Travaux Dirigés n 2 Modèles des langages de programmation Master Parisien de Recherche en Informatique Paul-André Melliès

Size: px
Start display at page:

Download "Travaux Dirigés n 2 Modèles des langages de programmation Master Parisien de Recherche en Informatique Paul-André Melliès"

Transcription

1 Travaux Dirigés n 2 Modèles des langages de programmation Master Parisien de Recherche en Inormatique Paul-André Melliès Problem. We saw in the course that every coherence space A induces a partial order (D A, A ) whose elements are the cliques o the coherence space A, ordered by inclusion. a. Show that the partial order (D A, A ) deines a domain, that is: (1) D A contains a least element denoted A, (2) every increasing sequence o elements (x n ) n N in the partial order D A has a least upper bound x = n N x n. b. Every clique : A&S B&S induces a amily o unary (sorted) operations b s t b a a s s one or each pair o elements a A, b B, and s, t S such that a[]b a[]s s[]t s[]b respectively. Let trees () denote the set o linear trees o the orm: b s n s 1 a 1

2 containing at least one node. Deine the relation trace () : A B as the set o elements a b such that there exists a linear tree in trees () with input sort a and output sort b. Show that the relation trace () deines a clique o the coherence space A B. Remark: this construction deines a «trace operator» on the category o coherence spaces equipped with the cartesian product. c. Describe explicitly the diagonal clique : S S & S characterized as the unique morphism making the diagram id S π 1 S S S & S id S π 2 S commute in the category o coherence spaces. d. Every clique induces a clique : A & S S ixpoint () = trace ( ) : A S deined as the trace operator applied to the composite A & S S S & S. Show that ixpoint () coincides with the set o all elements a s such that there exists a linear tree in trees () with input sort a and output sort s. 2

3 e. Show that the clique ixpoint () makes the diagram A & A A & ixpoint () A & S A A ixpoint () commute in the category o coherence spaces. S. At this stage, we are ready to lit to stable unctions what we have just achieved or linear unctions. We have seen during the course that every stable unction : D A D S D B D S may be seen as a clique :! ( A & S ) B & S This clique induces in turn an n-ary (sorted) operation b s x 1 x i x n x 1 x i x n whenever {x 1,, x n } [] b {x 1,, x n } [] s where each x i is an element o A & S, that is, either an element o A or an element o S. Note that the descendents o a node are unordered. An element o trees () is deined as a tree constructed with these n-ary operations, and containing at least a node. The relation is then deined as the set o elements trace () :!A B {a 1,..., a n } b such that there exists a tree in trees () with output sort b and with {a 1,, a n } as set o input sorts. Show that trace () deines a clique o the coherence space!a B. [Hint: proceed as in question b.] 3

4 /g. Every clique induces a clique :! ( A & S ) S ixpoint () = trace ( ) :! A S deined as the trace operator applied to the composite! ( A & S ) S S & S. Show that ixpoint () coincides with the set o all elements {a 1,..., a n } s such that there exists a tree in trees () with input sorts {a 1,..., a n } and output sort s, where each a i is an element o the web A. g/h. Show that the clique ixpoint () is a parametric ixpoint o in the sense that the diagram! A!! A! A δ! A! A iso! A! ixpoint ()! A! S iso! ( A & S )! ( A & A )! A! A ixpoint () S commutes in the category o coherence spaces. h/i. Explain how to compute the actorial unction actorial : N N 4

5 as a ixpoint o the clique deined as the set o elements act :! (N N) N N! ( N N ) N N { p q } p + 1 (p + 1) q 1 1 where a b is an alternative notation or a b. Explain in particular why the tree 5 ( ) establishes that is an element o the clique act 4 ( ) act 3 ( ) act 2 ( 2 1 ) act 1 1 act 5 ( ) actorial : N N. 5

6 i/j. We have seen in the course how to see a pair o morphisms (=cliques) in the category o coherence spaces :! A B g :! B C as a pair o morphisms : A k B g : B k C in the Kleisli category associated to the comonad!. Recall that the composite g o the two morphisms in the Kleisli category is deined as ollows:! A δ A!! A!!B g C Express the set trees (g ) directly rom the sets trees (g) and trees (). j/k. Explain (ormally or inormally) why the stable unction D A D S associated to the clique ixpoint () :! A S deines the least ixpoint o the stable unction D A D S D S associated to the clique :! ( A & S ) S. 6

Generell Topologi. Richard Williamson. May 6, 2013

Generell Topologi. Richard Williamson. May 6, 2013 Generell Topologi Richard Williamson May 6, Thursday 7th January. Basis o a topological space generating a topology with a speciied basis standard topology on R examples Deinition.. Let (, O) be a topological

More information

9.8 Graphing Rational Functions

9.8 Graphing Rational Functions 9. Graphing Rational Functions Lets begin with a deinition. Deinition: Rational Function A rational unction is a unction o the orm P where P and Q are polynomials. Q An eample o a simple rational unction

More information

MATRIX ALGORITHM OF SOLVING GRAPH CUTTING PROBLEM

MATRIX ALGORITHM OF SOLVING GRAPH CUTTING PROBLEM UDC 681.3.06 MATRIX ALGORITHM OF SOLVING GRAPH CUTTING PROBLEM V.K. Pogrebnoy TPU Institute «Cybernetic centre» E-mail: vk@ad.cctpu.edu.ru Matrix algorithm o solving graph cutting problem has been suggested.

More information

Monads T T T T T. Dually (by inverting the arrows in the given definition) one can define the notion of a comonad. T T

Monads T T T T T. Dually (by inverting the arrows in the given definition) one can define the notion of a comonad. T T Monads Definition A monad T is a category C is a monoid in the category of endofunctors C C. More explicitly, a monad in C is a triple T, η, µ, where T : C C is a functor and η : I C T, µ : T T T are natural

More information

Abstract. This note presents a new formalization of graph rewritings which generalizes traditional

Abstract. This note presents a new formalization of graph rewritings which generalizes traditional Relational Graph Rewritings Yoshihiro MIZOGUCHI 3 and Yasuo KAWAHARA y Abstract This note presents a new ormalization o graph rewritings which generalizes traditional graph rewritings. Relational notions

More information

Homework 6: Excision for homotopy groups

Homework 6: Excision for homotopy groups Homework 6: Excision for homotopy groups Due date: Friday, October 18th. 0. Goals and Assumptions: The homotopy excision theorem Definition 5. Let A X. Thepair(X, A) is said to be n-connected if π i (X,

More information

arxiv:math/ v2 [math.at] 9 Nov 1998

arxiv:math/ v2 [math.at] 9 Nov 1998 ariv:math/9811038v2 [math.at] 9 Nov 1998 FIBRATIONS AND HOMOTOPY COLIMITS OF SIMPLICIAL SHEAVES CHARLES REZK Abstract. We show that homotopy pullbacks o sheaves o simplicial sets over a Grothendieck topology

More information

The Graph of an Equation Graph the following by using a table of values and plotting points.

The Graph of an Equation Graph the following by using a table of values and plotting points. Calculus Preparation - Section 1 Graphs and Models Success in math as well as Calculus is to use a multiple perspective -- graphical, analytical, and numerical. Thanks to Rene Descartes we can represent

More information

Monads and More: Part 3

Monads and More: Part 3 Monads and More: Part 3 Tarmo Uustalu, Tallinn Nottingham, 14 18 May 2007 Arrows (Hughes) Arrows are a generalization of strong monads on symmetric monoidal categories (in their Kleisli triple form). An

More information

Nano Generalized Pre Homeomorphisms in Nano Topological Space

Nano Generalized Pre Homeomorphisms in Nano Topological Space International Journal o Scientiic esearch Publications Volume 6 Issue 7 July 2016 526 Nano Generalized Pre Homeomorphisms in Nano Topological Space K.Bhuvaneswari 1 K. Mythili Gnanapriya 2 1 Associate

More information

Leinster s globular theory of weak -categories

Leinster s globular theory of weak -categories Leinster s globular theory of weak -categories Ed Morehouse April 16, 2014 (last updated August 8, 2014) These are my notes for a series of lectures that I gave at the Homotopy Type Theory seminar at Carnegie

More information

COMS W4705, Spring 2015: Problem Set 2 Total points: 140

COMS W4705, Spring 2015: Problem Set 2 Total points: 140 COM W4705, pring 2015: Problem et 2 Total points: 140 Analytic Problems (due March 2nd) Question 1 (20 points) A probabilistic context-ree grammar G = (N, Σ, R,, q) in Chomsky Normal Form is deined as

More information

The language of categories

The language of categories The language of categories Mariusz Wodzicki March 15, 2011 1 Universal constructions 1.1 Initial and inal objects 1.1.1 Initial objects An object i of a category C is said to be initial if for any object

More information

Combinatorics I (Lecture 36)

Combinatorics I (Lecture 36) Combinatorics I (Lecture 36) February 18, 2015 Our goal in this lecture (and the next) is to carry out the combinatorial steps in the proof of the main theorem of Part III. We begin by recalling some notation

More information

A Requirement Specification Language for Configuration Dynamics of Multiagent Systems

A Requirement Specification Language for Configuration Dynamics of Multiagent Systems A Requirement Speciication Language or Coniguration Dynamics o Multiagent Systems Mehdi Dastani, Catholijn M. Jonker, Jan Treur* Vrije Universiteit Amsterdam, Department o Artiicial Intelligence, De Boelelaan

More information

5.2 Properties of Rational functions

5.2 Properties of Rational functions 5. Properties o Rational unctions A rational unction is a unction o the orm n n1 polynomial p an an 1 a1 a0 k k1 polynomial q bk bk 1 b1 b0 Eample 3 5 1 The domain o a rational unction is the set o all

More information

11 Sets II Operations

11 Sets II Operations 11 Sets II Operations Tom Lewis Fall Term 2010 Tom Lewis () 11 Sets II Operations Fall Term 2010 1 / 12 Outline 1 Union and intersection 2 Set operations 3 The size of a union 4 Difference and symmetric

More information

Notes on categories, the subspace topology and the product topology

Notes on categories, the subspace topology and the product topology Notes on categories, the subspace topology and the product topology John Terilla Fall 2014 Contents 1 Introduction 1 2 A little category theory 1 3 The subspace topology 3 3.1 First characterization of

More information

A set with only one member is called a SINGLETON. A set with no members is called the EMPTY SET or 2 N

A set with only one member is called a SINGLETON. A set with no members is called the EMPTY SET or 2 N Mathematical Preliminaries Read pages 529-540 1. Set Theory 1.1 What is a set? A set is a collection of entities of any kind. It can be finite or infinite. A = {a, b, c} N = {1, 2, 3, } An entity is an

More information

Categorical models of type theory

Categorical models of type theory 1 / 59 Categorical models of type theory Michael Shulman February 28, 2012 2 / 59 Outline 1 Type theory and category theory 2 Categorical type constructors 3 Dependent types and display maps 4 Fibrations

More information

Chapter 6 Part I The Relational Algebra and Calculus

Chapter 6 Part I The Relational Algebra and Calculus Chapter 6 Part I The Relational Algebra and Calculus Copyright 2004 Ramez Elmasri and Shamkant Navathe Database State for COMPANY All examples discussed below refer to the COMPANY database shown here.

More information

UNIT #2 TRANSFORMATIONS OF FUNCTIONS

UNIT #2 TRANSFORMATIONS OF FUNCTIONS Name: Date: UNIT # TRANSFORMATIONS OF FUNCTIONS Part I Questions. The quadratic unction ollowing does,, () has a turning point at have a turning point? 7, 3, 5 5, 8. I g 7 3, then at which o the The structure

More information

Math 1314 Lesson 24 Maxima and Minima of Functions of Several Variables

Math 1314 Lesson 24 Maxima and Minima of Functions of Several Variables Math 1314 Lesson 4 Maxima and Minima o Functions o Several Variables We learned to ind the maxima and minima o a unction o a single variable earlier in the course. We had a second derivative test to determine

More information

Classifying Spaces and Spectral Sequences

Classifying Spaces and Spectral Sequences Classifying Spaces and Spectral Sequences Introduction Christian Carrick December 2, 2016 These are a set of expository notes I wrote in preparation for a talk given in the MIT Kan Seminar on December

More information

THE DOLD-KAN CORRESPONDENCE

THE DOLD-KAN CORRESPONDENCE THE DOLD-KAN CORRESPONDENCE 1. Simplicial sets We shall now introduce the notion of a simplicial set, which will be a presheaf on a suitable category. It turns out that simplicial sets provide a (purely

More information

Homotopy theory of higher categorical structures

Homotopy theory of higher categorical structures University of California, Riverside August 8, 2013 Higher categories In a category, we have morphisms, or functions, between objects. But what if you have functions between functions? This gives the idea

More information

A Generic Matrix Manipulator

A Generic Matrix Manipulator A Generic Matrix Manipulator Dylan Killingbeck Department of Computer Science, Brock University, St. Catharines, Ontario, Canada, L2S 3A1 dk10qt@brocku.ca Abstract. In this paper we describe a generic

More information

Sheaves and Stacks. November 5, Sheaves and Stacks

Sheaves and Stacks. November 5, Sheaves and Stacks November 5, 2014 Grothendieck topologies Grothendieck topologies are an extra datum on a category. They allow us to make sense of something being locally defined. Give a formal framework for glueing problems

More information

Graph and Digraph Glossary

Graph and Digraph Glossary 1 of 15 31.1.2004 14:45 Graph and Digraph Glossary A B C D E F G H I-J K L M N O P-Q R S T U V W-Z Acyclic Graph A graph is acyclic if it contains no cycles. Adjacency Matrix A 0-1 square matrix whose

More information

Some Inequalities Involving Fuzzy Complex Numbers

Some Inequalities Involving Fuzzy Complex Numbers Theory Applications o Mathematics & Computer Science 4 1 014 106 113 Some Inequalities Involving Fuzzy Complex Numbers Sanjib Kumar Datta a,, Tanmay Biswas b, Samten Tamang a a Department o Mathematics,

More information

An introduction to category theory, category theory monads, and their relationship to functional programming. Jonathan M.D. Hill and Keith Clarke

An introduction to category theory, category theory monads, and their relationship to functional programming. Jonathan M.D. Hill and Keith Clarke n introduction to category theory, category theory monads, and their relationship to unctional programming Jonathan M.D. Hill and Keith Clarke Department o Computer Science Queen Mary & Westeld College

More information

CHAPTER 3 FUZZY RELATION and COMPOSITION

CHAPTER 3 FUZZY RELATION and COMPOSITION CHAPTER 3 FUZZY RELATION and COMPOSITION The concept of fuzzy set as a generalization of crisp set has been introduced in the previous chapter. Relations between elements of crisp sets can be extended

More information

Lecture 009 (November 25, 2009) Suppose that I is a small category, and let s(r Mod) I be the category of I-diagrams in simplicial modules.

Lecture 009 (November 25, 2009) Suppose that I is a small category, and let s(r Mod) I be the category of I-diagrams in simplicial modules. Lecture 009 (November 25, 2009) 20 Homotopy colimits Suppose that I is a small category, and let s(r Mod) I be the category of I-diagrams in simplicial modules. The objects of this category are the functors

More information

Mathematics Masters Examination

Mathematics Masters Examination Mathematics Masters Examination OPTION 4 Fall 2011 COMPUTER SCIENCE??TIME?? NOTE: Any student whose answers require clarification may be required to submit to an oral examination. Each of the twelve numbered

More information

GABRIEL C. DRUMMOND-COLE

GABRIEL C. DRUMMOND-COLE MILY RIHL: -CTGORIS FROM SCRTCH (TH SIC TWO-CTGORY THORY) GRIL C. DRUMMOND-COL I m trying to be really gentle on the category theory, within reason. So in particular, I m expecting a lot o people won t

More information

A Model of Type Theory in Simplicial Sets

A Model of Type Theory in Simplicial Sets A Model of Type Theory in Simplicial Sets A brief introduction to Voevodsky s Homotopy Type Theory T. Streicher Fachbereich 4 Mathematik, TU Darmstadt Schlossgartenstr. 7, D-64289 Darmstadt streicher@mathematik.tu-darmstadt.de

More information

Missouri State University REU, 2013

Missouri State University REU, 2013 G. Hinkle 1 C. Robichaux 2 3 1 Department of Mathematics Rice University 2 Department of Mathematics Louisiana State University 3 Department of Mathematics Missouri State University Missouri State University

More information

Concavity. Notice the location of the tangents to each type of curve.

Concavity. Notice the location of the tangents to each type of curve. Concavity We ve seen how knowing where a unction is increasing and decreasing gives a us a good sense o the shape o its graph We can reine that sense o shape by determining which way the unction bends

More information

4 Basis, Subbasis, Subspace

4 Basis, Subbasis, Subspace 4 Basis, Subbasis, Subspace Our main goal in this chapter is to develop some tools that make it easier to construct examples of topological spaces. By Definition 3.12 in order to define a topology on a

More information

(Pre-)Algebras for Linguistics

(Pre-)Algebras for Linguistics 2. Introducing Preordered Algebras Linguistics 680: Formal Foundations Autumn 2010 Algebras A (one-sorted) algebra is a set with one or more operations (where special elements are thought of as nullary

More information

Question Score Points Out Of 25

Question Score Points Out Of 25 University of Texas at Austin 6 May 2005 Department of Computer Science Theory in Programming Practice, Spring 2005 Test #3 Instructions. This is a 50-minute test. No electronic devices (including calculators)

More information

What is Clustering? Clustering. Characterizing Cluster Methods. Clusters. Cluster Validity. Basic Clustering Methodology

What is Clustering? Clustering. Characterizing Cluster Methods. Clusters. Cluster Validity. Basic Clustering Methodology Clustering Unsupervised learning Generating classes Distance/similarity measures Agglomerative methods Divisive methods Data Clustering 1 What is Clustering? Form o unsupervised learning - no inormation

More information

Point-Set Topology II

Point-Set Topology II Point-Set Topology II Charles Staats September 14, 2010 1 More on Quotients Universal Property of Quotients. Let X be a topological space with equivalence relation. Suppose that f : X Y is continuous and

More information

WHEN DO THREE LONGEST PATHS HAVE A COMMON VERTEX?

WHEN DO THREE LONGEST PATHS HAVE A COMMON VERTEX? WHEN DO THREE LONGEST PATHS HAVE A COMMON VERTEX? MARIA AXENOVICH Abstract. It is well known that any two longest paths in a connected graph share a vertex. It is also known that there are connected graphs

More information

Topology problem set Integration workshop 2010

Topology problem set Integration workshop 2010 Topology problem set Integration workshop 2010 July 28, 2010 1 Topological spaces and Continuous functions 1.1 If T 1 and T 2 are two topologies on X, show that (X, T 1 T 2 ) is also a topological space.

More information

Math 462: Review questions

Math 462: Review questions Math 462: Review questions Paul Hacking 4/22/10 (1) What is the angle between two interior diagonals of a cube joining opposite vertices? [Hint: It is probably quickest to use a description of the cube

More information

CSC Discrete Math I, Spring Sets

CSC Discrete Math I, Spring Sets CSC 125 - Discrete Math I, Spring 2017 Sets Sets A set is well-defined, unordered collection of objects The objects in a set are called the elements, or members, of the set A set is said to contain its

More information

The Extended Algebra. Duplicate Elimination. Sorting. Example: Duplicate Elimination

The Extended Algebra. Duplicate Elimination. Sorting. Example: Duplicate Elimination The Extended Algebra Duplicate Elimination 2 δ = eliminate duplicates from bags. τ = sort tuples. γ = grouping and aggregation. Outerjoin : avoids dangling tuples = tuples that do not join with anything.

More information

in simplicial sets, or equivalently a functor

in simplicial sets, or equivalently a functor Contents 21 Bisimplicial sets 1 22 Homotopy colimits and limits (revisited) 10 23 Applications, Quillen s Theorem B 23 21 Bisimplicial sets A bisimplicial set X is a simplicial object X : op sset in simplicial

More information

Automata Theory CS F-14 Counter Machines & Recursive Functions

Automata Theory CS F-14 Counter Machines & Recursive Functions Automata Theory CS411-2015F-14 Counter Machines & Recursive Functions David Galles Department of Computer Science University of San Francisco 14-0: Counter Machines Give a Non-Deterministic Finite Automata

More information

Using context and model categories to define directed homotopies

Using context and model categories to define directed homotopies Using context and model categories to define directed homotopies p. 1/57 Using context and model categories to define directed homotopies Peter Bubenik Ecole Polytechnique Fédérale de Lausanne (EPFL) peter.bubenik@epfl.ch

More information

Skew propagation time

Skew propagation time Graduate Theses and Dissertations Graduate College 015 Skew propagation time Nicole F. Kingsley Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/etd Part of the Applied

More information

Tutte Embeddings of Planar Graphs

Tutte Embeddings of Planar Graphs Spectral Graph Theory and its Applications Lectre 21 Ttte Embeddings o Planar Graphs Lectrer: Daniel A. Spielman November 30, 2004 21.1 Ttte s Theorem We sally think o graphs as being speciied by vertices

More information

Notes on point set topology, Fall 2010

Notes on point set topology, Fall 2010 Notes on point set topology, Fall 2010 Stephan Stolz September 3, 2010 Contents 1 Pointset Topology 1 1.1 Metric spaces and topological spaces...................... 1 1.2 Constructions with topological

More information

2 A topological interlude

2 A topological interlude 2 A topological interlude 2.1 Topological spaces Recall that a topological space is a set X with a topology: a collection T of subsets of X, known as open sets, such that and X are open, and finite intersections

More information

Introduction to Query Processing and Query Optimization Techniques. Copyright 2011 Ramez Elmasri and Shamkant Navathe

Introduction to Query Processing and Query Optimization Techniques. Copyright 2011 Ramez Elmasri and Shamkant Navathe Introduction to Query Processing and Query Optimization Techniques Outline Translating SQL Queries into Relational Algebra Algorithms for External Sorting Algorithms for SELECT and JOIN Operations Algorithms

More information

Smooth algebras, convenient manifolds and differential linear lo

Smooth algebras, convenient manifolds and differential linear lo Smooth algebras, convenient manifolds and differential linear logic University of Ottawa ongoing discussions with Geoff Crutwell, Thomas Ehrhard, Alex Hoffnung, Christine Tasson August 20, 2011 Goals Develop

More information

Simpler, Linear-time Transitive Orientation via Lexicographic Breadth-First Search

Simpler, Linear-time Transitive Orientation via Lexicographic Breadth-First Search Simpler, Linear-time Transitive Orientation via Lexicographic Breadth-First Search Marc Tedder University of Toronto arxiv:1503.02773v1 [cs.ds] 10 Mar 2015 Abstract Comparability graphs are the undirected

More information

Here are some of the more basic curves that we ll need to know how to do as well as limits on the parameter if they are required.

Here are some of the more basic curves that we ll need to know how to do as well as limits on the parameter if they are required. 1 of 10 23/07/2016 05:15 Paul's Online Math Notes Calculus III (Notes) / Line Integrals / Line Integrals - Part I Problems] [Notes] [Practice Problems] [Assignment Calculus III - Notes Line Integrals Part

More information

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings On the Relationships between Zero Forcing Numbers and Certain Graph Coverings Fatemeh Alinaghipour Taklimi, Shaun Fallat 1,, Karen Meagher 2 Department of Mathematics and Statistics, University of Regina,

More information

2.1 Sets 2.2 Set Operations

2.1 Sets 2.2 Set Operations CSC2510 Theoretical Foundations of Computer Science 2.1 Sets 2.2 Set Operations Introduction to Set Theory A set is a structure, representing an unordered collection (group, plurality) of zero or more

More information

Connecting Definition and Use? Tiger Semantic Analysis. Symbol Tables. Symbol Tables (cont d)

Connecting Definition and Use? Tiger Semantic Analysis. Symbol Tables. Symbol Tables (cont d) Tiger source program Tiger Semantic Analysis lexical analyzer report all lexical errors token get next token parser construct variable deinitions to their uses report all syntactic errors absyn checks

More information

CS 377 Database Systems

CS 377 Database Systems CS 377 Database Systems Relational Algebra and Calculus Li Xiong Department of Mathematics and Computer Science Emory University 1 ER Diagram of Company Database 2 3 4 5 Relational Algebra and Relational

More information

ScienceDirect. Using Search Algorithms for Modeling Economic Processes

ScienceDirect. Using Search Algorithms for Modeling Economic Processes vailable online at www.sciencedirect.com ScienceDirect Procedia Economics and Finance 6 ( 03 ) 73 737 International Economic onerence o Sibiu 03 Post risis Economy: hallenges and Opportunities, IES 03

More information

Composite functions. [Type the document subtitle] Composite functions, working them out.

Composite functions. [Type the document subtitle] Composite functions, working them out. Composite unctions [Type the document subtitle] Composite unctions, workin them out. luxvis 11/19/01 Composite Functions What are they? In the real world, it is not uncommon or the output o one thin to

More information

Domination, Independence and Other Numbers Associated With the Intersection Graph of a Set of Half-planes

Domination, Independence and Other Numbers Associated With the Intersection Graph of a Set of Half-planes Domination, Independence and Other Numbers Associated With the Intersection Graph of a Set of Half-planes Leonor Aquino-Ruivivar Mathematics Department, De La Salle University Leonorruivivar@dlsueduph

More information

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3.

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. 301. Definition. Let m be a positive integer, and let X be a set. An m-tuple of elements of X is a function x : {1,..., m} X. We sometimes use x i instead

More information

The Algebra of Programming in Haskell

The Algebra of Programming in Haskell The Algebra of Programming in Haskell Bruno Oliveira The Algebra of Programming in Haskell p.1/21 Datatype Generic Programming - Motivation/Goals The project is to develop a novel mechanism for parameterizing

More information

MATH 363 Final Wednesday, April 28. Final exam. You may use lemmas and theorems that were proven in class and on assignments unless stated otherwise.

MATH 363 Final Wednesday, April 28. Final exam. You may use lemmas and theorems that were proven in class and on assignments unless stated otherwise. Final exam This is a closed book exam. No calculators are allowed. Unless stated otherwise, justify all your steps. You may use lemmas and theorems that were proven in class and on assignments unless stated

More information

Rigidification of quasi-categories

Rigidification of quasi-categories Rigidification of quasi-categories DANIEL DUGGER DAVID I. SPIVAK We give a new construction for rigidifying a quasi-category into a simplicial category, and prove that it is weakly equivalent to the rigidification

More information

Lazy evaluation. Lazy evaluation (3) Lazy evaluation (2) Lazy execution. Example. Declarative Concurrency. Lazy Execution (VRH 4.

Lazy evaluation. Lazy evaluation (3) Lazy evaluation (2) Lazy execution. Example. Declarative Concurrency. Lazy Execution (VRH 4. Declarative Concurrency Lazy Execution (VRH 4.5) Carlos Varela RPI Lazy evaluation The deault unctions in Oz are evaluated eagerly (as soon as they are called) Another way is lazy evaluation where a computation

More information

2. Sets. 2.1&2.2: Sets and Subsets. Combining Sets. c Dr Oksana Shatalov, Fall

2. Sets. 2.1&2.2: Sets and Subsets. Combining Sets. c Dr Oksana Shatalov, Fall c Dr Oksana Shatalov, Fall 2014 1 2. Sets 2.1&2.2: Sets and Subsets. Combining Sets. Set Terminology and Notation DEFINITIONS: Set is well-defined collection of objects. Elements are objects or members

More information

The optimal routing of augmented cubes.

The optimal routing of augmented cubes. The optimal routing of augmented cubes. Meirun Chen, Reza Naserasr To cite this version: Meirun Chen, Reza Naserasr. The optimal routing of augmented cubes.. Information Processing Letters, Elsevier, 28.

More information

Set and Set Operations

Set and Set Operations Set and Set Operations Introduction A set is a collection of objects. The objects in a set are called elements of the set. A well defined set is a set in which we know for sure if an element belongs to

More information

Query Evaluation and Optimization

Query Evaluation and Optimization Query Evaluation and Optimization Jan Chomicki University at Buffalo Jan Chomicki () Query Evaluation and Optimization 1 / 21 Evaluating σ E (R) Jan Chomicki () Query Evaluation and Optimization 2 / 21

More information

CSPs: Search and Arc Consistency

CSPs: Search and Arc Consistency CSPs: Search and Arc Consistency CPSC 322 CSPs 2 Textbook 4.3 4.5 CSPs: Search and Arc Consistency CPSC 322 CSPs 2, Slide 1 Lecture Overview 1 Recap 2 Search 3 Consistency 4 Arc Consistency CSPs: Search

More information

MAPI Computer Vision. Multiple View Geometry

MAPI Computer Vision. Multiple View Geometry MAPI Computer Vision Multiple View Geometry Geometry o Multiple Views 2- and 3- view geometry p p Kpˆ [ K R t]p Geometry o Multiple Views 2- and 3- view geometry Epipolar Geometry The epipolar geometry

More information

DIRECTED PROGRAMS GEOMETRIC MODELS OF CONCURRENT. Samuel Mimram. École Polytechnique

DIRECTED PROGRAMS GEOMETRIC MODELS OF CONCURRENT. Samuel Mimram. École Polytechnique DIRECTED GEOMETRIC MODELS OF CONCURRENT PROGRAMS Samuel Mimram École Polytechnique Applied and Computational Algebraic Topology Spring School April 24th, 2017 2 / 117 Models of concurrent programs We are

More information

A Proposed Approach for Solving Rough Bi-Level. Programming Problems by Genetic Algorithm

A Proposed Approach for Solving Rough Bi-Level. Programming Problems by Genetic Algorithm Int J Contemp Math Sciences, Vol 6, 0, no 0, 45 465 A Proposed Approach or Solving Rough Bi-Level Programming Problems by Genetic Algorithm M S Osman Department o Basic Science, Higher Technological Institute

More information

Some Star Related Vertex Odd Divisor Cordial Labeling of Graphs

Some Star Related Vertex Odd Divisor Cordial Labeling of Graphs Annals o Pure and Applied Mathematics Vol. 6, No., 08, 385-39 ISSN: 79-087X (P), 79-0888(online) Published on 6 February 08 www.researchmathsci.org DOI: http://dx.doi.org/0.457/apam.v6na5 Annals o Some

More information

DIHEDRAL GROUPS KEITH CONRAD

DIHEDRAL GROUPS KEITH CONRAD DIHEDRAL GROUPS KEITH CONRAD 1. Introduction For n 3, the dihedral group D n is defined as the rigid motions 1 taking a regular n-gon back to itself, with the operation being composition. These polygons

More information

INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 11

INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 11 INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 11 RAVI VAKIL Contents 1. Products 1 1.1. Products in the category of affine varieties, and in the category of varieties 2 2. Coming soon 5 Problem sets can be

More information

Direct Routing: Algorithms and Complexity

Direct Routing: Algorithms and Complexity Direct Routing: Algorithms and Complexity Costas Busch, RPI Malik Magdon-Ismail, RPI Marios Mavronicolas, Univ. Cyprus Paul Spirakis, Univ. Patras 1 Outline 1. Direct Routing. 2. Direct Routing is Hard.

More information

1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1

1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1 Asymptotics, Recurrence and Basic Algorithms 1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1 1. O(logn) 2. O(n) 3. O(nlogn) 4. O(n 2 ) 5. O(2 n ) 2. [1 pt] What is the solution

More information

Introduction to the h-principle

Introduction to the h-principle Introduction to the h-principle Kyler Siegel May 15, 2014 Contents 1 Introduction 1 2 Jet bundles and holonomic sections 2 3 Holonomic approximation 3 4 Applications 4 1 Introduction The goal of this talk

More information

Rough Connected Topologized. Approximation Spaces

Rough Connected Topologized. Approximation Spaces International Journal o Mathematical Analysis Vol. 8 04 no. 53 69-68 HIARI Ltd www.m-hikari.com http://dx.doi.org/0.988/ijma.04.4038 Rough Connected Topologized Approximation Spaces M. J. Iqelan Department

More information

CT5510: Computer Graphics. Transformation BOCHANG MOON

CT5510: Computer Graphics. Transformation BOCHANG MOON CT5510: Computer Graphics Transformation BOCHANG MOON 2D Translation Transformations such as rotation and scale can be represented using a matrix M.., How about translation? No way to express this using

More information

Relational Model: History

Relational Model: History Relational Model: History Objectives of Relational Model: 1. Promote high degree of data independence 2. Eliminate redundancy, consistency, etc. problems 3. Enable proliferation of non-procedural DML s

More information

DIHEDRAL GROUPS KEITH CONRAD

DIHEDRAL GROUPS KEITH CONRAD DIHEDRAL GROUPS KEITH CONRAD 1. Introduction For n 3, the dihedral group D n is defined as the rigid motions 1 of the plane preserving a regular n-gon, with the operation being composition. These polygons

More information

Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, ParametricFall equations / 17

Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, ParametricFall equations / 17 Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, Parametric equations Johns Hopkins University Fall 2014 Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, ParametricFall equations 2014 1 / 17

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014 Suggested Reading: Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 Probabilistic Modelling and Reasoning: The Junction

More information

Review of Sets. Review. Philippe B. Laval. Current Semester. Kennesaw State University. Philippe B. Laval (KSU) Sets Current Semester 1 / 16

Review of Sets. Review. Philippe B. Laval. Current Semester. Kennesaw State University. Philippe B. Laval (KSU) Sets Current Semester 1 / 16 Review of Sets Review Philippe B. Laval Kennesaw State University Current Semester Philippe B. Laval (KSU) Sets Current Semester 1 / 16 Outline 1 Introduction 2 Definitions, Notations and Examples 3 Special

More information

Introduction to Trees

Introduction to Trees Introduction to Trees Tandy Warnow December 28, 2016 Introduction to Trees Tandy Warnow Clades of a rooted tree Every node v in a leaf-labelled rooted tree defines a subset of the leafset that is below

More information

Extremal Graph Theory: Turán s Theorem

Extremal Graph Theory: Turán s Theorem Bridgewater State University Virtual Commons - Bridgewater State University Honors Program Theses and Projects Undergraduate Honors Program 5-9-07 Extremal Graph Theory: Turán s Theorem Vincent Vascimini

More information

CS100: DISCRETE STRUCTURES

CS100: DISCRETE STRUCTURES CS: DISCRETE STRUCTURES Computer Science Department Lecture : Set and Sets Operations (Ch2) Lecture Contents 2 Sets Definition. Some Important Sets. Notation used to describe membership in sets. How to

More information

Using a Projected Subgradient Method to Solve a Constrained Optimization Problem for Separating an Arbitrary Set of Points into Uniform Segments

Using a Projected Subgradient Method to Solve a Constrained Optimization Problem for Separating an Arbitrary Set of Points into Uniform Segments Using a Projected Subgradient Method to Solve a Constrained Optimization Problem or Separating an Arbitrary Set o Points into Uniorm Segments Michael Johnson May 31, 2011 1 Background Inormation The Airborne

More information

The λ-calculus. 1 Background on Computability. 2 Programming Paradigms and Functional Programming. 1.1 Alan Turing. 1.

The λ-calculus. 1 Background on Computability. 2 Programming Paradigms and Functional Programming. 1.1 Alan Turing. 1. The λ-calculus 1 Background on Computability The history o computability stretches back a long ways, but we ll start here with German mathematician David Hilbert in the 1920s. Hilbert proposed a grand

More information

Category Theory 3. Eugenia Cheng Department of Mathematics, University of Sheffield Draft: 8th November 2007

Category Theory 3. Eugenia Cheng Department of Mathematics, University of Sheffield   Draft: 8th November 2007 Category Theory 3 Eugenia Cheng Department of Mathematics, University of Sheffield E-mail: e.cheng@sheffield.ac.uk Draft: 8th November 2007 Contents 3 Functors: definition and examples 1 3.1 The definition.............................

More information

On partial order semantics for SAT/SMT-based symbolic encodings of weak memory concurrency

On partial order semantics for SAT/SMT-based symbolic encodings of weak memory concurrency On partial order semantics for SAT/SMT-based symbolic encodings of weak memory concurrency Alex Horn and Daniel Kroening University of Oxford April 30, 2015 Outline What s Our Problem? Motivation and Example

More information

Small CW -models for Eilenberg-Mac Lane spaces

Small CW -models for Eilenberg-Mac Lane spaces Small CW -models for Eilenberg-Mac Lane spaces in honour of Prof. Dr. Hans-Joachim Baues Bonn, March 2008 Clemens Berger (Nice) 1 Part 1. Simplicial sets. The simplex category is the category of finite

More information