THE PRINCIPAL BOUNDARY OF THE MODULI SPACES OF QUADRATIC DIFFERENTIALS

MULTIPLE SADDLE CONNECTIONS ON FLAT SURFACES AND THE PRINCIPAL BOUNDARY OF THE MODULI SPACES OF QUADRATIC DIFFERENTIALS MULTIPLE SADDLE CONNECTIONS ON FLAT SURFACES AND THE PRINCIPAL BOUNDARY OF THE MODULI SPACES OF QUADRATIC DIFFERENTIALS HOWARD MASUR AND ANTON ZORICH Abstract. We describe typical degenerations of quadratic

More information

Geometric structures on manifolds

Geometric structures on manifolds CHAPTER 3 Geometric structures on manifolds In this chapter, we give our first examples of hyperbolic manifolds, combining ideas from the previous two chapters. 3.1. Geometric structures 3.1.1. Introductory

More information

Introduction to Rational Billiards II. Talk by John Smillie. August 21, 2007

Introduction to Rational Billiards II. Talk by John Smillie. August 21, 2007 Introduction to Rational Billiards II Talk by John Smillie August 21, 2007 Translation surfaces and their singularities Last time we described the Zemlyakov-Katok construction for billiards on a triangular

More information

6.3 Poincare's Theorem

6.3 Poincare's Theorem Figure 6.5: The second cut. for some g 0. 6.3 Poincare's Theorem Theorem 6.3.1 (Poincare). Let D be a polygon diagram drawn in the hyperbolic plane such that the lengths of its edges and the interior angles

More information

THE MATHEMATICS OF BILLIARDS: SUMMER COURSE

THE MATHEMATICS OF BILLIARDS: SUMMER COURSE THE MATHEMATICS OF BILLIARDS: SUMMER COURSE MOON DUCHIN 1. Introduction to Billiards 1.1. Billiard trajectories and unfolding. The mathematics of billiards might be considered an abstraction of the game

More information

The geometry and combinatorics of closed geodesics on hyperbolic surfaces

The geometry and combinatorics of closed geodesics on hyperbolic surfaces The geometry and combinatorics of closed geodesics on hyperbolic surfaces CUNY Graduate Center September 8th, 2015 Motivating Question: How are the algebraic/combinatoric properties of closed geodesics

More information

Teichmüller Space and Fenchel-Nielsen Coordinates

Teichmüller Space and Fenchel-Nielsen Coordinates Teichmüller Space and Fenchel-Nielsen Coordinates Nathan Lopez November 30, 2015 Abstract Here we give an overview of Teichmüller space and its realization as a smooth manifold through Fenchel- Nielsen

More information

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance.

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. Solid geometry We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. First, note that everything we have proven for the

More information

What would you see if you live on a flat torus? What is the relationship between it and a room with 2 mirrors?

What would you see if you live on a flat torus? What is the relationship between it and a room with 2 mirrors? DAY I Activity I: What is the sum of the angles of a triangle? How can you show it? How about a quadrilateral (a shape with 4 sides)? A pentagon (a shape with 5 sides)? Can you find the sum of their angles

More information

On a Triply Periodic Polyhedral Surface Whose Vertices are Weierstrass Points

On a Triply Periodic Polyhedral Surface Whose Vertices are Weierstrass Points Arnold Math J. DOI 10.1007/s40598-017-0067-9 RESEARCH CONTRIBUTION On a Triply Periodic Polyhedral Surface Whose Vertices are Weierstrass Points Dami Lee 1 Received: 3 May 2016 / Revised: 12 March 2017

More information

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality Planar Graphs In the first half of this book, we consider mostly planar graphs and their geometric representations, mostly in the plane. We start with a survey of basic results on planar graphs. This chapter

More information

Two Connections between Combinatorial and Differential Geometry

Two Connections between Combinatorial and Differential Geometry Two Connections between Combinatorial and Differential Geometry John M. Sullivan Institut für Mathematik, Technische Universität Berlin Berlin Mathematical School DFG Research Group Polyhedral Surfaces

More information

MATERIAL FOR A MASTERCLASS ON HYPERBOLIC GEOMETRY. Timeline. 10 minutes Exercise session: Introducing curved spaces

MATERIAL FOR A MASTERCLASS ON HYPERBOLIC GEOMETRY. Timeline. 10 minutes Exercise session: Introducing curved spaces MATERIAL FOR A MASTERCLASS ON HYPERBOLIC GEOMETRY Timeline 10 minutes Introduction and History 10 minutes Exercise session: Introducing curved spaces 5 minutes Talk: spherical lines and polygons 15 minutes

More information

arxiv: v1 [math.gt] 9 Nov 2018

arxiv: v1 [math.gt] 9 Nov 2018 PLATONIC SOLIDS AND HIGH GENUS COVERS OF LATTICE SURFACES arxiv:1811.0411v1 [math.gt] 9 Nov 2018 JAYADEV S. ATHREYA, DAVID AULICINO, AND W. PATRICK HOOPER, WITH AN APPENDIX BY ANJA RANDECKER Abstract.

More information

1 Introduction and Review

1 Introduction and Review Figure 1: The torus. 1 Introduction and Review 1.1 Group Actions, Orbit Spaces and What Lies in Between Our story begins with the torus, which we will think of initially as the identification space pictured

More information

The Farey Tessellation

The Farey Tessellation The Farey Tessellation Seminar: Geometric Structures on manifolds Mareike Pfeil supervised by Dr. Gye-Seon Lee 15.12.2015 Introduction In this paper, we are going to introduce the Farey tessellation. Since

More information

Pick up some wrapping paper.

Pick up some wrapping paper. Pick up some wrapping paper. What is the area of the following Christmas Tree? There is a nice theorem that allows one to compute the area of any simply-connected (i.e. no holes) grid polygon quickly.

More information

Hyperbolic structures and triangulations

Hyperbolic structures and triangulations CHAPTER Hyperbolic structures and triangulations In chapter 3, we learned that hyperbolic structures lead to developing maps and holonomy, and that the developing map is a covering map if and only if the

More information

Assignment 8; Due Friday, March 10

Assignment 8; Due Friday, March 10 Assignment 8; Due Friday, March 10 The previous two exercise sets covered lots of material. We ll end the course with two short assignments. This one asks you to visualize an important family of three

More information

Hyperbolic Geometry on the Figure-Eight Knot Complement

Hyperbolic Geometry on the Figure-Eight Knot Complement Hyperbolic Geometry on the Figure-Eight Knot Complement Alex Gutierrez Arizona State University December 10, 2012 Hyperbolic Space Hyperbolic Space Hyperbolic space H n is the unique complete simply-connected

More information

Exact Volume of Hyperbolic 2-bridge Links

Exact Volume of Hyperbolic 2-bridge Links Exact Volume of Hyperbolic 2-bridge Links Anastasiia Tsvietkova Louisiana State University Parts of this work are joint with M. Thislethwaite, O. Dasbach Anastasiia Tsvietkova (Louisiana State University

More information

SIMPLICIAL ENERGY AND SIMPLICIAL HARMONIC MAPS

SIMPLICIAL ENERGY AND SIMPLICIAL HARMONIC MAPS SIMPLICIAL ENERGY AND SIMPLICIAL HARMONIC MAPS JOEL HASS AND PETER SCOTT Abstract. We introduce a combinatorial energy for maps of triangulated surfaces with simplicial metrics and analyze the existence

More information

GEOMETRY OF PLANAR SURFACES AND EXCEPTIONAL FILLINGS

GEOMETRY OF PLANAR SURFACES AND EXCEPTIONAL FILLINGS GEOMETRY OF PLANAR SURFACES AND EXCEPTIONAL FILLINGS NEIL R. HOFFMAN AND JESSICA S. PURCELL Abstract. If a hyperbolic 3 manifold admits an exceptional Dehn filling, then the length of the slope of that

More information

Reversible Hyperbolic Triangulations

Reversible Hyperbolic Triangulations Reversible Hyperbolic Triangulations Circle Packing and Random Walk Tom Hutchcroft 1 Joint work with O. Angel 1, A. Nachmias 1 and G. Ray 2 1 University of British Columbia 2 University of Cambridge Probability

More information

pα i + q, where (n, m, p and q depend on i). 6. GROMOV S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD

pα i + q, where (n, m, p and q depend on i). 6. GROMOV S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD 6. GROMOV S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD of π 1 (M 2 )onπ 1 (M 4 ) by conjugation. π 1 (M 4 ) has a trivial center, so in other words the action of π 1 (M 4 ) on itself is effective.

More information

Euler Characteristic

Euler Characteristic Euler Characteristic Rebecca Robinson May 15, 2007 Euler Characteristic Rebecca Robinson 1 PLANAR GRAPHS 1 Planar graphs v = 5, e = 4, f = 1 v e + f = 2 v = 6, e = 7, f = 3 v = 4, e = 6, f = 4 v e + f

More information

arxiv: v1 [math.ds] 31 Aug 2017

arxiv: v1 [math.ds] 31 Aug 2017 Cutting sequences, regular polygons, and the Veech group Diana Davis arxiv:1708.09552v1 [math.ds] 31 Aug 2017 September 1, 2017 Abstract We describe the cutting sequences associated to geodesic flow on

More information

Combinatorial constructions of hyperbolic and Einstein four-manifolds

Combinatorial constructions of hyperbolic and Einstein four-manifolds Combinatorial constructions of hyperbolic and Einstein four-manifolds Bruno Martelli (joint with Alexander Kolpakov) February 28, 2014 Bruno Martelli Constructions of hyperbolic four-manifolds February

More information

Topic: Orientation, Surfaces, and Euler characteristic

Topic: Orientation, Surfaces, and Euler characteristic Topic: Orientation, Surfaces, and Euler characteristic The material in these notes is motivated by Chapter 2 of Cromwell. A source I used for smooth manifolds is do Carmo s Riemannian Geometry. Ideas of

More information

2.4 Quadratic differentials and their horizontal and vertical foliations

2.4 Quadratic differentials and their horizontal and vertical foliations 2 MEASURED FOLIATIONS 37 in P[0, ) C is a closed ball of dimension 6g 6+2p whose interior is P L(T ). The boundary points of this ball are usually described in one of two ways: using measured geodesic

More information

New York Journal of Mathematics. Cutting sequences on translation surfaces

New York Journal of Mathematics. Cutting sequences on translation surfaces New York Journal of Mathematics New York J. Math. 20 (2014) 399 429. Cutting sequences on translation surfaces Diana Davis bstract. We analyze the cutting sequences associated to geodesic flow on a large

More information

GSAC TALK: THE WORD PROBLEM. 1. The 8-8 Tessellation. Consider the following infinite tessellation of the open unit disc. Actually, we want to think

GSAC TALK: THE WORD PROBLEM. 1. The 8-8 Tessellation. Consider the following infinite tessellation of the open unit disc. Actually, we want to think GSAC TALK: THE WORD PROBLEM 1. The 8-8 Tessellation Consider the following infinite tessellation of the open unit disc. Actually, we want to think of the disc as a model for R 2 and we can do that using

More information

Heegaard splittings and virtual fibers

Heegaard splittings and virtual fibers Heegaard splittings and virtual fibers Joseph Maher maher@math.okstate.edu Oklahoma State University May 2008 Theorem: Let M be a closed hyperbolic 3-manifold, with a sequence of finite covers of bounded

More information

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass University of California, Davis, USA http://www.cs.ucdavis.edu/~koehl/ims2017/ What is a shape? A shape is a 2-manifold with a Riemannian

More information

Lower bounds on growth rates of periodic billiard trajectories in some irrational polygons

Lower bounds on growth rates of periodic billiard trajectories in some irrational polygons Lower bounds on growth rates of periodic billiard trajectories in some irrational polygons W. Patrick Hooper July 5, 2007 Given a polygon P, how does the number of (combinatorially distinct) periodic billiard

More information

Model Manifolds for Surface Groups

Model Manifolds for Surface Groups Model Manifolds for Surface Groups Talk by Jeff Brock August 22, 2007 One of the themes of this course has been to emphasize how the combinatorial structure of Teichmüller space can be used to understand

More information

William P. Thurston. The Geometry and Topology of Three-Manifolds

William P. Thurston. The Geometry and Topology of Three-Manifolds William P. Thurston The Geometry and Topology of Three-Manifolds Electronic version 1.1 - March 2002 http://www.msri.org/publications/books/gt3m/ This is an electronic edition of the 1980 notes distributed

More information

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder]

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Preliminaries Recall: Given a smooth function f:r R, the function

More information

Surface Parameterization

Surface Parameterization Surface Parameterization A Tutorial and Survey Michael Floater and Kai Hormann Presented by Afra Zomorodian CS 468 10/19/5 1 Problem 1-1 mapping from domain to surface Original application: Texture mapping

More information

GEOMETRY OF PLANAR SURFACES AND EXCEPTIONAL FILLINGS

GEOMETRY OF PLANAR SURFACES AND EXCEPTIONAL FILLINGS GEOMETRY OF PLANAR SURFACES AND EXCEPTIONAL FILLINGS NEIL R. HOFFMAN AND JESSICA S. PURCELL Abstract. If a hyperbolic 3 manifold admits an exceptional Dehn filling, then the length of the slope of that

More information

Stick Numbers of Links with Two Trivial Components

Stick Numbers of Links with Two Trivial Components Stick Numbers of Links with Two Trivial Components Alexa Mater August, 00 Introduction A knot is an embedding of S in S, and a link is an embedding of one or more copies of S in S. The number of copies

More information

Gauss images of hyperbolic cusps with convex polyhedral boundary

Gauss images of hyperbolic cusps with convex polyhedral boundary Gauss images of hyperbolic cusps with convex polyhedral boundary François Fillastre, Ivan Izmestiev To cite this version: François Fillastre, Ivan Izmestiev. Gauss images of hyperbolic cusps with convex

More information

INTRODUCTION TO 3-MANIFOLDS

INTRODUCTION TO 3-MANIFOLDS INTRODUCTION TO 3-MANIFOLDS NIK AKSAMIT As we know, a topological n-manifold X is a Hausdorff space such that every point contained in it has a neighborhood (is contained in an open set) homeomorphic to

More information

GEOMETRY OF SURFACES. b3 course Nigel Hitchin

GEOMETRY OF SURFACES. b3 course Nigel Hitchin GEOMETRY OF SURFACES b3 course 2004 Nigel Hitchin hitchin@maths.ox.ac.uk 1 1 Introduction This is a course on surfaces. Your mental image of a surface should be something like this: or this However we

More information

Lecture 19: Introduction To Topology

Lecture 19: Introduction To Topology Chris Tralie, Duke University 3/24/2016 Announcements Group Assignment 2 Due Wednesday 3/30 First project milestone Friday 4/8/2016 Welcome to unit 3! Table of Contents The Euler Characteristic Spherical

More information

6.2 Classification of Closed Surfaces

6.2 Classification of Closed Surfaces Table 6.1: A polygon diagram 6.1.2 Second Proof: Compactifying Teichmuller Space 6.2 Classification of Closed Surfaces We saw that each surface has a triangulation. Compact surfaces have finite triangulations.

More information

Tiling of Sphere by Congruent Pentagons

Tiling of Sphere by Congruent Pentagons Tiling of Sphere by Congruent Pentagons Min Yan September 9, 2017 webpage for further reading: http://www.math.ust.hk/ mamyan/research/urop.shtml We consider tilings of the sphere by congruent pentagons.

More information

Topology of Surfaces

Topology of Surfaces EM225 Topology of Surfaces Geometry and Topology In Euclidean geometry, the allowed transformations are the so-called rigid motions which allow no distortion of the plane (or 3-space in 3 dimensional geometry).

More information

1 Appendix to notes 2, on Hyperbolic geometry:

1 Appendix to notes 2, on Hyperbolic geometry: 1230, notes 3 1 Appendix to notes 2, on Hyperbolic geometry: The axioms of hyperbolic geometry are axioms 1-4 of Euclid, plus an alternative to axiom 5: Axiom 5-h: Given a line l and a point p not on l,

More information

Manifold T-spline. Ying He 1 Kexiang Wang 2 Hongyu Wang 2 Xianfeng David Gu 2 Hong Qin 2. Geometric Modeling and Processing 2006

Manifold T-spline. Ying He 1 Kexiang Wang 2 Hongyu Wang 2 Xianfeng David Gu 2 Hong Qin 2. Geometric Modeling and Processing 2006 Ying He 1 Kexiang Wang 2 Hongyu Wang 2 Xianfeng David Gu 2 Hong Qin 2 1 School of Computer Engineering Nanyang Technological University, Singapore 2 Center for Visual Computing (CVC) Stony Brook University,

More information

Math 311. Polyhedra Name: A Candel CSUN Math

Math 311. Polyhedra Name: A Candel CSUN Math 1. A polygon may be described as a finite region of the plane enclosed by a finite number of segments, arranged in such a way that (a) exactly two segments meets at every vertex, and (b) it is possible

More information

CS 177 Homework 1. Julian Panetta. October 22, We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F:

CS 177 Homework 1. Julian Panetta. October 22, We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F: CS 177 Homework 1 Julian Panetta October, 009 1 Euler Characteristic 1.1 Polyhedral Formula We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F: V E + F = 1 First,

More information

Coxeter Decompositions of Hyperbolic Polygons

Coxeter Decompositions of Hyperbolic Polygons Europ. J. Combinatorics (1998) 19, 801 817 Article No. ej980238 Coxeter Decompositions of Hyperbolic Polygons A. A. FELIKSON Let P be a polygon on hyperbolic plane H 2. A Coxeter decomposition of a polygon

More information

Acute Triangulations of Polygons

Acute Triangulations of Polygons Europ. J. Combinatorics (2002) 23, 45 55 doi:10.1006/eujc.2001.0531 Available online at http://www.idealibrary.com on Acute Triangulations of Polygons H. MAEHARA We prove that every n-gon can be triangulated

More information

Generating Functions for Hyperbolic Plane Tessellations

Generating Functions for Hyperbolic Plane Tessellations Generating Functions for Hyperbolic Plane Tessellations by Jiale Xie A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics in

More information

Voronoi Diagrams and Delaunay Triangulations. O Rourke, Chapter 5

Voronoi Diagrams and Delaunay Triangulations. O Rourke, Chapter 5 Voronoi Diagrams and Delaunay Triangulations O Rourke, Chapter 5 Outline Preliminaries Properties and Applications Computing the Delaunay Triangulation Preliminaries Given a function f: R 2 R, the tangent

More information

Hyperbolic Geometry. Thomas Prince. Imperial College London. 21 January 2017

Hyperbolic Geometry. Thomas Prince. Imperial College London. 21 January 2017 Hyperbolic Geometry Thomas Prince Imperial College London 21 January 2017 Thomas Prince (Imperial College London) Hyperbolic Planes 21 January 2017 1 / 31 Introducing Geometry What does the word geometry

More information

Simplicial Hyperbolic Surfaces

Simplicial Hyperbolic Surfaces Simplicial Hyperbolic Surfaces Talk by Ken Bromberg August 21, 2007 1-Lipschitz Surfaces- In this lecture we will discuss geometrically meaningful ways of mapping a surface S into a hyperbolic manifold

More information

GAUSS-BONNET FOR DISCRETE SURFACES

GAUSS-BONNET FOR DISCRETE SURFACES GAUSS-BONNET FOR DISCRETE SURFACES SOHINI UPADHYAY Abstract. Gauss-Bonnet is a deep result in differential geometry that illustrates a fundamental relationship between the curvature of a surface and its

More information

Billiards Periodicity in Polygons

Billiards Periodicity in Polygons Faculty of Graduate Studies Mathematics Program Billiards Periodicity in Polygons Prepared By: Ruba Shahwan Supervised By: Prof. Mohammad Saleh M.Sc.Thesis Birzeit University Palestine 2017 2 i Billiards

More information

ON THE MAXIMAL VOLUME OF THREE-DIMENSIONAL HYPERBOLIC COMPLETE ORTHOSCHEMES

ON THE MAXIMAL VOLUME OF THREE-DIMENSIONAL HYPERBOLIC COMPLETE ORTHOSCHEMES Proceedings of the Institute of Natural Sciences, Nihon University No.49 04 pp.63 77 ON THE MAXIMAL VOLUME OF THREE-DIMENSIONAL HYPERBOLIC COMPLETE ORTHOSCHEMES Kazuhiro ICHIHARA and Akira USHIJIMA Accepted

More information

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research Tiling Three-Dimensional Space with Simplices Shankar Krishnan AT&T Labs - Research What is a Tiling? Partition of an infinite space into pieces having a finite number of distinct shapes usually Euclidean

More information

Genus 2 Belyĭ surfaces with a unicellular uniform dessin

Genus 2 Belyĭ surfaces with a unicellular uniform dessin Genus 2 Belyĭ surfaces with a unicellular uniform dessin State College, PA October 20, 2009 Definition A dessin d enfant is a bipartite graph embedded into an oriented compact surface S and dividing it

More information

The Construction of a Hyperbolic 4-Manifold with a Single Cusp, Following Kolpakov and Martelli. Christopher Abram

The Construction of a Hyperbolic 4-Manifold with a Single Cusp, Following Kolpakov and Martelli. Christopher Abram The Construction of a Hyperbolic 4-Manifold with a Single Cusp, Following Kolpakov and Martelli by Christopher Abram A Thesis Presented in Partial Fulfillment of the Requirement for the Degree Master of

More information

The Convex Hull of a Space Curve. Bernd Sturmfels, UC Berkeley (two papers with Kristian Ranestad)

The Convex Hull of a Space Curve. Bernd Sturmfels, UC Berkeley (two papers with Kristian Ranestad) The Convex Hull of a Space Curve Bernd Sturmfels, UC Berkeley (two papers with Kristian Ranestad) Convex Hull of a Trigonometric Curve { (cos(θ), sin(2θ), cos(3θ) ) R 3 : θ [0, 2π] } = { (x, y, z) R 3

More information

Contents. Preface... VII. Part I Classical Topics Revisited

Contents. Preface... VII. Part I Classical Topics Revisited Contents Preface........................................................ VII Part I Classical Topics Revisited 1 Sphere Packings........................................... 3 1.1 Kissing Numbers of Spheres..............................

More information

In what follows, we will focus on Voronoi diagrams in Euclidean space. Later, we will generalize to other distance spaces.

In what follows, we will focus on Voronoi diagrams in Euclidean space. Later, we will generalize to other distance spaces. Voronoi Diagrams 4 A city builds a set of post offices, and now needs to determine which houses will be served by which office. It would be wasteful for a postman to go out of their way to make a delivery

More information

Networks as Manifolds

Networks as Manifolds Networks as Manifolds Isabella Thiesen Freie Universitaet Berlin Abstract The aim of this project is to identify the manifolds corresponding to networks that are generated by simple substitution rules

More information

Discrete geometry. Lecture 2. Alexander & Michael Bronstein tosca.cs.technion.ac.il/book

Discrete geometry. Lecture 2. Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Discrete geometry Lecture 2 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 The world is continuous, but the mind is discrete

More information

Hyperbolic Structures from Ideal Triangulations

Hyperbolic Structures from Ideal Triangulations Hyperbolic Structures from Ideal Triangulations Craig Hodgson University of Melbourne Geometric structures on 3-manifolds Thurston s idea: We would like to find geometric structures (or metrics) on 3-manifolds

More information

Combinatorial Maps. University of Ljubljana and University of Primorska and Worcester Polytechnic Institute. Maps. Home Page. Title Page.

Combinatorial Maps. University of Ljubljana and University of Primorska and Worcester Polytechnic Institute. Maps. Home Page. Title Page. Combinatorial Maps Tomaz Pisanski Brigitte Servatius University of Ljubljana and University of Primorska and Worcester Polytechnic Institute Page 1 of 30 1. Maps Page 2 of 30 1.1. Flags. Given a connected

More information

Voronoi diagram and Delaunay triangulation

Voronoi diagram and Delaunay triangulation Voronoi diagram and Delaunay triangulation Ioannis Emiris & Vissarion Fisikopoulos Dept. of Informatics & Telecommunications, University of Athens Computational Geometry, spring 2015 Outline 1 Voronoi

More information

Scope and Sequence. Number and Operations. Scope and Sequence. Level 1 Level 2 Level 3. Fractions. Percents

Scope and Sequence. Number and Operations. Scope and Sequence. Level 1 Level 2 Level 3. Fractions. Percents Scope and Sequence Number and Fractions Comparing and ordering fractions with fractions Connecting fractions to percents Connecting fractions to decimals Connecting fractions to ratios Finding common denominators

More information

Other Voronoi/Delaunay Structures

Other Voronoi/Delaunay Structures Other Voronoi/Delaunay Structures Overview Alpha hulls (a subset of Delaunay graph) Extension of Voronoi Diagrams Convex Hull What is it good for? The bounding region of a point set Not so good for describing

More information

Geometry Vocabulary. acute angle-an angle measuring less than 90 degrees

Geometry Vocabulary. acute angle-an angle measuring less than 90 degrees Geometry Vocabulary acute angle-an angle measuring less than 90 degrees angle-the turn or bend between two intersecting lines, line segments, rays, or planes angle bisector-an angle bisector is a ray that

More information

ALGEBRAIC CURVES OVER R

ALGEBRAIC CURVES OVER R ALGEBRAIC CURVES OVER R KIRSTEN WICKELGREN 1. ALGEBRAIC CURVES OVER R Graphing y = x 2 gives the familiar picture of the parabola, and it is reasonable to call this graph a curve. More generally, we could

More information

DISCRETE DIFFERENTIAL GEOMETRY

DISCRETE DIFFERENTIAL GEOMETRY AMS SHORT COURSE DISCRETE DIFFERENTIAL GEOMETRY Joint Mathematics Meeting San Diego, CA January 2018 DISCRETE CONFORMAL GEOMETRY AMS SHORT COURSE DISCRETE DIFFERENTIAL GEOMETRY Joint Mathematics Meeting

More information

Bands: A Physical Data Structure to Represent Both Orientable and Non-Orientable 2-Manifold Meshes

Bands: A Physical Data Structure to Represent Both Orientable and Non-Orientable 2-Manifold Meshes Bands: A Physical Data Structure to Represent Both Orientable and Non-Orientable 2-Manifold Meshes Abstract This paper presents a physical data structure to represent both orientable and non-orientable

More information

Week 7 Convex Hulls in 3D

Week 7 Convex Hulls in 3D 1 Week 7 Convex Hulls in 3D 2 Polyhedra A polyhedron is the natural generalization of a 2D polygon to 3D 3 Closed Polyhedral Surface A closed polyhedral surface is a finite set of interior disjoint polygons

More information

Planar Graphs and Surfaces. Graphs 2 1/58

Planar Graphs and Surfaces. Graphs 2 1/58 Planar Graphs and Surfaces Graphs 2 1/58 Last time we discussed the Four Color Theorem, which says that any map can be colored with at most 4 colors and not have two regions that share a border having

More information

Fano varieties and polytopes

Fano varieties and polytopes Fano varieties and polytopes Olivier DEBARRE The Fano Conference Torino, September 29 October 5, 2002 Smooth Fano varieties A smooth Fano variety (over a fixed algebraically closed field k) is a smooth

More information

Geometric structures on 2-orbifolds

Geometric structures on 2-orbifolds Geometric structures on 2-orbifolds Section 1: Manifolds and differentiable structures S. Choi Department of Mathematical Science KAIST, Daejeon, South Korea 2010 Fall, Lectures at KAIST S. Choi (KAIST)

More information

Geometrically maximal knots

Geometrically maximal knots Geometrically maximal knots Abhijit Champanerkar Department of Mathematics, College of Staten Island & The Graduate Center, CUNY Discussion Meeting on Knot theory and its Applications IISER Mohali, India

More information

TOURNAMENT OF THE TOWNS, Glossary

TOURNAMENT OF THE TOWNS, Glossary TOURNAMENT OF THE TOWNS, 2003 2004 Glossary Absolute value The size of a number with its + or sign removed. The absolute value of 3.2 is 3.2, the absolute value of +4.6 is 4.6. We write this: 3.2 = 3.2

More information

Differential Geometry: Circle Packings. [A Circle Packing Algorithm, Collins and Stephenson] [CirclePack, Ken Stephenson]

Differential Geometry: Circle Packings. [A Circle Packing Algorithm, Collins and Stephenson] [CirclePack, Ken Stephenson] Differential Geometry: Circle Packings [A Circle Packing Algorithm, Collins and Stephenson] [CirclePack, Ken Stephenson] Conformal Maps Recall: Given a domain Ω R 2, the map F:Ω R 2 is conformal if it

More information

Aspects of Geometry. Finite models of the projective plane and coordinates

Aspects of Geometry. Finite models of the projective plane and coordinates Review Sheet There will be an exam on Thursday, February 14. The exam will cover topics up through material from projective geometry through Day 3 of the DIY Hyperbolic geometry packet. Below are some

More information

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College Topological Data Analysis - I Afra Zomorodian Department of Computer Science Dartmouth College September 3, 2007 1 Acquisition Vision: Images (2D) GIS: Terrains (3D) Graphics: Surfaces (3D) Medicine: MRI

More information

Question. Why is the third shape not convex?

Question. Why is the third shape not convex? 1. CONVEX POLYGONS Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. Convex 6 gon Another convex 6 gon Not convex Question. Why is the third

More information

Groups acting on hyperbolic buildings

Groups acting on hyperbolic buildings Groups acting on hyperbolic buildings Aalto University, Analysis and Geometry Seminar Riikka Kangaslampi May 2nd, 2012 Abstract We construct and classify all groups, given by triangular presentations associated

More information

5. THE ISOPERIMETRIC PROBLEM

5. THE ISOPERIMETRIC PROBLEM Math 501 - Differential Geometry Herman Gluck March 1, 2012 5. THE ISOPERIMETRIC PROBLEM Theorem. Let C be a simple closed curve in the plane with length L and bounding a region of area A. Then L 2 4 A,

More information

An Introduction to Belyi Surfaces

An Introduction to Belyi Surfaces An Introduction to Belyi Surfaces Matthew Stevenson December 16, 2013 We outline the basic theory of Belyi surfaces, up to Belyi s theorem (1979, [1]), which characterizes these spaces as precisely those

More information

Mirrors of reflections of regular maps

Mirrors of reflections of regular maps ISSN 1855-3966 (printed edn), ISSN 1855-3974 (electronic edn) ARS MATHEMATICA CONTEMPORANEA 15 (018) 347 354 https://doiorg/106493/1855-3974145911d (Also available at http://amc-journaleu) Mirrors of reflections

More information

168 Butterflies on a Polyhedron of Genus 3

168 Butterflies on a Polyhedron of Genus 3 168 Butterflies on a Polyhedron of Genus 3 Douglas Dunham Department of Computer Science University of Minnesota, Duluth Duluth, MN 55812-2496, USA E-mail: ddunham@d.umn.edu Web Site: http://www.d.umn.edu/

More information