Tutte Embeddings of Planar Graphs

Size: px
Start display at page:

Download "Tutte Embeddings of Planar Graphs"

Transcription

1 Spectral Graph Theory and its Applications Lectre 21 Ttte Embeddings o Planar Graphs Lectrer: Daniel A. Spielman November 30, Ttte s Theorem We sally think o graphs as being speciied by vertices and edges. Bt, planar graphs have another ndamental nit: aces. Formally, a ace in a planar graph is a minimal simple cycle o edges. Ttte proved that i one takes a 3-connected planar graph, ixes the vertices o one ace so that the vertices are the corners o a convex polygon, and the edges the edges, and then let every other vertex be the average o its neighbors, then one obtains a planar straight-line embedding o the graph. The only property that we will se o 3-connected graphs in the proo is that or every 5 vertices, v 0, v 1, s, t there are either vertex-disjoint paths rom v 0 to s and v 1 to t that do not go throgh, or vertex-disjoint paths rom v 0 to t and v 1 to s that do not go throgh. I ll present a proo o Ttte s theorem rom the paper One-Forms on Meshes and Applications to 3D Mesh Parameterization by Gortler, Gotsman and Thrston (Harvard CS TR-12-04). The only act abot Ttte embeddings that we will se in the proo is that every non-bondary vertex is a strict convex combination o its neighbors. That is, is can be written as a sm o its neighbors with non-zero coeicients Planarity Given some planar embedding o a planar graph, we can deine an orientation o the edges o every ace. By dealt, we will assme that the edges o all internal aces are oriented clockwise, and the external ace is oriented conter-clockwise. Whenever we consider an edge at a ace, we will consider it with its orientation. A Ttte embedding assigns to each vertex coordinates (x(), y()). We let (G, x, y) denote a Ttte embedding. For a ace in the graph, we say that the embedding o is convex i the polygon corresponding to the ace is convex. That is, i v 1,..., v k are the vertices on the ace in order, then no horizontal line crosses more than two o the edges (v i 1, v i ), where we take v 0 = v k. 21-1

2 Lectre 21: November 30, We say that the ace is strictly convex i in addition we have that 1. no edge has zero length, 2. the angle at each vertex lies strictly between 0 and π, and 3. the ace has non-zero area. (note that the third is implied by the irst and second). For a vertex, let v 1,..., v k denote its neighbors in order. We can then consider the angles in the embedding between v i 1 and v i at. We denote these angles α 1,..., α k. As is a convex combination o its neighbors, we have i α i 2π. We say that is a wheel i i α i = 2π. We say that is a strict wheel i in addition each α i is strictly between 0 and π. We will make se o the ollowing proposition, whose proo I leave as an exercise. Proposition I (G, x, y) is a Ttte embedding o a planar graph in which every internal ace is strictly convex and every internal vertex is a strict wheel, then it is a planar straight-line embedding o G. Or proo that Ttte embeddings are planar will ollow rom the ollowing two theorems. Theorem In a Ttte embedding o a planar graph, every ace is convex and every vertex is a wheel. Theorem In a Ttte embedding o a three-connected planar graph, there are no edges o zero length, no angles o 0 or π and no aces o zero volme Potentials We will begin by establishing the notation we need to prove Theorem Or irst step will be to deine a potential to be a map rom the vertex set o the graph to the reals: σ : V IR. We say that a potential is valid i or all edges (, v), σ() σ(v). We say that two edges (, v 0 ) and (, v 1 ) are a corner i, v 0 and v 1 all lie on some ace, with between v 0 and v 1 in the orientation o the ace. Given a potential, we deine a change to be a corner (, v 0 ), (, v 1 ) sch that 1. some ace contains both edges with orientation (v 0, ) and (, v 1 ), and 2. sign(σ() σ(v 0 )) sign(σ() σ(v 1 )). Note that a change can be associated with both the ace and the vertex. For each vertex, we deine changes() = the nmber o changes at

3 Lectre 21: November 30, and or each ace, we deine changes() = the nmber o changes at. Note that to conte the changes at we mst be carel to consider the orientations. Proposition For every valid potential, changes() = changes(). At aces, we will be more interested in the nmber o non-changes, deined by non changes() = the nmber o sides o changes(). Proposition For every valid potential on a planar graph changes() + non changes() = 2(V 2) + F, where V is the nmber o vertices and F is the nmber o aces in the graph. Proo. We have changes() + non changes() = changes() + (sides() changes()) = sides() = 2E, where E is the nmber o edges in the graph. The proposition now ollows rom Eler s Theorem, which says V E + F = 2. Given a potential, we will say that a vertex is bracketed by its neighbors i it has some neighbors v i and v j or which σ(v i ) σ() σ(v j ). The key to the proo o Theorem is: Lemma Let σ be a valid potential on a planar graph in which there are niqe vertices o maximm and minimm potential, and every other vertex is bracketed by its neighbors. Then, 1. For every non-extreme vertex, changes() = 2. and 2. For every ace, non changes() = 2.

4 Lectre 21: November 30, Proo. As each o the non-extreme vertices are bracketed by their neighbors, each o them mst have at least two changes. Similarly, or each ace, each local minimm and maximm o the potential mst contribte a non-change. So, each ace mst have at least two non-changes. Now, i each non-extreme vertex has the minimal possible nmber o changes, 2, each extreme vertex has no changes, and each ace has the minimal possible nmber o non-changes, 2, then we get changes() + non changes() = 2(V 2) + F. As this agrees with Proposition , each o these vales mst be at their minimm. For all bt a inite nmber o lines throgh the origin, the projection o a Ttte embedding onto that line is a potential satisying the conditions o Lemma Proo o Theorem Let (G, x, y) be a Ttte embedding, and let be a ace. I is not convex, then there is a continos amily o lines that ct in at least 4 edges. Ths, we can ind a line that cts in at least 4 edges sch that the projection o the embedding onto is a valid potential. Moreover, becase each vertex in a Ttte embedding is a convex combination o its neighbors, each non-extreme vertex is bracketed by its neighbors. However, between each consective pair o edges that are ct by the line, mst contain a local maximm or minimm. So, mst contain at least 4 non-changes, contradicting Lemma Similarly, i is not a wheel, then there mst be some line throgh intersecting at least or wedges o the orm (v i 1,, v i ) sch that the projection o the embedding onto is valid and bracketed. However, each o these wedges will contribte a change, contradicting Lemma Proo o Theorem Given a potential σ, we will call an edge (, v) degenerate i σ() = σ(v). We will call a corner (, v 0 ), (, v 1 ) degenerate i both its edges are degenerate. Finally, we will call a vertex degenerate i each o its edges is degenerate. In this section, we will prove Theorem Let (G, x, y) be a Ttte embedding o a 3-connected planar graph, and let σ be a potential obtained by projecting the embedding onto a line. Then, G has no degenerate corner nder σ. Beore proving this theorem, let s observe that it implies Theorem B.

5 Lectre 21: November 30, First, i there is an angle o 0 or π at a corner, (, v 0 ), (, v 1 ), then by projecting onto a line orthogonal to (, v 0 ), we obtain a potential nder which this corner is degenerate. To see that is implies there is no edge o zero length, let (, v 0 ) be sch an edge, and let (, v 1 ) be another edge that together with the irst orms a corner. Now, project the embedding onto a line perpendiclar to the line connecting to v 1. Then, the corner will be degenerate nder this embedding. To prove Theorem , we will irst prove that a degerate corner can only happen at a degernerate vertex. Lemma Let (G, x, y) be a Ttte embedding o a 3-connected planar graph, and let σ be a potential obtained by projecting the embedding onto a line. I (, v 0 ), (, v 1 ) is a degenerate corner, then mst be degenerate. Proo. We irst note that i were non-degenerate, then it wold have some neighbors v i and v j sch that v i < < v j. Let s be one o the vertices at which σ is maximized and let t be one o the vertices at which σ is minimized. Note that both o these mst lie on bondary ace. As the graph is three connected, there are either vertex-disjoint paths rom v 0 to s and v 1 to t that do not go throgh, or vertex-disjoint paths rom v 0 to t and v 1 to s that do not go throgh. Let s assme withot loss o generality that we are in the irst case. Then, there is a simple path in the graph rom t to v 1 to to v 0 to s. It is not too diiclt to show that there exists a valid bracketed potential τ sch that τ(w) τ(v) or all vertices w v, τ(t) = 1, τ(s) = 1, and τ is monotone strictly decreasing on this path. By now considering the potentials σ + ɛτ and σ ɛτ, or siciently small ɛ, we can show that 1. or one o these potentials, has at least 4 changes, and 2. or siciently small ɛ, both o these potentials are bracketed. Ths, we obtain a contradiction to Lemma Finally, we observe that Lemma can be sed to show that i there is any degenerate corner, then every interior vertex is degenerate. To prove this, consider a degenerate vertex, and two o

6 Lectre 21: November 30, its neighbors v 0 and v 1. I there is no edge between v 0 and v 1, add one. The graph remains planar, 3-connected, and the embedding remains a Ttte embedding since v 0 and v 1 mapped to the same point anyway. Now, v 0 has a degenerate corner (v 0, ), (v 0, v 1 ), so v 0 mst be degernate, and so on.

Tutte s Theorem: How to draw a graph

Tutte s Theorem: How to draw a graph Spectral Graph Theory Lecture 15 Tutte s Theorem: How to draw a graph Daniel A. Spielman October 22, 2018 15.1 Overview We prove Tutte s theorem [Tut63], which shows how to use spring embeddings to obtain

More information

arxiv: v1 [cs.cg] 6 Aug 2016

arxiv: v1 [cs.cg] 6 Aug 2016 Embedding graphs into embedded graphs Radoslav Flek arxiv:1608.02087v1 [cs.cg] 6 Ag 2016 Abstract A drawing o a graph G in the plane is weakly simple i it can be trned into an embedding by an arbitrarily

More information

Tri-Edge-Connectivity Augmentation for Planar Straight Line Graphs

Tri-Edge-Connectivity Augmentation for Planar Straight Line Graphs Tri-Edge-Connectivity Agmentation for Planar Straight Line Graphs Marwan Al-Jbeh 1, Mashhood Ishaqe 1, Kristóf Rédei 1, Diane L. Sovaine 1, and Csaba D. Tóth 1,2 1 Department of Compter Science, Tfts University,

More information

Triangle-Free Planar Graphs as Segments Intersection Graphs

Triangle-Free Planar Graphs as Segments Intersection Graphs Triangle-ree Planar Graphs as Segments Intersection Graphs N. de Castro 1,.J.Cobos 1, J.C. Dana 1,A.Márqez 1, and M. Noy 2 1 Departamento de Matemática Aplicada I Universidad de Sevilla, Spain {natalia,cobos,dana,almar}@cica.es

More information

Ma/CS 6b Class 11: Kuratowski and Coloring

Ma/CS 6b Class 11: Kuratowski and Coloring Ma/CS 6b Class 11: Kuratowski and Coloring By Adam Sheffer Kuratowski's Theorem Theorem. A graph is planar if and only if it does not have K 5 and K 3,3 as topological minors. We know that if a graph contains

More information

Generell Topologi. Richard Williamson. May 6, 2013

Generell Topologi. Richard Williamson. May 6, 2013 Generell Topologi Richard Williamson May 6, Thursday 7th January. Basis o a topological space generating a topology with a speciied basis standard topology on R examples Deinition.. Let (, O) be a topological

More information

Pentagon contact representations

Pentagon contact representations Pentagon contact representations Stean Felsner Institut ür Mathematik Technische Universität Berlin Hendrik Schrezenmaier Institut ür Mathematik Technische Universität Berlin August, 017 Raphael Steiner

More information

Multiple-Choice Test Chapter Golden Section Search Method Optimization COMPLETE SOLUTION SET

Multiple-Choice Test Chapter Golden Section Search Method Optimization COMPLETE SOLUTION SET Mltiple-Choice Test Chapter 09.0 Golden Section Search Method Optimization COMPLETE SOLUTION SET. Which o the ollowing statements is incorrect regarding the Eqal Interval Search and Golden Section Search

More information

WHEN DO THREE LONGEST PATHS HAVE A COMMON VERTEX?

WHEN DO THREE LONGEST PATHS HAVE A COMMON VERTEX? WHEN DO THREE LONGEST PATHS HAVE A COMMON VERTEX? MARIA AXENOVICH Abstract. It is well known that any two longest paths in a connected graph share a vertex. It is also known that there are connected graphs

More information

Henneberg Steps for Triangle Representations

Henneberg Steps for Triangle Representations Henneberg Steps or Triangle Representations Nieke Aerts and Stean Felsner {aerts,elsner}@math.t-berlin.de Technische Uniersität Berlin Institt ür Mathematik Strasse des 17. Jni 136 10623 Berlin, Germany

More information

Rough Connected Topologized. Approximation Spaces

Rough Connected Topologized. Approximation Spaces International Journal o Mathematical Analysis Vol. 8 04 no. 53 69-68 HIARI Ltd www.m-hikari.com http://dx.doi.org/0.988/ijma.04.4038 Rough Connected Topologized Approximation Spaces M. J. Iqelan Department

More information

COMPOSITION OF STABLE SET POLYHEDRA

COMPOSITION OF STABLE SET POLYHEDRA COMPOSITION OF STABLE SET POLYHEDRA Benjamin McClosky and Illya V. Hicks Department of Comptational and Applied Mathematics Rice University November 30, 2007 Abstract Barahona and Mahjob fond a defining

More information

Introduction to Computational Manifolds and Applications

Introduction to Computational Manifolds and Applications IMPA - Institto de Matemática Pra e Aplicada, Rio de Janeiro, RJ, Brazil Introdction to Comptational Manifolds and Applications Part 1 - Constrctions Prof. Marcelo Ferreira Siqeira mfsiqeira@dimap.frn.br

More information

arxiv: v1 [cs.cg] 26 Sep 2018

arxiv: v1 [cs.cg] 26 Sep 2018 Convex partial transversals of planar regions arxiv:1809.10078v1 [cs.cg] 26 Sep 2018 Vahideh Keikha Department of Mathematics and Compter Science, University of Sistan and Balchestan, Zahedan, Iran va.keikha@gmail.com

More information

EECS 487: Interactive Computer Graphics f

EECS 487: Interactive Computer Graphics f Interpolating Key Vales EECS 487: Interactive Compter Graphics f Keys Lectre 33: Keyframe interpolation and splines Cbic splines The key vales of each variable may occr at different frames The interpolation

More information

Alliances and Bisection Width for Planar Graphs

Alliances and Bisection Width for Planar Graphs Alliances and Bisection Width for Planar Graphs Martin Olsen 1 and Morten Revsbæk 1 AU Herning Aarhs University, Denmark. martino@hih.a.dk MADAGO, Department of Compter Science Aarhs University, Denmark.

More information

Lecture 3: Art Gallery Problems and Polygon Triangulation

Lecture 3: Art Gallery Problems and Polygon Triangulation EECS 396/496: Computational Geometry Fall 2017 Lecture 3: Art Gallery Problems and Polygon Triangulation Lecturer: Huck Bennett In this lecture, we study the problem of guarding an art gallery (specified

More information

Lemma 1 Let the components of, Suppose. Trees. A tree is a graph which is. (a) Connected and. (b) has no cycles (acyclic). (b)

Lemma 1 Let the components of, Suppose. Trees. A tree is a graph which is. (a) Connected and. (b) has no cycles (acyclic). (b) Trees Lemma Let the components of ppose "! be (a) $&%('*)+ - )+ / A tree is a graph which is (b) 0 %(')+ - 3)+ / 6 (a) (a) Connected and (b) has no cycles (acyclic) (b) roof Eery path 8 in which is not

More information

Augmenting the edge connectivity of planar straight line graphs to three

Augmenting the edge connectivity of planar straight line graphs to three Agmenting the edge connectivity of planar straight line graphs to three Marwan Al-Jbeh Mashhood Ishaqe Kristóf Rédei Diane L. Sovaine Csaba D. Tóth Pavel Valtr Abstract We characterize the planar straight

More information

A sufficient condition for spiral cone beam long object imaging via backprojection

A sufficient condition for spiral cone beam long object imaging via backprojection A sfficient condition for spiral cone beam long object imaging via backprojection K. C. Tam Siemens Corporate Research, Inc., Princeton, NJ, USA Abstract The response of a point object in cone beam spiral

More information

Math 5593 Linear Programming Lecture Notes

Math 5593 Linear Programming Lecture Notes Math 5593 Linear Programming Lecture Notes Unit II: Theory & Foundations (Convex Analysis) University of Colorado Denver, Fall 2013 Topics 1 Convex Sets 1 1.1 Basic Properties (Luenberger-Ye Appendix B.1).........................

More information

Ice-Creams and Wedge Graphs

Ice-Creams and Wedge Graphs Ice-Creams and Wedge Graphs Eyal Ackerman Tsachik Gelander Rom Pinchasi Abstract What is the minimum angle α > such that given any set of α-directional antennas (that is, antennas each of which can communicate

More information

Piecewise polynomial interpolation

Piecewise polynomial interpolation Chapter 2 Piecewise polynomial interpolation In ection.6., and in Lab, we learned that it is not a good idea to interpolate unctions by a highorder polynomials at equally spaced points. However, it transpires

More information

Ma Lesson 18 Section 1.7

Ma Lesson 18 Section 1.7 Ma 15200 Lesson 18 Section 1.7 I Representing an Ineqality There are 3 ways to represent an ineqality. (1) Using the ineqality symbol (sometime within set-bilder notation), (2) sing interval notation,

More information

GABRIEL C. DRUMMOND-COLE

GABRIEL C. DRUMMOND-COLE MILY RIHL: -CTGORIS FROM SCRTCH (TH SIC TWO-CTGORY THORY) GRIL C. DRUMMOND-COL I m trying to be really gentle on the category theory, within reason. So in particular, I m expecting a lot o people won t

More information

On the perimeter of k pairwise disjoint convex bodies contained in a convex set in the plane

On the perimeter of k pairwise disjoint convex bodies contained in a convex set in the plane On the perimeter of k pairwise disjoint convex bodies contained in a convex set in the plane Rom Pinchasi August 2, 214 Abstract We prove the following isoperimetric inequality in R 2, conjectured by Glazyrin

More information

Planar Graphs 2, the Colin de Verdière Number

Planar Graphs 2, the Colin de Verdière Number Spectral Graph Theory Lecture 26 Planar Graphs 2, the Colin de Verdière Number Daniel A. Spielman December 4, 2009 26.1 Introduction In this lecture, I will introduce the Colin de Verdière number of a

More information

Rubber bands. Chapter Rubber band representation

Rubber bands. Chapter Rubber band representation Chapter 1 Rubber bands In the previous chapter, we already used the idea of looking at the graph geometrically, by placing its nodes on the line and replacing the edges by rubber bands. Since, however,

More information

Computing NodeTrix Representations of Clustered Graphs

Computing NodeTrix Representations of Clustered Graphs Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 22, no. 2, pp. 139 176 (2018) DOI: 10.7155/jgaa.00461 Computing NodeTrix Representations of Clustered Graphs Giordano Da Lozzo Giuseppe

More information

Hyperbolic structures and triangulations

Hyperbolic structures and triangulations CHAPTER Hyperbolic structures and triangulations In chapter 3, we learned that hyperbolic structures lead to developing maps and holonomy, and that the developing map is a covering map if and only if the

More information

Which n-venn diagrams can be drawn with convex k-gons?

Which n-venn diagrams can be drawn with convex k-gons? Which n-venn diagrams can be drawn with convex k-gons? Jeremy Carroll Frank Ruskey Mark Weston Abstract We establish a new lower bound for the number of sides required for the component curves of simple

More information

arxiv: v2 [cs.cg] 24 Jul 2011

arxiv: v2 [cs.cg] 24 Jul 2011 Ice-Creams and Wedge Graphs Eyal Ackerman Tsachik Gelander Rom Pinchasi Abstract arxiv:116.855v2 [cs.cg] 24 Jul 211 What is the minimum angle α > such that given any set of α-directional antennas (that

More information

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem Chapter 8 Voronoi Diagrams 8.1 Post Oce Problem Suppose there are n post oces p 1,... p n in a city. Someone who is located at a position q within the city would like to know which post oce is closest

More information

The Disciplined Flood Protocol in Sensor Networks

The Disciplined Flood Protocol in Sensor Networks The Disciplined Flood Protocol in Sensor Networks Yong-ri Choi and Mohamed G. Goda Department of Compter Sciences The University of Texas at Astin, U.S.A. fyrchoi, godag@cs.texas.ed Hssein M. Abdel-Wahab

More information

h-vectors of PS ear-decomposable graphs

h-vectors of PS ear-decomposable graphs h-vectors of PS ear-decomposable graphs Nima Imani 2, Lee Johnson 1, Mckenzie Keeling-Garcia 1, Steven Klee 1 and Casey Pinckney 1 1 Seattle University Department of Mathematics, 901 12th Avene, Seattle,

More information

A Class of Non-Linear Time Scaling Functions For Smooth Time Optimal Control Along Specified Paths

A Class of Non-Linear Time Scaling Functions For Smooth Time Optimal Control Along Specified Paths A Class o Non-Linear Time Scaling Fnctions For Smooth Time Optimal Control Along Speciied Paths Arn Kmar Singh and K.Madhava Krishna Abstract Compting time optimal motions along speciied paths orms an

More information

Lecture 5: Duality Theory

Lecture 5: Duality Theory Lecture 5: Duality Theory Rajat Mittal IIT Kanpur The objective of this lecture note will be to learn duality theory of linear programming. We are planning to answer following questions. What are hyperplane

More information

On Plane Constrained Bounded-Degree Spanners

On Plane Constrained Bounded-Degree Spanners Algorithmica manscript No. (ill be inserted by the editor) 1 On Plane Constrained Bonded-Degree Spanners 2 3 Prosenjit Bose Rolf Fagerberg André an Renssen Sander Verdonschot 4 5 Receied: date / Accepted:

More information

Constrained Routing Between Non-Visible Vertices

Constrained Routing Between Non-Visible Vertices Constrained Roting Between Non-Visible Vertices Prosenjit Bose 1, Matias Korman 2, André van Renssen 3,4, and Sander Verdonschot 1 1 School of Compter Science, Carleton University, Ottawa, Canada. jit@scs.carleton.ca,

More information

Picking and Curves Week 6

Picking and Curves Week 6 CS 48/68 INTERACTIVE COMPUTER GRAPHICS Picking and Crves Week 6 David Breen Department of Compter Science Drexel University Based on material from Ed Angel, University of New Mexico Objectives Picking

More information

Global Constraints. Combinatorial Problem Solving (CPS) Enric Rodríguez-Carbonell (based on materials by Javier Larrosa) February 22, 2019

Global Constraints. Combinatorial Problem Solving (CPS) Enric Rodríguez-Carbonell (based on materials by Javier Larrosa) February 22, 2019 Global Constraints Combinatorial Problem Solving (CPS) Enric Rodríguez-Carbonell (based on materials by Javier Larrosa) February 22, 2019 Global Constraints Global constraints are classes o constraints

More information

9.8 Graphing Rational Functions

9.8 Graphing Rational Functions 9. Graphing Rational Functions Lets begin with a deinition. Deinition: Rational Function A rational unction is a unction o the orm P where P and Q are polynomials. Q An eample o a simple rational unction

More information

Topological Drawings of Complete Bipartite Graphs

Topological Drawings of Complete Bipartite Graphs Topological Drawings of Complete Bipartite Graphs Jean Cardinal Stefan Felsner y Febrary 017 Abstract Topological drawings are natral representations of graphs in the plane, where vertices are represented

More information

CS6100: Topics in Design and Analysis of Algorithms

CS6100: Topics in Design and Analysis of Algorithms CS6100: Topics in Design and Analysis of Algorithms Guarding and Triangulating Polygons John Augustine CS6100 (Even 2012): Guarding and Triangulating Polygons The Art Gallery Problem A simple polygon is

More information

arxiv: v3 [math.co] 7 Sep 2018

arxiv: v3 [math.co] 7 Sep 2018 Cts in matchings of 3-connected cbic graphs Kolja Knaer Petr Valicov arxiv:1712.06143v3 [math.co] 7 Sep 2018 September 10, 2018 Abstract We discss conjectres on Hamiltonicity in cbic graphs (Tait, Barnette,

More information

Preferred directions for resolving the non-uniqueness of Delaunay triangulations

Preferred directions for resolving the non-uniqueness of Delaunay triangulations Preferred directions for resolving the non-uniqueness of Delaunay triangulations Christopher Dyken and Michael S. Floater Abstract: This note proposes a simple rule to determine a unique triangulation

More information

Nash Convergence of Gradient Dynamics in General-Sum Games. Michael Kearns.

Nash Convergence of Gradient Dynamics in General-Sum Games. Michael Kearns. Convergence of Gradient Dynamics in General-Sm Games Satinder Singh AT&T Labs Florham Park, NJ 7932 bavejaresearch.att.com Michael Kearns AT&T Labs Florham Park, NJ 7932 mkearnsresearch.att.com Yishay

More information

Two-bridge knots and links

Two-bridge knots and links CHAPTER 0 Two-bridge knots and links In this chapter we will study in detail a class of knots and links that has particularly nice geometry, namely the class of 2-bridge knots and links. The key property

More information

Combinatorial Geometry & Topology arising in Game Theory and Optimization

Combinatorial Geometry & Topology arising in Game Theory and Optimization Combinatorial Geometry & Topology arising in Game Theory and Optimization Jesús A. De Loera University of California, Davis LAST EPISODE... We discuss the content of the course... Convex Sets A set is

More information

Computational Geometry

Computational Geometry Motivation Motivation Polygons and visibility Visibility in polygons Triangulation Proof of the Art gallery theorem Two points in a simple polygon can see each other if their connecting line segment is

More information

The angle measure at for example the vertex A is denoted by m A, or m BAC.

The angle measure at for example the vertex A is denoted by m A, or m BAC. MT 200 ourse notes on Geometry 5 2. Triangles and congruence of triangles 2.1. asic measurements. Three distinct lines, a, b and c, no two of which are parallel, form a triangle. That is, they divide the

More information

Lecture 2 - Introduction to Polytopes

Lecture 2 - Introduction to Polytopes Lecture 2 - Introduction to Polytopes Optimization and Approximation - ENS M1 Nicolas Bousquet 1 Reminder of Linear Algebra definitions Let x 1,..., x m be points in R n and λ 1,..., λ m be real numbers.

More information

Parameterization. Michael S. Floater. November 10, 2011

Parameterization. Michael S. Floater. November 10, 2011 Parameterization Michael S. Floater November 10, 2011 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to generate from point

More information

MTL 776: Graph Algorithms. B S Panda MZ 194

MTL 776: Graph Algorithms. B S Panda MZ 194 MTL 776: Graph Algorithms B S Panda MZ 194 bspanda@maths.iitd.ac.in bspanda1@gmail.com Lectre-1: Plan Definitions Types Terminology Sb-graphs Special types of Graphs Representations Graph Isomorphism Definitions

More information

Restricted-Orientation Convexity in Higher-Dimensional Spaces

Restricted-Orientation Convexity in Higher-Dimensional Spaces Restricted-Orientation Convexity in Higher-Dimensional Spaces ABSTRACT Eugene Fink Derick Wood University of Waterloo, Waterloo, Ont, Canada N2L3G1 {efink, dwood}@violetwaterlooedu A restricted-oriented

More information

Polygon Triangulation. (slides partially by Daniel Vlasic )

Polygon Triangulation. (slides partially by Daniel Vlasic ) Polygon Triangulation (slides partially by Daniel Vlasic ) Triangulation: Definition Triangulation of a simple polygon P: decomposition of P into triangles by a maximal set of non-intersecting diagonals

More information

AM 221: Advanced Optimization Spring 2016

AM 221: Advanced Optimization Spring 2016 AM 221: Advanced Optimization Spring 2016 Prof. Yaron Singer Lecture 2 Wednesday, January 27th 1 Overview In our previous lecture we discussed several applications of optimization, introduced basic terminology,

More information

EULER S FORMULA AND THE FIVE COLOR THEOREM

EULER S FORMULA AND THE FIVE COLOR THEOREM EULER S FORMULA AND THE FIVE COLOR THEOREM MIN JAE SONG Abstract. In this paper, we will define the necessary concepts to formulate map coloring problems. Then, we will prove Euler s formula and apply

More information

Solutions to problem set 1

Solutions to problem set 1 Massachusetts Institute of Technology Handout 5 6.838: Geometric Computation October 4, 2001 Professors Piotr Indyk and Seth Teller Solutions to problem set 1 (mostly taken from the solution set of Jan

More information

Topology 550A Homework 3, Week 3 (Corrections: February 22, 2012)

Topology 550A Homework 3, Week 3 (Corrections: February 22, 2012) Topology 550A Homework 3, Week 3 (Corrections: February 22, 2012) Michael Tagare De Guzman January 31, 2012 4A. The Sorgenfrey Line The following material concerns the Sorgenfrey line, E, introduced in

More information

EC 521 MATHEMATICAL METHODS FOR ECONOMICS. Lecture 2: Convex Sets

EC 521 MATHEMATICAL METHODS FOR ECONOMICS. Lecture 2: Convex Sets EC 51 MATHEMATICAL METHODS FOR ECONOMICS Lecture : Convex Sets Murat YILMAZ Boğaziçi University In this section, we focus on convex sets, separating hyperplane theorems and Farkas Lemma. And as an application

More information

Polygon Triangulation. (slides partially by Daniel Vlasic )

Polygon Triangulation. (slides partially by Daniel Vlasic ) Polygon Triangulation (slides partially by Daniel Vlasic ) Triangulation: Definition Triangulation of a simple polygon P: decomposition of P into triangles by a maximal set of non-intersecting diagonals

More information

THE INSULATION SEQUENCE OF A GRAPH

THE INSULATION SEQUENCE OF A GRAPH THE INSULATION SEQUENCE OF A GRAPH ELENA GRIGORESCU Abstract. In a graph G, a k-insulated set S is a subset of the vertices of G such that every vertex in S is adjacent to at most k vertices in S, and

More information

The Domination and Competition Graphs of a Tournament. University of Colorado at Denver, Denver, CO K. Brooks Reid 3

The Domination and Competition Graphs of a Tournament. University of Colorado at Denver, Denver, CO K. Brooks Reid 3 The omination and Competition Graphs of a Tornament avid C. Fisher, J. Richard Lndgren 1, Sarah K. Merz University of Colorado at enver, enver, CO 817 K. rooks Reid California State University, San Marcos,

More information

Monotone Paths in Geometric Triangulations

Monotone Paths in Geometric Triangulations Monotone Paths in Geometric Triangulations Adrian Dumitrescu Ritankar Mandal Csaba D. Tóth November 19, 2017 Abstract (I) We prove that the (maximum) number of monotone paths in a geometric triangulation

More information

CS 153 Design of Operating Systems

CS 153 Design of Operating Systems CS 153 Design of Operating Systems Spring 18 Lectre 23: File Systems (2) Instrctor: Chengy Song Slide contribtions from Nael Ab-Ghazaleh, Harsha Madhyvasta and Zhiyn Qian Last time Abstractions for the

More information

Representing a Cubic Graph as the Intersection Graph of Axis-parallel Boxes in Three Dimensions

Representing a Cubic Graph as the Intersection Graph of Axis-parallel Boxes in Three Dimensions Representing a Cbic Graph as the Intersection Graph of Axis-parallel Boxes in Three Dimensions ABSTRACT Abhijin Adiga Network Dynamics and Simlation Science Laboratory Virginia Bioinformatics Institte,

More information

Lecture 10. Diffraction. incident

Lecture 10. Diffraction. incident 1 Introdction Lectre 1 Diffraction It is qite often the case that no line-of-sight path exists between a cell phone and a basestation. In other words there are no basestations that the cstomer can see

More information

Tripod Configurations

Tripod Configurations Tripod Configurations Eric Chen, Nick Lourie, Nakul Luthra Summer@ICERM 2013 August 8, 2013 Eric Chen, Nick Lourie, Nakul Luthra (S@I) Tripod Configurations August 8, 2013 1 / 33 Overview 1 Introduction

More information

Pebble Sets in Convex Polygons

Pebble Sets in Convex Polygons 2 1 Pebble Sets in Convex Polygons Kevin Iga, Randall Maddox June 15, 2005 Abstract Lukács and András posed the problem of showing the existence of a set of n 2 points in the interior of a convex n-gon

More information

Approximate Algorithms for Touring a Sequence of Polygons

Approximate Algorithms for Touring a Sequence of Polygons Approximate Algorithms for Touring a Sequence of Polygons Fajie Li 1 and Reinhard Klette 2 1 Institute for Mathematics and Computing Science, University of Groningen P.O. Box 800, 9700 AV Groningen, The

More information

1 The Traveling Salesperson Problem (TSP)

1 The Traveling Salesperson Problem (TSP) CS 598CSC: Approximation Algorithms Lecture date: January 23, 2009 Instructor: Chandra Chekuri Scribe: Sungjin Im In the previous lecture, we had a quick overview of several basic aspects of approximation

More information

On Plane Constrained Bounded-Degree Spanners

On Plane Constrained Bounded-Degree Spanners On Plane Constrained Bonded-Degree Spanners Prosenjit Bose 1, Rolf Fagerberg 2, André an Renssen 1, Sander Verdonschot 1 1 School of Compter Science, Carleton Uniersity, Ottaa, Canada. Email: jit@scs.carleton.ca,

More information

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if POLYHEDRAL GEOMETRY Mathematical Programming Niels Lauritzen 7.9.2007 Convex functions and sets Recall that a subset C R n is convex if {λx + (1 λ)y 0 λ 1} C for every x, y C and 0 λ 1. A function f :

More information

Triangle in a brick. Department of Geometry, Budapest University of Technology and Economics, H-1521 Budapest, Hungary. September 15, 2010

Triangle in a brick. Department of Geometry, Budapest University of Technology and Economics, H-1521 Budapest, Hungary. September 15, 2010 Triangle in a brick Á.G.Horváth Department of Geometry, udapest University of Technology Economics, H-151 udapest, Hungary September 15, 010 bstract In this paper we shall investigate the following problem:

More information

A GENERIC MODEL OF A BASE-ISOLATED BUILDING

A GENERIC MODEL OF A BASE-ISOLATED BUILDING Chapter 5 A GENERIC MODEL OF A BASE-ISOLATED BUILDING This chapter draws together the work o Chapters 3 and 4 and describes the assembly o a generic model o a base-isolated bilding. The irst section describes

More information

Partitioning Orthogonal Polygons by Extension of All Edges Incident to Reflex Vertices: lower and upper bounds on the number of pieces

Partitioning Orthogonal Polygons by Extension of All Edges Incident to Reflex Vertices: lower and upper bounds on the number of pieces Partitioning Orthogonal Polygons by Extension of All Edges Incident to Reflex Vertices: lower and upper bounds on the number of pieces António Leslie Bajuelos 1, Ana Paula Tomás and Fábio Marques 3 1 Dept.

More information

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality Planar Graphs In the first half of this book, we consider mostly planar graphs and their geometric representations, mostly in the plane. We start with a survey of basic results on planar graphs. This chapter

More information

Let and be a differentiable function. Let Then be the level surface given by

Let and be a differentiable function. Let Then be the level surface given by Module 12 : Total differential, Tangent planes and normals Lecture 35 : Tangent plane and normal [Section 35.1] > Objectives In this section you will learn the following : The notion tangent plane to a

More information

Geometric structures on manifolds

Geometric structures on manifolds CHAPTER 3 Geometric structures on manifolds In this chapter, we give our first examples of hyperbolic manifolds, combining ideas from the previous two chapters. 3.1. Geometric structures 3.1.1. Introductory

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

Decision Procedures in First Order Logic

Decision Procedures in First Order Logic in irst Order Logic for Equality Logic Part III for Equality Logic and Uninterpreted unctions Algorithm I rom Equality to Propositional Logic Adding transitivity constraints Making the graph chordal An

More information

One-to-One Piecewise Linear Mappings Over Triangulations

One-to-One Piecewise Linear Mappings Over Triangulations One-to-One Piecewise Linear Mappings Over Triangulations Michael S. Floater Presentation by Elif Tosun Geometric Modeling Fall 02 Outline Introduction Triangulations Convex Combination Mappings Proof:

More information

Delaunay Triangulations. Presented by Glenn Eguchi Computational Geometry October 11, 2001

Delaunay Triangulations. Presented by Glenn Eguchi Computational Geometry October 11, 2001 Delaunay Triangulations Presented by Glenn Eguchi 6.838 Computational Geometry October 11, 2001 Motivation: Terrains Set of data points A R 2 Height ƒ(p) defined at each point p in A How can we most naturally

More information

EXTREME POINTS AND AFFINE EQUIVALENCE

EXTREME POINTS AND AFFINE EQUIVALENCE EXTREME POINTS AND AFFINE EQUIVALENCE The purpose of this note is to use the notions of extreme points and affine transformations which are studied in the file affine-convex.pdf to prove that certain standard

More information

Pantographs and cyclicity

Pantographs and cyclicity 35 antographs and cyclicity John Boris Miller Abstract Every parallelogram Λ generates a doubly-infinite family of quadrilaterals called its pantograph. The types of quadrilaterals so arising can be characterised

More information

Chapter 6. Planar Orientations. 6.1 Numberings of Digraphs

Chapter 6. Planar Orientations. 6.1 Numberings of Digraphs Chapter 6 Planar Orientations In this chapter we will focus on algorithms and techniques used for drawing planar graphs. The algorithms we will use are based on numbering the vertices and orienting the

More information

Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem

Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem David Glickenstein November 26, 2008 1 Graph minors Let s revisit some de nitions. Let G = (V; E) be a graph. De nition 1 Removing

More information

Veering triangulations admit strict angle structures

Veering triangulations admit strict angle structures Veering triangulations admit strict angle structures Craig Hodgson University of Melbourne Joint work with Hyam Rubinstein, Henry Segerman and Stephan Tillmann. Geometric Triangulations We want to understand

More information

Area, perimeter and volume

Area, perimeter and volume s 3 3 88 Area, erimeter and volme Exlanation Level A good starting oint is to know the dierence etween D shaes and 3D shaes. D shaes have two dimensions: length and width. They have no deth. They are lat

More information

Drawing Planar Graphs

Drawing Planar Graphs Drawing Planar Graphs Lucie Martinet November 9, 00 Introduction The field of planar graph drawing has become more and more important since the late 960 s. Although its first uses were mainly industrial,

More information

2 A topological interlude

2 A topological interlude 2 A topological interlude 2.1 Topological spaces Recall that a topological space is a set X with a topology: a collection T of subsets of X, known as open sets, such that and X are open, and finite intersections

More information

CS 532: 3D Computer Vision 14 th Set of Notes

CS 532: 3D Computer Vision 14 th Set of Notes 1 CS 532: 3D Computer Vision 14 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Triangulating

More information

Polygon Partitioning. Lecture03

Polygon Partitioning. Lecture03 1 Polygon Partitioning Lecture03 2 History of Triangulation Algorithms 3 Outline Monotone polygon Triangulation of monotone polygon Trapezoidal decomposition Decomposition in monotone mountain Convex decomposition

More information

by conservation of flow, hence the cancelation. Similarly, we have

by conservation of flow, hence the cancelation. Similarly, we have Chapter 13: Network Flows and Applications Network: directed graph with source S and target T. Non-negative edge weights represent capacities. Assume no edges into S or out of T. (If necessary, we can

More information

The Graph of an Equation Graph the following by using a table of values and plotting points.

The Graph of an Equation Graph the following by using a table of values and plotting points. Calculus Preparation - Section 1 Graphs and Models Success in math as well as Calculus is to use a multiple perspective -- graphical, analytical, and numerical. Thanks to Rene Descartes we can represent

More information

CS 153 Design of Operating Systems

CS 153 Design of Operating Systems CS 53 Design of Operating Systems Spring 8 Lectre 9: Locality and Cache Instrctor: Chengy Song Slide contribtions from Nael Ab-Ghazaleh, Harsha Madhyvasta and Zhiyn Qian Some slides modified from originals

More information

Basic Euclidean Geometry

Basic Euclidean Geometry hapter 1 asic Euclidean Geometry This chapter is not intended to be a complete survey of basic Euclidean Geometry, but rather a review for those who have previously taken a geometry course For a definitive

More information

One-Forms on Meshes and Applications to 3D Mesh Parameterization

One-Forms on Meshes and Applications to 3D Mesh Parameterization One-Forms on Meshes and Applications to 3D Mesh Parameterization Steven J. Gortler Craig Gotsman Dylan Thurston Computer Science Dept. Computer Science Dept. Mathematics Dept. Harvard University Harvard

More information

Line Arrangement. Chapter 6

Line Arrangement. Chapter 6 Line Arrangement Chapter 6 Line Arrangement Problem: Given a set L of n lines in the plane, compute their arrangement which is a planar subdivision. Line Arrangements Problem: Given a set L of n lines

More information