Outline. 1 Introduction. 2 The problem of assigning PCUs in GERAN. 3 Other hierarchical structuring problems in cellular networks.

Size: px
Start display at page:

Download "Outline. 1 Introduction. 2 The problem of assigning PCUs in GERAN. 3 Other hierarchical structuring problems in cellular networks."

Transcription

1 Optimisation of cellular network structure by graph partitioning techniques Matías Toril, Volker Wille () (2) () Communications Engineering Dept., University of Málaga, Spain (2) Performance Services, Nokia Siemens Networks, Huntingdon, UK 24/0/2005 Rome, 29 October 2007 (COST 293 Discussion Workshop)

2 Outline duction 2 The problem of assigning s in GERAN 3 hierarchical structuring problems in cellular networks 4 usions

3 duction duction The network management problem The network structuring problem 2 The problem of assigning s in GERAN 3 clustering problems in cellular networks 4 usions HO Sum

4 The network management problem Services CS-Voice CS- VoIP PTT Gaming Web Streaming Voice Features DR HR POC DTX FH RAN parameters P-GSM KPIs E-GSM RATs UTRAN WIFI Operators Subscribers

5 The network structuring problem GERAN architecture BSC LA BSC LA Site MSC/SGSN LA LA BSC BSC BSC Site Site Site Site Site Site

6 The assignment of s in GERAN duction 2 The problem of assigning s in GERAN Problem formulation Solution method Analysis over measurement-based network model 3 clustering problems in cellular networks 4 usions

7 Problem formulation The cell re-selection process in GERAN Purpose Algorithm Problem Solution Terminals in idle/packet-transfer mode camp on the strongest cell C = RLA_C RxLevAccessMin i i i C2 i= Ci - CellReselectOffseti CRS delay severely affects performance of RT packet-data services ) Network features (P-BCCH, Network Assisted Cell Change, Packet-data HO) 2) Optimisation of the assignment base stations to s in each BSC a) Connect adjacent cells to the same b) Keep the load of all s within given limits BSC

8 Problem formulation The assignment of s as a graph partitioning problem Classical model 2 ω ω 5 Cell 5 γ 5 Cell γ 2 ω 2 Cell 2 γ 4 Network model γ 45 ω 4 Cell 4 γ 34 ω 3 Cell 3 γ 23 (CPAP) Minimise Optimisation model subject to

9 Solution method The assignment of s as a graph partitioning problem Adaptation to the cellular environment ) Spatially consistent solutions Connectedness/site constraints [no fragmentation/no overlap] 2) Minimum number of network changes Re-labelling subdomains [maximum service availability] Disconnected solution Cell resolution Connected solution Site resolution

10 Formulación del problema The assignment of s as a graph partitioning problem Minimise subject to # users changing capacity Load imbalance between S V, V 2,,V k i, j = :N sites are connected Connectivity Site resolution Spatial consistency

11 Solution method Classical graph partitioning methods a) Exact methods Pure brute-force [T=O(k V )] Goldschmidt and Hochbaum [T=O( V k )] Branch-and-cut algorithm over ILP model [T=O(2 V + E )] b) Heuristic methods Geometric methods [T=O( V ) or O( E )] Structural methods [T=O( V ) or O( E )] Geometrical method Structural method

12 Solution method a) Exact method General Integer Linear Programming Model (GM)

13 Solution method a) Exact method Compact Integer Linear Programming Model (CM)

14 Solution method a) Exact method Compact Integer Linear Programming Model with Less Symmetry (CMS)

15 Solution method a) Exact method Classical method Branch-and-Cut = Branch-and-Bound + Cutting Planes planes ( IP) Min f ( X) ( IP) Min s.t. gf ( j( X) 0 s.t. gj X) 0 cn ( X) 0 xi i { 0, 0, } Bounding ( LP LP ) Min Min f f ( ( X ) ) s.t. s.t. g j j ( X ) 0 c ( X) 0 n Branching ( IP ) Min f ( X ) s.t. g ( X ) 0 xc j n i = ( X) 0 0 x = x i { 0 } { } 0, i 0, i ( IP ) Min f ( X ) s.t. Pruning g j ( X ) 0 cx ( = X) 0 n x = x i i { } { } 0, i 0, i ( LP ) Min f f( ( X) ) s.t. gg ( ( X) ) 0 0 j j xc n= ( X) 0 0 Bounding x = 0 Branching ( IP) Min f ( X) s.t. g ( X) 0 c ( X) 0 n x = 0 j { } x 0, i i ( IP) Min f ( X) s.t. g ( X) 0 c ( X) 0 n x = 0 j { } x 0, i i

16 Solution method a) Exact method Refinements to classical method ) Initialization with a heuristic solution (i.e., multi-level refinement) 2) Use of exact method over a set of problem instances with loose runtime constraints Runtime sharing strategies among problem instances a) Size-based b) Edge-cut based

17 Solution method b) Heuristic method Classical method Multi-Level Clustered Refinement Adaptive (ML) Multi-Start (ML-CAMS) G (0) G (0) G () G () Sorted Heavy Edge Coarsening Matching G (2) G (2) Kernighan-Lin Uncoarsening and refinement G (m) Clustered Initial Adaptive partitioning Multi-Start

18 Solution method b) Heuristic method Classical method Multi-Level Clustered Adaptive Multi-Start (ML-CAMS) Stage 2) Initial partitioning by Clustered Adaptive Multi-Start (CAMS) Greedy Graph Growing Partitioning Random Greedy Graph Growing Partitioning Clustered Adaptive Multi-Start Edge-cut Distance from global optimum Minimum value Minimum value Optimal value Optimal value Edge-cut Edge-cut Edge-cut Floyd-Warshal Greedy Graph Growing Partitioning Nbr. of attempts Nbr. of attempts Single attempt Naive Multi-Start Adaptive Multi-Start

19 Solution method b) Heuristic method Classical method Multi-Level Clustered Adaptive Multi-Start (ML-CAMS) Stage 2) Initial partitioning by Clustered Adaptive Multi-Start (CAMS) Solution set: Solution set: Solution set: [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] Matching {{,5},2,3,4,6,7,8,{9,0,3},,2,4,5,6} Matching {{,5},2,3,4,6,7,8,{9,0,,3},,2,4,5,6} Matching {{,5},2,3,4,6,7,8,{9,0,,2,3,6},,{4,5}} Step Step Step Step N

20 Solution method b) Heuristic method Adaptation to the cellular environment ) Control of weight imbalance between subdomains 2) Enforcement of connected subdomains Connected FM refinement 3) Control of the granularity of the assignment Graphs of site resolution 4) Reduction of the number of changes in the network Re-labelling of subdomains Sorted Heavy Edge Matching -level graph Site-level graph # articulation vertices = 4 Site Matching Cell-level graph

21 Analysis over measurement-based network model Analysis setup Purpose Evaluate more sophisticated methods in a wider set of real graphs Scenario 6 BSCs (6 CPAP instances) Methodology Graph partitioning analysis based on HO stats in NMS ) Build problem instances HO statistics [γ ij ], GPRS config. (nºs/bsc, #GPRS TSLs/cell) [k, ω i ] Operator s constraints [B aw =256, B rw =2] 2) Evaluate CPAP optimisation surface by R-GGGP in isolated instances Build a distributional model for the local minima values Prove the correlation between the best local minima 3) Compare proposed and classical methods over the entire instance set Branch-and-cut in CPLEX, heuristic methods built from scratch Criteria Total edge-cut ( Total nbr. of inter-s CRs) Avg. weight imbalance ratio ( Avg. load imbalance ratio between s) Total execution time

22 Analysis over measurement-based network model Analysis setup -level Site-level δ = V E k E V ( V -) 2 max( E( i) ) max( E( i) ) min( E( i) ) max( ωi ) min( ωi ) V k Example of BSC Graph

23 Analysis over measurement-based network model Analysis results ) Optimisation surface Nbr. of attempts Nbr. of samples Edge-cut Edge-cut E E+05.3E+06 Edge-cut 4.0E Avg. Avg. distance to other local local minima minima 3.0E-06 Gumbel distribution a= b= Prob Prob 2.0E-06.0E-06 Edge-cut 0.0E E E+05.0E+06.5E E+06 Edge-cut Edge-cut Distance from global optimum

24 Analysis over measurement-based network model Analysis results 2) Exact methods 34 IO BC-SS BC-ES R-GGGP (non-conn.) Edge-cut ratio [%] Runtime [h]

25 Analysis over measurement-based network model Analysis results 3) Heuristic methods a) Edgecut-runtime tradeoff Normalised Normalized edge-cut, Qρ edgecut RO RO FW-GGGP R-GGGP CAMS ML ML ML-CAMS Normalised Normalized edge-cut, edgecut Qρ 2.5 R-GGGP CAMS ML-CAMS Normalised runtime, T ρ Normalised runtime, T ρ

26 Analysis over measurement-based network model Analysis results 3) Heuristic methods b) Influence of optimisation constraints Network performance 3.50E+07 Total edge-cut 3.00E E E+07.50E+07.00E+07 ML ML-CAMS R-GGGP 5.00E E Max. Max. weight weight imbalance imbalance ratio, ratiob rw Weight imbalance ratio

27 Analysis over measurement-based network model Analysis results 3) Heuristic methods b) Influence of optimisation constraints Network performance 2.50E+07 Total edge-cut 2.00E+07.50E+07.00E E E+00 Nbr. of disconnected subdomains Connected Non-connected ML ML-CAMS R-GGGP BC-ES Connected Non-connected Total edge-cut 3.50E E E E+07.50E+07.00E E E+00 Cell Site ML-CAMS R-GGGP 0 ML ML-CAMS R-GGGP BC-ES Connectedness Site granularity

28 Analysis over measurement-based network model Analysis results 3) Heuristic methods b) Influence of optimisation constraints Ease of management Initial operator ML-CAMS with non-connected refinement and cell resolution ML-CAMS with connected refinement and cell resolution ML-CAMS with connected refinement and site resolution

29 clustering problems in cellular networks duction 2 The problem of assigning s in GERAN 3 clustering problems in cellular networks Site re-parenting problem Location area planning problem 4 usions

30 Site re-parenting problem Problem formulation BSC MSC/SGSN LA LA BSC BSC BSC BSC Site Site Site Site Site Site

31 Site re-parenting problem Problem formulation Minimise # users changing BSC subject to BSC capacity Load imbalance between BSCs V, V 2,,V k i, j = :N sites are connected Connectivity Site resolution Spatial consistency d(π*, Π 0 ) B ch # site re-allocations

32 Site re-parenting problem Problem formulation ILP model

33 Location areas planning problem Problem formulation BSC LA LA MSC/SGSN LA BSC LA BSC BSC BSC Site Site Site Site Site Site

34 LA planning problem Problem formulation Minimise subject to # users changing LA LA paging capacity k {,, V }

35 LA planning problem Problem formulation ILP model k =,, V

36 Instance size comparison Instance statistics planning Site re-parenting LA planning V E k # ILP var # ILP const # ILP non-zeros Runtime [s] 56 [Cplex0.] [GLPK] - [GLPK] [SCIP/Cplex] [LPSOLVE*] - [LPSOLVE] - [GLPK]

37 usiones duction 2 Optimisation of the assignment of s in GERAN 3 clustering problems in cellular networks 4 usions Main results Open issues

38 Main results Hierarchical network structuring of a cellular network gives rise to different clustering problems that can be solved by graph partitioning techniques Resulting graphs are smaller but more irregular and dense than in other applications domains, which suggests the use of more sophisticated methods Most graph partitioning packages in the public domain do not consider peculiarities of the cellular environment Even the simplest heuristic achieves a significant gain in network performance and operational efficiency due to the current manual approach followed by operators When formulated as an ILP model, state-of-the-art solvers find difficulties to prove optimality in some instances of the planning, site re-parenting and LA planning problems Sum

39 Open issues Formulation Include connectedness constraint in ILP model Find new constraints to tighten the ILP model Solution technique Find best LP/ILP solver in the public domain Find best default settings for standard solvers (or systematic methodology) Dual-Primal/Primal-Dual, Ceiling/Floor, st /PseudoNonInt/Pseudocost, basis crash, Estimate time to prove optimality (or find a solution of reasonable quality) Design solution method from scratch HO Branch-and-price, branch-and-cut based on cover inequalities, rounding heuristic Dissemination of results Sum Find journals in computer science/applied OR Find network operator/partners

40 Optimisation of cellular network structure by graph partitioning techniques Matías Toril (), Volker Wille(2) () Communications Engineering Dpt., University of Málaga, Spain (2) Performance Services, Nokia Siemens Networks, Huntingdon, UK 24/0/2005 Rome, 29 October 2007 (COST 293 Discussion Workshop)

Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering

Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering George Karypis and Vipin Kumar Brian Shi CSci 8314 03/09/2017 Outline Introduction Graph Partitioning Problem Multilevel

More information

The ILP approach to the layered graph drawing. Ago Kuusik

The ILP approach to the layered graph drawing. Ago Kuusik The ILP approach to the layered graph drawing Ago Kuusik Veskisilla Teooriapäevad 1-3.10.2004 1 Outline Introduction Hierarchical drawing & Sugiyama algorithm Linear Programming (LP) and Integer Linear

More information

Multilevel Graph Partitioning

Multilevel Graph Partitioning Multilevel Graph Partitioning George Karypis and Vipin Kumar Adapted from Jmes Demmel s slide (UC-Berkely 2009) and Wasim Mohiuddin (2011) Cover image from: Wang, Wanyi, et al. "Polygonal Clustering Analysis

More information

Outline. Modeling. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Models Lecture 5 Mixed Integer Programming Models and Exercises

Outline. Modeling. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Models Lecture 5 Mixed Integer Programming Models and Exercises Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING 1. Lecture 5 Mixed Integer Programming and Exercises Marco Chiarandini 2. 3. 2 Outline Modeling 1. Min cost flow Shortest path 2. Max flow Assignment

More information

Graph Partitioning for High-Performance Scientific Simulations. Advanced Topics Spring 2008 Prof. Robert van Engelen

Graph Partitioning for High-Performance Scientific Simulations. Advanced Topics Spring 2008 Prof. Robert van Engelen Graph Partitioning for High-Performance Scientific Simulations Advanced Topics Spring 2008 Prof. Robert van Engelen Overview Challenges for irregular meshes Modeling mesh-based computations as graphs Static

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms Ann-Brith Strömberg 2018 04 24 Lecture 9 Linear and integer optimization with applications

More information

11. APPROXIMATION ALGORITHMS

11. APPROXIMATION ALGORITHMS 11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: vertex cover LP rounding: vertex cover generalized load balancing knapsack problem Lecture slides by Kevin Wayne Copyright 2005

More information

Randomized rounding of semidefinite programs and primal-dual method for integer linear programming. Reza Moosavi Dr. Saeedeh Parsaeefard Dec.

Randomized rounding of semidefinite programs and primal-dual method for integer linear programming. Reza Moosavi Dr. Saeedeh Parsaeefard Dec. Randomized rounding of semidefinite programs and primal-dual method for integer linear programming Dr. Saeedeh Parsaeefard 1 2 3 4 Semidefinite Programming () 1 Integer Programming integer programming

More information

Fundamentals of Integer Programming

Fundamentals of Integer Programming Fundamentals of Integer Programming Di Yuan Department of Information Technology, Uppsala University January 2018 Outline Definition of integer programming Formulating some classical problems with integer

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 29 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/7/2016 Approximation

More information

Notes for Lecture 24

Notes for Lecture 24 U.C. Berkeley CS170: Intro to CS Theory Handout N24 Professor Luca Trevisan December 4, 2001 Notes for Lecture 24 1 Some NP-complete Numerical Problems 1.1 Subset Sum The Subset Sum problem is defined

More information

The Size Robust Multiple Knapsack Problem

The Size Robust Multiple Knapsack Problem MASTER THESIS ICA-3251535 The Size Robust Multiple Knapsack Problem Branch and Price for the Separate and Combined Recovery Decomposition Model Author: D.D. Tönissen, Supervisors: dr. ir. J.M. van den

More information

xavier[dot]mila[at]upf[dot]edu Universitat Pompeu Fabra (UPF)

xavier[dot]mila[at]upf[dot]edu Universitat Pompeu Fabra (UPF) Evaluation of Signaling Loads in 3GPP Networks Journal Club 2007 08 Session 4 Xavier Milà xavier[dot]mila[at]upf[dot]edu April, 4 th 2008 Universitat Pompeu Fabra (UPF) Article Reference Title: Evaluation

More information

Algorithms for Integer Programming

Algorithms for Integer Programming Algorithms for Integer Programming Laura Galli November 9, 2016 Unlike linear programming problems, integer programming problems are very difficult to solve. In fact, no efficient general algorithm is

More information

February 19, Integer programming. Outline. Problem formulation. Branch-andbound

February 19, Integer programming. Outline. Problem formulation. Branch-andbound Olga Galinina olga.galinina@tut.fi ELT-53656 Network Analysis and Dimensioning II Department of Electronics and Communications Engineering Tampere University of Technology, Tampere, Finland February 19,

More information

Toward the joint design of electronic and optical layer protection

Toward the joint design of electronic and optical layer protection Toward the joint design of electronic and optical layer protection Massachusetts Institute of Technology Slide 1 Slide 2 CHALLENGES: - SEAMLESS CONNECTIVITY - MULTI-MEDIA (FIBER,SATCOM,WIRELESS) - HETEROGENEOUS

More information

Double Patterning Layout Decomposition for Simultaneous Conflict and Stitch Minimization

Double Patterning Layout Decomposition for Simultaneous Conflict and Stitch Minimization Double Patterning Layout Decomposition for Simultaneous Conflict and Stitch Minimization Kun Yuan, Jae-Seo Yang, David Z. Pan Dept. of Electrical and Computer Engineering The University of Texas at Austin

More information

The MIP-Solving-Framework SCIP

The MIP-Solving-Framework SCIP The MIP-Solving-Framework SCIP Timo Berthold Zuse Institut Berlin DFG Research Center MATHEON Mathematics for key technologies Berlin, 23.05.2007 What Is A MIP? Definition MIP The optimization problem

More information

Lagrangean Methods bounding through penalty adjustment

Lagrangean Methods bounding through penalty adjustment Lagrangean Methods bounding through penalty adjustment thst@man.dtu.dk DTU-Management Technical University of Denmark 1 Outline Brief introduction How to perform Lagrangean relaxation Subgradient techniques

More information

Problem Definition. Clustering nonlinearly separable data:

Problem Definition. Clustering nonlinearly separable data: Outlines Weighted Graph Cuts without Eigenvectors: A Multilevel Approach (PAMI 2007) User-Guided Large Attributed Graph Clustering with Multiple Sparse Annotations (PAKDD 2016) Problem Definition Clustering

More information

Mapping pipeline skeletons onto heterogeneous platforms

Mapping pipeline skeletons onto heterogeneous platforms Mapping pipeline skeletons onto heterogeneous platforms Anne Benoit and Yves Robert GRAAL team, LIP École Normale Supérieure de Lyon January 2007 Yves.Robert@ens-lyon.fr January 2007 Mapping pipeline skeletons

More information

LECTURE NOTES Non-Linear Programming

LECTURE NOTES Non-Linear Programming CEE 6110 David Rosenberg p. 1 Learning Objectives LECTURE NOTES Non-Linear Programming 1. Write out the non-linear model formulation 2. Describe the difficulties of solving a non-linear programming model

More information

PuLP: Scalable Multi-Objective Multi-Constraint Partitioning for Small-World Networks

PuLP: Scalable Multi-Objective Multi-Constraint Partitioning for Small-World Networks PuLP: Scalable Multi-Objective Multi-Constraint Partitioning for Small-World Networks George M. Slota 1,2 Kamesh Madduri 2 Sivasankaran Rajamanickam 1 1 Sandia National Laboratories, 2 The Pennsylvania

More information

Hardware/Software Codesign

Hardware/Software Codesign Hardware/Software Codesign 3. Partitioning Marco Platzner Lothar Thiele by the authors 1 Overview A Model for System Synthesis The Partitioning Problem General Partitioning Methods HW/SW-Partitioning Methods

More information

Standard Optimization Techniques

Standard Optimization Techniques 12 Standard Optimization Techniques Peter Marwedel TU Dortmund, Informatik 12 Germany Springer, 2010 2012 年 12 月 19 日 These slides use Microsoft clip arts. Microsoft copyright restrictions apply. Structure

More information

CS 580: Algorithm Design and Analysis. Jeremiah Blocki Purdue University Spring 2018

CS 580: Algorithm Design and Analysis. Jeremiah Blocki Purdue University Spring 2018 CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 2018 Chapter 11 Approximation Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved.

More information

Penalized Graph Partitioning for Static and Dynamic Load Balancing

Penalized Graph Partitioning for Static and Dynamic Load Balancing Penalized Graph Partitioning for Static and Dynamic Load Balancing Tim Kiefer, Dirk Habich, Wolfgang Lehner Euro-Par 06, Grenoble, France, 06-08-5 Task Allocation Challenge Application (Workload) = Set

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Given an NP-hard problem, what should be done? Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one of three desired features. Solve problem to optimality.

More information

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs Introduction to Mathematical Programming IE496 Final Review Dr. Ted Ralphs IE496 Final Review 1 Course Wrap-up: Chapter 2 In the introduction, we discussed the general framework of mathematical modeling

More information

Cellular Communication

Cellular Communication Cellular Communication Cellular Communication Cellular communication is designed to provide communications between two moving units, or between one mobile unit and one stationary phone or land unit (PSTN).

More information

Integer Programming Theory

Integer Programming Theory Integer Programming Theory Laura Galli October 24, 2016 In the following we assume all functions are linear, hence we often drop the term linear. In discrete optimization, we seek to find a solution x

More information

RNV Vehicular Communications Part II Radio Networks for Vehicular Communications Roberto Verdone

RNV Vehicular Communications Part II Radio Networks for Vehicular Communications Roberto Verdone RNV Vehicular Communications Part II Radio Networks for Vehicular Communications Roberto Verdone Outline 1. Network Architectures: Evolution From GSM towards 5G 2. Mobility Management 3. 2G (GSM): Numerology

More information

Hierarchical Traffic Grooming in WDM Networks

Hierarchical Traffic Grooming in WDM Networks Hierarchical Traffic Grooming in WDM Networks George N. Rouskas Department of Computer Science North Carolina State University Joint work with: Rudra Dutta (NCSU), Bensong Chen (Google Labs), Huang Shu

More information

11. APPROXIMATION ALGORITHMS

11. APPROXIMATION ALGORITHMS Coping with NP-completeness 11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: weighted vertex cover LP rounding: weighted vertex cover generalized load balancing knapsack problem

More information

lpsymphony - Integer Linear Programming in R

lpsymphony - Integer Linear Programming in R lpsymphony - Integer Linear Programming in R Vladislav Kim October 30, 2017 Contents 1 Introduction 2 2 lpsymphony: Quick Start 2 3 Integer Linear Programming 5 31 Equivalent and Dual Formulations 5 32

More information

The Gurobi Solver V1.0

The Gurobi Solver V1.0 The Gurobi Solver V1.0 Robert E. Bixby Gurobi Optimization & Rice University Ed Rothberg, Zonghao Gu Gurobi Optimization 1 1 Oct 09 Overview Background Rethinking the MIP solver Introduction Tree of Trees

More information

An Integrated Design Algorithm for Detailed Layouts Based on the Contour Distance

An Integrated Design Algorithm for Detailed Layouts Based on the Contour Distance An Integrated Design Algorithm for Detailed Layouts Based on the Contour Distance Jae-Gon Kim and Marc Goetschalckx School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta,

More information

Discrete Optimization. Lecture Notes 2

Discrete Optimization. Lecture Notes 2 Discrete Optimization. Lecture Notes 2 Disjunctive Constraints Defining variables and formulating linear constraints can be straightforward or more sophisticated, depending on the problem structure. The

More information

Last topic: Summary; Heuristics and Approximation Algorithms Topics we studied so far:

Last topic: Summary; Heuristics and Approximation Algorithms Topics we studied so far: Last topic: Summary; Heuristics and Approximation Algorithms Topics we studied so far: I Strength of formulations; improving formulations by adding valid inequalities I Relaxations and dual problems; obtaining

More information

Combinatorial Auctions: A Survey by de Vries and Vohra

Combinatorial Auctions: A Survey by de Vries and Vohra Combinatorial Auctions: A Survey by de Vries and Vohra Ashwin Ganesan EE228, Fall 2003 September 30, 2003 1 Combinatorial Auctions Problem N is the set of bidders, M is the set of objects b j (S) is the

More information

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748 COT 6936: Topics in Algorithms! Giri Narasimhan ECS 254A / EC 2443; Phone: x3748 giri@cs.fiu.edu http://www.cs.fiu.edu/~giri/teach/cot6936_s12.html https://moodle.cis.fiu.edu/v2.1/course/view.php?id=174

More information

ME 391Q Network Flow Programming

ME 391Q Network Flow Programming ME 9Q Network Flow Programming Final Exam, Summer 00. ( Points) The figure below shows an undirected network. The parameters on the edges are the edge lengths. Find the shortest path tree using Dijkstra

More information

Construction of Minimum-Weight Spanners Mikkel Sigurd Martin Zachariasen

Construction of Minimum-Weight Spanners Mikkel Sigurd Martin Zachariasen Construction of Minimum-Weight Spanners Mikkel Sigurd Martin Zachariasen University of Copenhagen Outline Motivation and Background Minimum-Weight Spanner Problem Greedy Spanner Algorithm Exact Algorithm:

More information

Column Generation Based Primal Heuristics

Column Generation Based Primal Heuristics Column Generation Based Primal Heuristics C. Joncour, S. Michel, R. Sadykov, D. Sverdlov, F. Vanderbeck University Bordeaux 1 & INRIA team RealOpt Outline 1 Context Generic Primal Heuristics The Branch-and-Price

More information

Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem

Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem L. De Giovanni M. Di Summa The Traveling Salesman Problem (TSP) is an optimization problem on a directed

More information

Heuristics in MILP. Group 1 D. Assouline, N. Molyneaux, B. Morén. Supervisors: Michel Bierlaire, Andrea Lodi. Zinal 2017 Winter School

Heuristics in MILP. Group 1 D. Assouline, N. Molyneaux, B. Morén. Supervisors: Michel Bierlaire, Andrea Lodi. Zinal 2017 Winter School Heuristics in MILP Group 1 D. Assouline, N. Molyneaux, B. Morén Supervisors: Michel Bierlaire, Andrea Lodi Zinal 2017 Winter School 0 / 23 Primal heuristics Original paper: Fischetti, M. and Lodi, A. (2011).

More information

StochDynamicProgramming Documentation

StochDynamicProgramming Documentation StochDynamicProgramming Documentation Release 0.1 leclerev May 04, 2016 Contents 1 Contents: 3 1.1 Installation guide............................................. 3 1.2 Step-by-step example..........................................

More information

COMP9334: Capacity Planning of Computer Systems and Networks

COMP9334: Capacity Planning of Computer Systems and Networks COMP9334: Capacity Planning of Computer Systems and Networks Week 10: Optimisation (1) A/Prof Chun Tung Chou CSE, UNSW COMP9334, Chun Tung Chou, 2016 Three Weeks of Optimisation The lectures for these

More information

A Row-and-Column Generation Method to a Batch Machine Scheduling Problem

A Row-and-Column Generation Method to a Batch Machine Scheduling Problem The Ninth International Symposium on Operations Research and Its Applications (ISORA 10) Chengdu-Jiuzhaigou, China, August 19 23, 2010 Copyright 2010 ORSC & APORC, pp. 301 308 A Row-and-Column Generation

More information

EDGE OFFSET IN DRAWINGS OF LAYERED GRAPHS WITH EVENLY-SPACED NODES ON EACH LAYER

EDGE OFFSET IN DRAWINGS OF LAYERED GRAPHS WITH EVENLY-SPACED NODES ON EACH LAYER EDGE OFFSET IN DRAWINGS OF LAYERED GRAPHS WITH EVENLY-SPACED NODES ON EACH LAYER MATTHIAS F. STALLMANN Abstract. Minimizing edge lengths is an important esthetic criterion in graph drawings. In a layered

More information

Improving network robustness

Improving network robustness Improving network robustness using distance-based graph measures Sander Jurgens November 10, 2014 dr. K.A. Buchin Eindhoven University of Technology Department of Math and Computer Science dr. D.T.H. Worm

More information

Simplicial Global Optimization

Simplicial Global Optimization Simplicial Global Optimization Julius Žilinskas Vilnius University, Lithuania September, 7 http://web.vu.lt/mii/j.zilinskas Global optimization Find f = min x A f (x) and x A, f (x ) = f, where A R n.

More information

Shape Optimizing Load Balancing for Parallel Adaptive Numerical Simulations Using MPI

Shape Optimizing Load Balancing for Parallel Adaptive Numerical Simulations Using MPI Parallel Adaptive Institute of Theoretical Informatics Karlsruhe Institute of Technology (KIT) 10th DIMACS Challenge Workshop, Feb 13-14, 2012, Atlanta 1 Load Balancing by Repartitioning Application: Large

More information

2. Modeling AEA 2018/2019. Based on Algorithm Engineering: Bridging the Gap Between Algorithm Theory and Practice - ch. 2

2. Modeling AEA 2018/2019. Based on Algorithm Engineering: Bridging the Gap Between Algorithm Theory and Practice - ch. 2 2. Modeling AEA 2018/2019 Based on Algorithm Engineering: Bridging the Gap Between Algorithm Theory and Practice - ch. 2 Content Introduction Modeling phases Modeling Frameworks Graph Based Models Mixed

More information

Selected Topics in Column Generation

Selected Topics in Column Generation Selected Topics in Column Generation February 1, 2007 Choosing a solver for the Master Solve in the dual space(kelly s method) by applying a cutting plane algorithm In the bundle method(lemarechal), a

More information

10701 Machine Learning. Clustering

10701 Machine Learning. Clustering 171 Machine Learning Clustering What is Clustering? Organizing data into clusters such that there is high intra-cluster similarity low inter-cluster similarity Informally, finding natural groupings among

More information

Clustering. Robert M. Haralick. Computer Science, Graduate Center City University of New York

Clustering. Robert M. Haralick. Computer Science, Graduate Center City University of New York Clustering Robert M. Haralick Computer Science, Graduate Center City University of New York Outline K-means 1 K-means 2 3 4 5 Clustering K-means The purpose of clustering is to determine the similarity

More information

11. APPROXIMATION ALGORITHMS

11. APPROXIMATION ALGORITHMS 11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: vertex cover LP rounding: vertex cover generalized load balancing knapsack problem Lecture slides by Kevin Wayne Copyright 2005

More information

Introduction. Linear because it requires linear functions. Programming as synonymous of planning.

Introduction. Linear because it requires linear functions. Programming as synonymous of planning. LINEAR PROGRAMMING Introduction Development of linear programming was among the most important scientific advances of mid-20th cent. Most common type of applications: allocate limited resources to competing

More information

Linear and Integer Programming :Algorithms in the Real World. Related Optimization Problems. How important is optimization?

Linear and Integer Programming :Algorithms in the Real World. Related Optimization Problems. How important is optimization? Linear and Integer Programming 15-853:Algorithms in the Real World Linear and Integer Programming I Introduction Geometric Interpretation Simplex Method Linear or Integer programming maximize z = c T x

More information

APPROXIMATION ALGORITHMS FOR GEOMETRIC PROBLEMS

APPROXIMATION ALGORITHMS FOR GEOMETRIC PROBLEMS APPROXIMATION ALGORITHMS FOR GEOMETRIC PROBLEMS Subhas C. Nandy (nandysc@isical.ac.in) Advanced Computing and Microelectronics Unit Indian Statistical Institute Kolkata 70010, India. Organization Introduction

More information

Preclass Warmup. ESE535: Electronic Design Automation. Motivation (1) Today. Bisection Width. Motivation (2)

Preclass Warmup. ESE535: Electronic Design Automation. Motivation (1) Today. Bisection Width. Motivation (2) ESE535: Electronic Design Automation Preclass Warmup What cut size were you able to achieve? Day 4: January 28, 25 Partitioning (Intro, KLFM) 2 Partitioning why important Today Can be used as tool at many

More information

The JOSTLE executable user guide : Version 3.1

The JOSTLE executable user guide : Version 3.1 The JOSTLE executable user guide : Version 3.1 Chris Walshaw School of Computing & Mathematical Sciences, University of Greenwich, London, SE10 9LS, UK email: jostle@gre.ac.uk July 6, 2005 Contents 1 The

More information

Formalization of Incremental Simplex Algorithm by Stepwise Refinement

Formalization of Incremental Simplex Algorithm by Stepwise Refinement Formalization of Incremental Simplex Algorithm by Stepwise Refinement Mirko Spasić, Filip Marić Faculty of Mathematics, University of Belgrade FM2012, 30. August 2012. Overview 1 Introduction 2 Approach

More information

CS-6402 DESIGN AND ANALYSIS OF ALGORITHMS

CS-6402 DESIGN AND ANALYSIS OF ALGORITHMS CS-6402 DESIGN AND ANALYSIS OF ALGORITHMS 2 marks UNIT-I 1. Define Algorithm. An algorithm is a sequence of unambiguous instructions for solving a problem in a finite amount of time. 2.Write a short note

More information

Overview of Trilinos and PT-Scotch

Overview of Trilinos and PT-Scotch 29.03.2012 Outline PT-Scotch 1 PT-Scotch The Dual Recursive Bipartitioning Algorithm Parallel Graph Bipartitioning Methods 2 Overview of the Trilinos Packages Examples on using Trilinos PT-Scotch The Scotch

More information

A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem

A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem Presented by: Ted Ralphs Joint work with: Leo Kopman Les Trotter Bill Pulleyblank 1 Outline of Talk Introduction Description

More information

An Introduction to Dual Ascent Heuristics

An Introduction to Dual Ascent Heuristics An Introduction to Dual Ascent Heuristics Introduction A substantial proportion of Combinatorial Optimisation Problems (COPs) are essentially pure or mixed integer linear programming. COPs are in general

More information

Algorithms for Decision Support. Integer linear programming models

Algorithms for Decision Support. Integer linear programming models Algorithms for Decision Support Integer linear programming models 1 People with reduced mobility (PRM) require assistance when travelling through the airport http://www.schiphol.nl/travellers/atschiphol/informationforpassengerswithreducedmobility.htm

More information

Simulation. Lecture O1 Optimization: Linear Programming. Saeed Bastani April 2016

Simulation. Lecture O1 Optimization: Linear Programming. Saeed Bastani April 2016 Simulation Lecture O Optimization: Linear Programming Saeed Bastani April 06 Outline of the course Linear Programming ( lecture) Integer Programming ( lecture) Heuristics and Metaheursitics (3 lectures)

More information

RF OPTIMIZATION FOR QUALITY IMPROVEMENT IN GSM NETWORK

RF OPTIMIZATION FOR QUALITY IMPROVEMENT IN GSM NETWORK International Journal of Electrical Engineering & Technology (IJEET) Volume 6, Issue 8, Sep-Oct, 2015, pp.53-62, Article ID: IJEET_06_08_006 Available online at http://www.iaeme.com/ijeetissues.asp?jtype=ijeet&vtype=6&itype=8

More information

Some Advanced Topics in Linear Programming

Some Advanced Topics in Linear Programming Some Advanced Topics in Linear Programming Matthew J. Saltzman July 2, 995 Connections with Algebra and Geometry In this section, we will explore how some of the ideas in linear programming, duality theory,

More information

Arc-Flow Model for the Two-Dimensional Cutting Stock Problem

Arc-Flow Model for the Two-Dimensional Cutting Stock Problem Arc-Flow Model for the Two-Dimensional Cutting Stock Problem Rita Macedo Cláudio Alves J. M. Valério de Carvalho Centro de Investigação Algoritmi, Universidade do Minho Escola de Engenharia, Universidade

More information

Parallel FEM Computation and Multilevel Graph Partitioning Xing Cai

Parallel FEM Computation and Multilevel Graph Partitioning Xing Cai Parallel FEM Computation and Multilevel Graph Partitioning Xing Cai Simula Research Laboratory Overview Parallel FEM computation how? Graph partitioning why? The multilevel approach to GP A numerical example

More information

Outline. Column Generation: Cutting Stock A very applied method. Introduction to Column Generation. Given an LP problem

Outline. Column Generation: Cutting Stock A very applied method. Introduction to Column Generation. Given an LP problem Column Generation: Cutting Stock A very applied method thst@man.dtu.dk Outline History The Simplex algorithm (re-visited) Column Generation as an extension of the Simplex algorithm A simple example! DTU-Management

More information

Introduction VLSI PHYSICAL DESIGN AUTOMATION

Introduction VLSI PHYSICAL DESIGN AUTOMATION VLSI PHYSICAL DESIGN AUTOMATION PROF. INDRANIL SENGUPTA DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Introduction Main steps in VLSI physical design 1. Partitioning and Floorplanning l 2. Placement 3.

More information

5.3 Cutting plane methods and Gomory fractional cuts

5.3 Cutting plane methods and Gomory fractional cuts 5.3 Cutting plane methods and Gomory fractional cuts (ILP) min c T x s.t. Ax b x 0integer feasible region X Assumption: a ij, c j and b i integer. Observation: The feasible region of an ILP can be described

More information

Column Generation: Cutting Stock

Column Generation: Cutting Stock Column Generation: Cutting Stock A very applied method thst@man.dtu.dk DTU-Management Technical University of Denmark 1 Outline History The Simplex algorithm (re-visited) Column Generation as an extension

More information

Exact Solution of the Robust Knapsack Problem

Exact Solution of the Robust Knapsack Problem Exact Solution of the Robust Knapsack Problem Michele Monaci 1 and Ulrich Pferschy 2 and Paolo Serafini 3 1 DEI, University of Padova, Via Gradenigo 6/A, I-35131 Padova, Italy. monaci@dei.unipd.it 2 Department

More information

Dimensioning, configuration and deployment of Radio Access Networks. part 1: General considerations. Mobile Telephony Networks

Dimensioning, configuration and deployment of Radio Access Networks. part 1: General considerations. Mobile Telephony Networks Dimensioning, configuration and deployment of Radio Access Networks. part 1: General considerations Mobile Telephony Networks 1 The Evolution of Mobile Telephony 1st Generation 2nd 3rd 4th Analogue Voice

More information

A List Heuristic for Vertex Cover

A List Heuristic for Vertex Cover A List Heuristic for Vertex Cover Happy Birthday Vasek! David Avis McGill University Tomokazu Imamura Kyoto University Operations Research Letters (to appear) Online: http://cgm.cs.mcgill.ca/ avis revised:

More information

Notes on Minimum Spanning Trees. Red Rule: Given a cycle containing no red edges, select a maximum uncolored edge on the cycle, and color it red.

Notes on Minimum Spanning Trees. Red Rule: Given a cycle containing no red edges, select a maximum uncolored edge on the cycle, and color it red. COS 521 Fall 2009 Notes on Minimum Spanning Trees 1. The Generic Greedy Algorithm The generic greedy algorithm finds a minimum spanning tree (MST) by an edge-coloring process. Initially all edges are uncolored.

More information

Integer Programming Chapter 9

Integer Programming Chapter 9 1 Integer Programming Chapter 9 University of Chicago Booth School of Business Kipp Martin October 30, 2017 2 Outline Branch and Bound Theory Branch and Bound Linear Programming Node Selection Strategies

More information

Computational Integer Programming. Lecture 12: Branch and Cut. Dr. Ted Ralphs

Computational Integer Programming. Lecture 12: Branch and Cut. Dr. Ted Ralphs Computational Integer Programming Lecture 12: Branch and Cut Dr. Ted Ralphs Computational MILP Lecture 12 1 Reading for This Lecture Wolsey Section 9.6 Nemhauser and Wolsey Section II.6 Martin Computational

More information

Vertex Cover Approximations

Vertex Cover Approximations CS124 Lecture 20 Heuristics can be useful in practice, but sometimes we would like to have guarantees. Approximation algorithms give guarantees. It is worth keeping in mind that sometimes approximation

More information

BEYOND MAXIMUM INDEPENDENT SET: AN EXTENDED MODEL FOR POINT-FEATURE LABEL PLACEMENT

BEYOND MAXIMUM INDEPENDENT SET: AN EXTENDED MODEL FOR POINT-FEATURE LABEL PLACEMENT BEYOND MAXIMUM INDEPENDENT SET: AN EXTENDED MODEL FOR POINT-FEATURE LABEL PLACEMENT Jan-Henrik Haunert a Alexander Wolff b a Geoinformatics Group, Institut für Informatik, Universität Osnabrück, Germany

More information

α Coverage to Extend Network Lifetime on Wireless Sensor Networks

α Coverage to Extend Network Lifetime on Wireless Sensor Networks Noname manuscript No. (will be inserted by the editor) α Coverage to Extend Network Lifetime on Wireless Sensor Networks Monica Gentili Andrea Raiconi Received: date / Accepted: date Abstract An important

More information

General Purpose Methods for Combinatorial Optimization

General Purpose Methods for Combinatorial Optimization General Purpose Methods for Combinatorial Optimization 0/7/00 Maximum Contiguous Sum 3-4 9 6-3 8 97-93 -3 84 Σ = 87 Given:... N Z, at least one i > 0 ind i, j such that j k k = i is maximal 0/7/00 0/7/00

More information

Design of Parallel Algorithms. Models of Parallel Computation

Design of Parallel Algorithms. Models of Parallel Computation + Design of Parallel Algorithms Models of Parallel Computation + Chapter Overview: Algorithms and Concurrency n Introduction to Parallel Algorithms n Tasks and Decomposition n Processes and Mapping n Processes

More information

Analysis and Experimental Study of Heuristics for Job Scheduling Reoptimization Problems

Analysis and Experimental Study of Heuristics for Job Scheduling Reoptimization Problems Analysis and Experimental Study of Heuristics for Job Scheduling Reoptimization Problems Elad Iwanir and Tami Tamir Abstract Many real-life applications involve systems that change dynamically over time.

More information

Primal Heuristics in SCIP

Primal Heuristics in SCIP Primal Heuristics in SCIP Timo Berthold Zuse Institute Berlin DFG Research Center MATHEON Mathematics for key technologies Berlin, 10/11/2007 Outline 1 Introduction Basics Integration Into SCIP 2 Available

More information

Outline. CS38 Introduction to Algorithms. Approximation Algorithms. Optimization Problems. Set Cover. Set cover 5/29/2014. coping with intractibility

Outline. CS38 Introduction to Algorithms. Approximation Algorithms. Optimization Problems. Set Cover. Set cover 5/29/2014. coping with intractibility Outline CS38 Introduction to Algorithms Lecture 18 May 29, 2014 coping with intractibility approximation algorithms set cover TSP center selection randomness in algorithms May 29, 2014 CS38 Lecture 18

More information

Manpower Planning: Task Scheduling. Anders Høeg Dohn

Manpower Planning: Task Scheduling. Anders Høeg Dohn : Task Scheduling Anders Høeg Dohn Scope During these lectures I will: Go over some of the practical problems encountered in manpower planning. Rostering Task Scheduling Propose models that can be used

More information

Heuristic Optimisation

Heuristic Optimisation Heuristic Optimisation Part 3: Classification of algorithms. Exhaustive search Sándor Zoltán Németh http://web.mat.bham.ac.uk/s.z.nemeth s.nemeth@bham.ac.uk University of Birmingham S Z Németh (s.nemeth@bham.ac.uk)

More information

Multivariate Analysis (slides 9)

Multivariate Analysis (slides 9) Multivariate Analysis (slides 9) Today we consider k-means clustering. We will address the question of selecting the appropriate number of clusters. Properties and limitations of the algorithm will be

More information

3 INTEGER LINEAR PROGRAMMING

3 INTEGER LINEAR PROGRAMMING 3 INTEGER LINEAR PROGRAMMING PROBLEM DEFINITION Integer linear programming problem (ILP) of the decision variables x 1,..,x n : (ILP) subject to minimize c x j j n j= 1 a ij x j x j 0 x j integer n j=

More information

CHAPTER 6 DEVELOPMENT OF PARTICLE SWARM OPTIMIZATION BASED ALGORITHM FOR GRAPH PARTITIONING

CHAPTER 6 DEVELOPMENT OF PARTICLE SWARM OPTIMIZATION BASED ALGORITHM FOR GRAPH PARTITIONING CHAPTER 6 DEVELOPMENT OF PARTICLE SWARM OPTIMIZATION BASED ALGORITHM FOR GRAPH PARTITIONING 6.1 Introduction From the review, it is studied that the min cut k partitioning problem is a fundamental partitioning

More information

CS 1675 Introduction to Machine Learning Lecture 18. Clustering. Clustering. Groups together similar instances in the data sample

CS 1675 Introduction to Machine Learning Lecture 18. Clustering. Clustering. Groups together similar instances in the data sample CS 1675 Introduction to Machine Learning Lecture 18 Clustering Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square Clustering Groups together similar instances in the data sample Basic clustering problem:

More information

3G/4G Mobile Communications Systems. Dr. Stefan Brück Qualcomm Corporate R&D Center Germany

3G/4G Mobile Communications Systems. Dr. Stefan Brück Qualcomm Corporate R&D Center Germany 3G/4G Mobile Communications Systems Dr. Stefan Brück Qualcomm Corporate R&D Center Germany Chapter IX: Mobility Control 2 Slide 2 Mobility Control Handover Types Mobility Measurements in UMTS Mobility

More information