Escher s Tessellations: The Symmetry of Wallpaper Patterns II. Symmetry II

Size: px
Start display at page:

Download "Escher s Tessellations: The Symmetry of Wallpaper Patterns II. Symmetry II"

Transcription

1 Escher s Tessellations: The Symmetry of Wallpaper Patterns II Symmetry II 1/38

2 Brief Review of the Last Class Last time we started to talk about the symmetry of wallpaper patterns. Recall that these are pictures with translational symmetry in two directions. Escher s tessellations are great examples. We discussed that there are certain movements of a picture (viewing it as a piece of an infinite picture) which, when made, superimpose the picture upon itself. The movements we discussed are called isometries. On Monday we discussed three types of isometries: translations, rotations, and reflections. Symmetry II 2/38

3 Translations Symmetry II 3/38

4 Rotations Symmetry II 4/38

5 Reflections Symmetry II 5/38

6 This picture has rotational symmetry. We can do a quarter turn rotation (90 ) and have the picture superimpose upon itself (if we ignore color). There are also half turns (180 ). There is no reflectional symmetry. Symmetry II 6/38

7 This picture has reflectional symmetry. The vertical lines through the backbones of the beetles are reflection lines. Symmetry II 7/38

8 What symmetry can we find in this picture? Symmetry II 8/38

9 Clicker Question What rotational symmetry is in this picture? A Quarter turn only B Half turn only C Quarter and half turn only D None E Something else Symmetry II 9/38

10 What about this picture? Symmetry II 10/38

11 Clicker Question Besides translational, what symmetry do you see? A Rotational only B Reflectional only C Rotational and reflectional Symmetry II 11/38

12 Combining Isometries Another way to build isometries is to perform two consecutively. One example is to do a reflection followed by a translation. This is important enough to be named. It is called a glide reflection. Symmetry II 12/38

13 Glide Reflections Symmetry II 13/38

14 If we perform two isometries consecutively, using any of the four types above, the end result will again be one of the four types. Thus, any isometry is one of the four types: translations, rotations, reflections, glide reflections. Escher made heavy use of glide reflections as we will illustrate with several pictures. There are some mathematical ideas behind glide reflections that Escher had to discover in order to draw pictures demonstrating glides. Note that in the pictures below, there are glide reflections, which are built from a reflection and a translation, in which neither the reflection nor the translation is a symmetry of the picture, only the combination. Symmetry II 14/38

15 Symmetry II 15/38

16 If you reflect the picture vertically and then shift an appropriate amount, the picture will superimpose upon itself. The resulting glide reflection is a symmetry of the picture, while the vertical reflection or the translation are not symmetries of the picture. The amount of shift in the glide reflection is shown in the next picture. We can view the reflection as being along the vertical line connecting the white horsemen s chins. The symmetry in the following pictures is probably the most common in Escher s tessellations. Symmetry II 16/38

17 Symmetry II 17/38

18 This picture has the same symmetry as the previous one, in that there are translational and glide reflectional symmetry and nothing else. Symmetry II 18/38

19 In each of these three pictures Escher used a glide reflection starting with a vertical reflection. Symmetry II 19/38

20 The amount of vertical shift in the glide is exactly half of the smallest vertical translation. This can be proven mathematically, and Escher had to discover this to make his drawings. Symmetry II 20/38

21 Different Combinations of Symmetry One can have rotational symmetry (180 ) along with glide reflectional symmetry. Symmetry II 21/38

22 One can also have rotational symmetry (120, one third turn) but no reflectional or glide reflectional symmetry. Symmetry II 22/38

23 Clicker Question What kind of symmetry does this picture have, besides translational? A Rotational only B Reflectional only C Rotational and reflectional D None Symmetry II 23/38

24 It is also possible to have rotational symmetry and reflectional (rather than glide reflectional) symmetry. Escher drew this picture with reflectional symmetry in two perpendicular directions. Doing so forces the picture to have 180 degree rotational symmetry. Symmetry II 24/38

25 The following two picture indicates that performing a vertical reflection followed by a horizontal reflection results in a 180 degree rotation. Symmetry II 25/38

26 To each wallpaper pattern one can consider the collection of isometries which, when applied to the picture, superimposes it exactly onto itself. To understand a situation, mathematicians often look for some sort of structure on collections of objects rather than working just with the individual object. For example, the collection of numbers has the operation of addition, which takes two numbers and adds them, producing a third number. Symmetry II 26/38

27 The collection of isometries has the property that two isometries can be combined, or composed, by performing one, then the other, producing a third isometry. A glide reflection is an example of two isometries being composed. We get it by performing a reflection followed by a translation. As we just saw, if we compose a horizontal and a vertical reflection, we get a 180 degree rotation. Symmetry II 27/38

28 In arithmetic, addition satisfies: The associative property - e.g., 3 + (2 + 5) = (3 + 2) + 5. An identity 0 - e.g., = 3. Additive inverses - e.g., 8 + ( 8) = 0. Symmetry II 28/38

29 Composing isometries also satisfy the same three properties. The analogue of 0 is the no motion, or identity, isometry. Also, each isometry has an inverse which, when performed after the original, results in no motion at all. For example, the inverse of a rotation by 90 degrees counterclockwise is a rotation by 90 degrees clockwise. A reflection is its own inverse. That is, performing a reflection twice accomplishes the same thing as no motion at all. Symmetry II 29/38

30 Group Theory Group theory studies collections of objects together with an operation which satisfies the same three properties mentioned above which addition satisfies. Group theory originated in the early 19th century through the work of Galois, who introduced the concept in order to study solutions of polynomial equations. Symmetry II 30/38

31 The collection of isometries associated to a wallpaper pattern is a group. There is one important difference between the group of isometries and the group of numbers with addition. The latter satisfies the commutative property (e.g., = 3 + 2), while the former does not. To illustrate this, we consider a vertical reflection and a quarter turn (counterclockwise) rotation. Symmetry II 31/38

32 The series in blue results from doing a vertical reflection followed by a 90 degree rotation. The series in red results from performing the two isometries in the opposite order. Since the results are different, the order in which isometries are performed matters. Symmetry II 32/38

33 Clicker Question If you perform a 90 degree rotation counterclockwise followed by a reflection across a horizontal line on the figure below and to the left, which figure do you get? A B Symmetry II 33/38

34 Classification of Wallpaper Patterns It is through the study of groups of isometries that the classification of all possible types of symmetry of wallpaper patterns was made. It was discovered that there are exactly 17 different types of symmetry in wallpaper patterns, by seeing that there are 17 different groups of isometries. This was completed by Fedorov, Schoenflies, and Barlow at the end of the 19th century. Escher discovered the classification on his own. He drew pictures for 16 of the 17 symmetry types. Symmetry II 34/38

35 You can find a PDF file showing pictures of all 17 symmetry types, including Escher drawings for 16 of them, at the course website by clicking on Handouts, and then clicking on 17 Wallpapers.pdf. You can also find a webpage, also available from the Handouts link, titled Wallpaper Patterns. We will look at the 17 symmetry types now. Symmetry II 35/38

36 Crystallographers, interested in the chemical properties of crystals, studied their symmetry, and in the late 19th century classified the types of symmetry of crystals. They found that there are 230 different symmetry types. This is the 3-dimensional analogue of the classification of wallpaper patterns. Group theory has been used in encryption, coding theory, quantum mechanics, and crystallography, among other areas. Symmetry II 36/38

37 Next Week Next Tuesday we will continue our discussion of art by investigating fractals. On Thursday we will discuss encoding data in a way to be able to detect and correct errors. This is necessary for producing CDs and DVDs that can play without interruption when there is some dirt or a scratch on the disc. It is also necessary for producing hard drives that work even when there are small imperfections in the drive, which occur over time. Symmetry II 37/38

38 Assignment 2 due next Friday Variant 1: Draw a tessellation starting with a square (or rectangle) by following the instructions in the link Tessellations from Squares. Also, determine if the resulting tessellation has rotational, reflectional, and/or glide reflectional symmetry. Variant 2: Draw a tessellation starting with a triangle by following the instructions in the link Tessellations from Triangles Also, determine if the resulting tessellation has rotational, reflectional, and/or glide reflectional symmetry. Variant 3: Look over the pictures of the 17 symmetry types in 17 Wallpapers.pdf. Give a plausible reason why Escher did not draw a picture for the symmetry type on the third page of that handout (which is numbered page 59), when he drew (often many) pictures for the other 16 symmetry types? Give some rationale for your opinion. Symmetry II 38/38

Escher s Tessellations: The Symmetry of Wallpaper Patterns III. Symmetry III

Escher s Tessellations: The Symmetry of Wallpaper Patterns III. Symmetry III Escher s Tessellations: The Symmetry of Wallpaper Patterns III Symmetry III 1/20 In the past two classes we saw many examples of Escher s tessellations, and different combinations of symmetry. We will

More information

COMPUTER DESIGN OF REPEATING HYPERBOLIC PATTERNS

COMPUTER DESIGN OF REPEATING HYPERBOLIC PATTERNS COMPUTER DESIGN OF REPEATING HYPERBOLIC PATTERNS Douglas Dunham University of Minnesota Duluth Department of Computer Science 1114 Kirby Drive Duluth, Minnesota 55812-2496 USA ddunham@d.umn.edu Abstract:

More information

Some announcements. Game reflections deadline extended to Monday (4/4)

Some announcements. Game reflections deadline extended to Monday (4/4) Symmetry Some announcements Game reflections deadline extended to Monday (4/4) Some announcements Game reflections deadline extended to Monday (4/4) Next math talk on Wednesday (4/6) at 4pm. Speaker is

More information

Chapter 5. Transforming Shapes

Chapter 5. Transforming Shapes Chapter 5 Transforming Shapes It is difficult to walk through daily life without being able to see geometric transformations in your surroundings. Notice how the leaves of plants, for example, are almost

More information

Tessellations. A tessellation is a repeating pattern of polygons that covers a plane with no gaps or overlaps. What transformations do you see?

Tessellations. A tessellation is a repeating pattern of polygons that covers a plane with no gaps or overlaps. What transformations do you see? Tessellations A tessellation is a repeating pattern of polygons that covers a plane with no gaps or overlaps. What transformations do you see? Typically the shapes making up a tessellation are polygons

More information

Mathematics in Art and Architecture GEK1518

Mathematics in Art and Architecture GEK1518 Mathematics in Art and Architecture GEK1518 Helmer Aslaksen Department of Mathematics National University of Singapore aslaksen@math.nus.edu.sg www.math.nus.edu.sg/aslaksen/ Symmetry and Patterns Introduction

More information

Section 12.1 Translations and Rotations

Section 12.1 Translations and Rotations Section 12.1 Translations and Rotations Any rigid motion that preserves length or distance is an isometry. We look at two types of isometries in this section: translations and rotations. Translations A

More information

Helpful Hint When you are given a frieze pattern, you may assume that the pattern continues forever in both directions Notes: Tessellations

Helpful Hint When you are given a frieze pattern, you may assume that the pattern continues forever in both directions Notes: Tessellations A pattern has translation symmetry if it can be translated along a vector so that the image coincides with the preimage. A frieze pattern is a pattern that has translation symmetry along a line. Both of

More information

Combining Isometries- The Symmetry Group of a Square

Combining Isometries- The Symmetry Group of a Square Combining Isometries- The Symmetry Group of a Square L.A. Romero August 22, 2017 1 The Symmetry Group of a Square We begin with a definition. Definition 1.1. The symmetry group of a figure is the collection

More information

Name: Period 2/3/2012 2/16/2012 PreAP

Name: Period 2/3/2012 2/16/2012 PreAP Name: Period 2/3/2012 2/16/2012 PreP UNIT 11: TRNSFORMTIONS I can define, identify and illustrate the following terms: Symmetry Line of Symmetry Rotational Symmetry Translation Symmetry Isometry Pre-Image

More information

L2 Translations, Reflections, and Rotations Pre-Assessment Per Date

L2 Translations, Reflections, and Rotations Pre-Assessment Per Date L Translations, Reflections, and Rotations.1 - Pre-Assessment Per Date Have you ever wanted to rearrange the furniture in your room? First you might want to make sure that the furniture would fit in the

More information

Perry High School. Geometry: S2W6

Perry High School. Geometry: S2W6 Geometry: S2W6 Monday: 7.1 Rigid Motion in a Plane Pre-reading due Tuesday: 7.1 Work Day Wednesday: 7.2 Reflections Pre-reading due Thursday: 7.2 Work Day Friday: 7.3 Rotations Pre-reading due Next Week:

More information

Transformations Geometry

Transformations Geometry Transformations Geometry Preimage the original figure in the transformation of a figure in a plane. Image the new figure that results from the transformation of a figure in a plane. Example: If function

More information

Planar Graphs and Surfaces. Graphs 2 1/58

Planar Graphs and Surfaces. Graphs 2 1/58 Planar Graphs and Surfaces Graphs 2 1/58 Last time we discussed the Four Color Theorem, which says that any map can be colored with at most 4 colors and not have two regions that share a border having

More information

Vocabulary. Term Page Definition Clarifying Example. center of dilation. composition of transformations. enlargement. glide reflection.

Vocabulary. Term Page Definition Clarifying Example. center of dilation. composition of transformations. enlargement. glide reflection. CHAPTER 12 Vocabulary The table contains important vocabulary terms from Chapter 12. As you work through the chapter, fill in the page number, definition, and a clarifying example. center of dilation Term

More information

Junior Circle Meeting 9 Commutativity and Inverses. May 30, We are going to examine different ways to transform the square below:

Junior Circle Meeting 9 Commutativity and Inverses. May 30, We are going to examine different ways to transform the square below: Junior Circle Meeting 9 Commutativity and Inverses May 0, 2010 We are going to examine different ways to transform the square below: Just as with the triangle from last week, we are going to examine flips

More information

Unit 1 Transformations in the Coordinate Plane

Unit 1 Transformations in the Coordinate Plane Unit 1 Transformations in the Coordinate Plane Table of Contents Title Page # Formula Sheet...2 Lesson 1 1: Introduction to Transformations and Rotations 3 Lesson 1 2: Reflections and Translations..9 Lesson

More information

MA 111 Review for Exam 4

MA 111 Review for Exam 4 MA 111 Review for Exam 4 Exam 4 (given in class on Thursday, April 12, 2012) will cover Chapter 11. You should: understand how to carry out each of the following four motions: Reflection Rotation Translation

More information

Arabesque Groups Where Art and Mathematics Meet. Jawad Abuhlail, KFUPM (KSA)

Arabesque Groups Where Art and Mathematics Meet. Jawad Abuhlail, KFUPM (KSA) Arabesque Groups Where Art and Mathematics Meet Jawad Abuhlail, KFUPM (KSA) abuhlail@kfupm.edu.sa We thank Saudi Aramco for supporting this Blossom educational video. -------- Arabesque Groups Where Art

More information

On a coordinate plane, such a change can be described by counting the number of spaces, vertically and horizontally, that the figure has moved.

On a coordinate plane, such a change can be described by counting the number of spaces, vertically and horizontally, that the figure has moved. Transformations We have studied four different kinds of transformations: translation, rotation, reflection, and dilation. Each one involves moving a figure to a new location on a plane. Translation Translation

More information

M.C. Escher. Tessellations, 1957

M.C. Escher. Tessellations, 1957 In mathematical quarters, the regular division of the plane has been considered theoretically. Does this mean that it is an exclusively mathematical question? In my opinion, it does not. Mathematicians

More information

UNIT PLAN. Big Idea/Theme: Polygons can be identified, classified, and described.

UNIT PLAN. Big Idea/Theme: Polygons can be identified, classified, and described. UNIT PLAN Grade Level: 5 Unit #: 11 Unit Name Geometry Polygons Time: 15 lessons, 18 days Big Idea/Theme: Polygons can be identified, classified, and described. Culminating Assessment: (requirements of

More information

Graph theory was invented by a mathematician named Euler in the 18th century. We will see some of the problems which motivated its study.

Graph theory was invented by a mathematician named Euler in the 18th century. We will see some of the problems which motivated its study. Graph Theory Graph theory was invented by a mathematician named Euler in the 18th century. We will see some of the problems which motivated its study. However, it wasn t studied too systematically until

More information

On Your Own. ). Another way is to multiply the. ), and the image. Applications. Unit 3 _ _

On Your Own. ). Another way is to multiply the. ), and the image. Applications. Unit 3 _ _ Applications 1 a 90 clockwise rotation matrix: - b As can be seen by the diagram, the image of P is Q and the image of R is P The coordinate of Q can be found by symmetry y R 1 P, Thus, the 45 clockwise

More information

Tessellations: The Importance of Symmetry. Although tessellations have been traced back to ancient human cultures and are

Tessellations: The Importance of Symmetry. Although tessellations have been traced back to ancient human cultures and are Abbie Wold Math 300 May 2, 2002 Tessellations: The Importance of Symmetry HISTORY Although tessellations have been traced back to ancient human cultures and are found in the natural world, they have had

More information

Module 2 Test Study Guide. Type of Transformation (translation, reflection, rotation, or none-of-theabove). Be as specific as possible.

Module 2 Test Study Guide. Type of Transformation (translation, reflection, rotation, or none-of-theabove). Be as specific as possible. Module 2 Test Study Guide CONCEPTS TO KNOW: Transformation (types) Rigid v. Non-Rigid Motion Coordinate Notation Vector Terminology Pre-Image v. Image Vertex Prime Notation Equation of a Line Lines of

More information

Geometric Transformations: Translation:

Geometric Transformations: Translation: Geometric Transformations: Translation: slide Reflection: Rotation: Dialation: mirror turn enlarge or reduce Notation: Pre-Image: original figure Image: after transformation. Use prime notation C A B C

More information

4.G.1. Name Date. Geometry. Use the figure below to answer questions Draw an intersecting line through the line below. E H

4.G.1. Name Date. Geometry. Use the figure below to answer questions Draw an intersecting line through the line below. E H Name Date ssessment 1 4.G.1 questions 1-3. 5. Draw an intersecting line through the line below. E H B C D G F 6. Draw a perpendicular line through the set of lines below. 1. Name a pair of parallel lines.

More information

Math 9: Chapter Review Assignment

Math 9: Chapter Review Assignment Class: Date: Math 9: Chapter 7.5-7.7 Review Assignment Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which shapes have at least 2 lines of symmetry?

More information

Geometry: Unit 1: Transformations. Chapter 14 (In Textbook)

Geometry: Unit 1: Transformations. Chapter 14 (In Textbook) Geometry: Unit 1: Transformations Chapter 14 (In Textbook) Transformations Objective: Students will be able to do the following, regarding geometric transformations. Write Transformations Symbolically

More information

Geometry Sixth Grade

Geometry Sixth Grade Standard 6-4: The student will demonstrate through the mathematical processes an understanding of shape, location, and movement within a coordinate system; similarity, complementary, and supplementary

More information

Surfaces. 14 April Surfaces 14 April /29

Surfaces. 14 April Surfaces 14 April /29 Surfaces 14 April 2014 Surfaces 14 April 2014 1/29 Last Week Last week, when we discussed graph theory, we saw that the maximum colors any map might need depends on the surface on which the map is drawn.

More information

TIMSS 2011 Fourth Grade Mathematics Item Descriptions developed during the TIMSS 2011 Benchmarking

TIMSS 2011 Fourth Grade Mathematics Item Descriptions developed during the TIMSS 2011 Benchmarking TIMSS 2011 Fourth Grade Mathematics Item Descriptions developed during the TIMSS 2011 Benchmarking Items at Low International Benchmark (400) M01_05 M05_01 M07_04 M08_01 M09_01 M13_01 Solves a word problem

More information

202 The National Strategies Secondary Mathematics exemplification: Y7

202 The National Strategies Secondary Mathematics exemplification: Y7 202 The National Strategies Secondary Mathematics exemplification: Y7 GEOMETRY ND MESURES Pupils should learn to: Understand and use the language and notation associated with reflections, translations

More information

Year 1 and 2 Mastery of Mathematics

Year 1 and 2 Mastery of Mathematics Year 1 and 2 Mastery of Mathematics Mastery of the curriculum requires that all pupils:. use mathematical concepts, facts and procedures appropriately, flexibly and fluently; recall key number facts with

More information

1.8 Composition of Transformations

1.8 Composition of Transformations 1.8. Composition of Transformations www.ck12.org 1.8 Composition of Transformations Here you ll learn how to perform a composition of transformations. You ll also learn some common composition of transformations.

More information

Level 4 Students will usually be able to identify models of and/or solve problems involving multiplication and/or division situations; recognize and/o

Level 4 Students will usually be able to identify models of and/or solve problems involving multiplication and/or division situations; recognize and/o Grade 3 FCAT 2.0 Mathematics Reporting Category Number: Operations, Problems, and Statistics Students performing at the mastery level of this reporting category will be able to use number concepts and

More information

This is a tessellation.

This is a tessellation. This is a tessellation. What shapes do you see? Describe them. How are the shapes alike? How are the shapes different? POM Do the Tessellation P 1 What happens at the corners (vertices) of the shapes?

More information

Unit 14: Transformations (Geometry) Date Topic Page

Unit 14: Transformations (Geometry) Date Topic Page Unit 14: Transformations (Geometry) Date Topic Page image pre-image transformation translation image pre-image reflection clockwise counterclockwise origin rotate 180 degrees rotate 270 degrees rotate

More information

Worksheet 29: Friday November 20 Tessellations: Tiling The Plane

Worksheet 29: Friday November 20 Tessellations: Tiling The Plane Definition Worksheet 29: Friday November 20 Tessellations: Tiling The Plane A tiling of the plane or tesselation is a pattern that covers the plane with non-overlapping figures A periodic tiling is one

More information

NZ Mathematics Levels 1-6 Curriculum Objectives Addressed Within Numbers Up! 2 Baggin the Dragon

NZ Mathematics Levels 1-6 Curriculum Objectives Addressed Within Numbers Up! 2 Baggin the Dragon NZ Mathematics s 1-6 Objectives Addressed Age Objectives 4-7 1-2 1 1. Order and compare lengths, masses and volumes (capacities), and describe the comparisons, using measuring language; 2. Measure by counting

More information

Key Objectives: Maths Progression

Key Objectives: Maths Progression Year 1 1. Count to and across 100 from any number. 2. Read and write numbers to 100 in numerals. 3. Count up to 100 in multiples of 2, 5, 10. 4. Recall and use doubling and halving facts up to double 10.

More information

Vocabulary. Term Page Definition Clarifying Example. center of dilation. composition of transformations. enlargement. glide reflection.

Vocabulary. Term Page Definition Clarifying Example. center of dilation. composition of transformations. enlargement. glide reflection. CHAPTER 12 Vocabulary The table contains important vocabulary terms from Chapter 12. As you work through the chapter, fill in the page number, definition, and a clarifying example. center of dilation Term

More information

MATH 113 Section 9.2: Symmetry Transformations

MATH 113 Section 9.2: Symmetry Transformations MATH 113 Section 9.2: Symmetry Transformations Prof. Jonathan Duncan Walla Walla University Winter Quarter, 2008 Outline 1 What is Symmetry 2 Types of Symmetry Reflective Symmetry Rotational Symmetry Translational

More information

Circuits and Paths. April 13, 2014

Circuits and Paths. April 13, 2014 Circuits and Paths April 13, 2014 Warm Up Problem Quandroland is an insect country that has four cities. Draw all possible ways tunnels can join the cities in Quadroland. (Remember that some cities might

More information

What You ll Learn. Why It s Important

What You ll Learn. Why It s Important First Nations artists use their artwork to preserve their heritage. Haida artist Don Yeomans is one of the foremost Northwest Coast artists. Look at this print called The Benefit, created by Don Yeomans.

More information

Grade 7/8 Math Circles November 3/4, M.C. Escher and Tessellations

Grade 7/8 Math Circles November 3/4, M.C. Escher and Tessellations Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Tiling the Plane Grade 7/8 Math Circles November 3/4, 2015 M.C. Escher and Tessellations Do the following

More information

11.1 Rigid Motions. Symmetry

11.1 Rigid Motions. Symmetry 11.1 Rigid Motions Rigid Motions We will now take a closer look at the ideas behind the different types of symmetries that we have discussed by studying four different rigid motions. The act of taking

More information

Chapter 2: Transformations. Chapter 2 Transformations Page 1

Chapter 2: Transformations. Chapter 2 Transformations Page 1 Chapter 2: Transformations Chapter 2 Transformations Page 1 Unit 2: Vocabulary 1) transformation 2) pre-image 3) image 4) map(ping) 5) rigid motion (isometry) 6) orientation 7) line reflection 8) line

More information

The Cube and its Symmetries

The Cube and its Symmetries The Cube and its Symmetries This workshop is designed to show Y8/9 children how symmetry operations interrelate. We take the cube as our example. Administration In your area is a visualiser, an OHP and

More information

Worksheet 30: Wednesday April 22 Tessselations: Tiling The Plane

Worksheet 30: Wednesday April 22 Tessselations: Tiling The Plane Definition Worksheet 30: Wednesday April 22 Tessselations: Tiling The Plane A tiling of the plane or tesselation is a pattern that covers the plane with non-overlapping figures A periodic tiling is one

More information

Geometry Transformations

Geometry Transformations Geometry Transformations NAME Period 1 Transformations Notes Transformation: Maps an, called a, onto a final, called an. Reflection: a transformation representing a of a figure Reflecting over the x-axis,

More information

In this chapter, we will investigate what have become the standard applications of the integral:

In this chapter, we will investigate what have become the standard applications of the integral: Chapter 8 Overview: Applications of Integrals Calculus, like most mathematical fields, began with trying to solve everyday problems. The theory and operations were formalized later. As early as 70 BC,

More information

Camden County HS Honors Math II Summer Tessellation Project 2018

Camden County HS Honors Math II Summer Tessellation Project 2018 Camden County HS Honors Math II Summer Tessellation Project 2018 Maurits Cornelis Escher, born in Leeuwarden, Holland in 1898 created unique and fascinating works or art that explore and exhibit an array

More information

Classification of Surfaces

Classification of Surfaces Classification of Surfaces 16 April 2014 Classification of Surfaces 16 April 2014 1/29 Last Time On Monday we saw some examples of surfaces and how we can build some by starting with a rectangle and gluing

More information

Pick up some wrapping paper.

Pick up some wrapping paper. Pick up some wrapping paper. What is the area of the following Christmas Tree? There is a nice theorem that allows one to compute the area of any simply-connected (i.e. no holes) grid polygon quickly.

More information

12.4 Rotations. Learning Objectives. Review Queue. Defining Rotations Rotations

12.4 Rotations. Learning Objectives. Review Queue. Defining Rotations Rotations 12.4. Rotations www.ck12.org 12.4 Rotations Learning Objectives Find the image of a figure in a rotation in a coordinate plane. Recognize that a rotation is an isometry. Review Queue 1. Reflect XY Z with

More information

Geometry Unit 1: Transformations in the Coordinate Plane. Guided Notes

Geometry Unit 1: Transformations in the Coordinate Plane. Guided Notes Geometry Unit 1: Transformations in the Coordinate Plane Guided Notes Standard: MGSE9 12.G.CO.1 Know precise definitions Essential Question: What are the undefined terms essential to any study of geometry?

More information

Unit 1, Lesson 1: Moving in the Plane

Unit 1, Lesson 1: Moving in the Plane Unit 1, Lesson 1: Moving in the Plane Let s describe ways figures can move in the plane. 1.1: Which One Doesn t Belong: Diagrams Which one doesn t belong? 1.2: Triangle Square Dance m.openup.org/1/8-1-1-2

More information

TESSELLATION PROJECT DIRECTIONS

TESSELLATION PROJECT DIRECTIONS TESSELLATION PROJECT DIRECTIONS You are to create a tessellation portfolio. In addition to your portfolio, you will be making your own tessellation masterpiece. Your tessellation will be created based

More information

The Use of Repeating Patterns to Teach Hyperbolic Geometry Concepts

The Use of Repeating Patterns to Teach Hyperbolic Geometry Concepts The Use of Repeating Patterns to Teach Hyperbolic Geometry Concepts Douglas Dunham Department of Computer Science University of Minnesota, Duluth Duluth, MN 55812-3036, USA E-mail: ddunham@d.umn.edu Web

More information

Lesson 20 FRIEZE GROUPS

Lesson 20 FRIEZE GROUPS FRIEZE GROUPS Early on we mentioned that groups measure symmetry and that wherever we find symmetry present, we also find a corresponding group. We ve also stated that symmetry is just the repetition of

More information

Chapter 2 Rigid Transformations Geometry. For 1-10, determine if the following statements are always, sometimes, or never true.

Chapter 2 Rigid Transformations Geometry. For 1-10, determine if the following statements are always, sometimes, or never true. Chapter 2 Rigid Transformations Geometry Name For 1-10, determine if the following statements are always, sometimes, or never true. 1. Right triangles have line symmetry. 2. Isosceles triangles have line

More information

Unit 5: Transformations in the Coordinate Plane

Unit 5: Transformations in the Coordinate Plane Unit 5: Transformations in the Coordinate Plane In this unit, students review the definitions of three types of transformations that preserve distance and angle: rotations, reflections, and translations.

More information

Quadrilaterals & Transformations Study Guide

Quadrilaterals & Transformations Study Guide s & Transformations Study Guide What do I need to know for the upcoming Summative Assessment? s Classifications and Properties of: o o Trapezoid o Kite o Parallelogram o Rhombus o Rectangle o Square The

More information

Chapel Hill Math Circle: Symmetry and Fractals

Chapel Hill Math Circle: Symmetry and Fractals Chapel Hill Math Circle: Symmetry and Fractals 10/7/17 1 Introduction This worksheet will explore symmetry. To mathematicians, a symmetry of an object is, roughly speaking, a transformation that does not

More information

Aston Hall s A-Z of mathematical terms

Aston Hall s A-Z of mathematical terms Aston Hall s A-Z of mathematical terms The following guide is a glossary of mathematical terms, covering the concepts children are taught in FS2, KS1 and KS2. This may be useful to clear up any homework

More information

TESSELATIONS. BIG IDEA: Students will create a representational tessellation composition in the style of M.C. Escher ESSENTIAL QUESTIONS:

TESSELATIONS. BIG IDEA: Students will create a representational tessellation composition in the style of M.C. Escher ESSENTIAL QUESTIONS: TESSELATIONS BIG IDEA: Students will create a representational tessellation composition in the style of M.C. Escher ESSENTIAL QUESTIONS: Why might M.C. Escher think like a mathematician? What is the relationship

More information

Content Standards G.CO.4 Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel

Content Standards G.CO.4 Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel Content Standards G.CO.4 Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments. G.CO.5 Given a geometric figure

More information

Zome Symmetry & Tilings

Zome Symmetry & Tilings Zome Symmetry & Tilings Tia Baker San Francisco State tiab@mail.sfsu.edu 1 Introduction Tessellations also known as tilings are a collection of polygons that fill the plane with no overlaps or gaps. There

More information

Name: 1) Which of the following properties of an object are not preserved under a rotation? A) orientation B) none of these C) shape D) size

Name: 1) Which of the following properties of an object are not preserved under a rotation? A) orientation B) none of these C) shape D) size Name: 1) Which of the following properties of an object are not preserved under a rotation? A) orientation B) none of these C) shape D) size 2) Under a certain transformation, A B C is the image of ABC.

More information

6. 5 Symmetries of Quadrilaterals

6. 5 Symmetries of Quadrilaterals 2 CC BY fdecomite 6. Symmetries of Quadrilaterals A Develop Understanding Task A line that reflects a figure onto itself is called a line of symmetry. A figure that can be carried onto itself by a rotation

More information

Working with Transformations on the Coordinate Plane

Working with Transformations on the Coordinate Plane Working with Transformations on the Coordinate Plane Movies create the illusion of movement by showing us 24 images per second. When the human eye processes 24 images per second it is interpreted in our

More information

An angle that has a measure less than a right angle.

An angle that has a measure less than a right angle. Unit 1 Study Strategies: Two-Dimensional Figures Lesson Vocab Word Definition Example Formed by two rays or line segments that have the same 1 Angle endpoint. The shared endpoint is called the vertex.

More information

Interactive Math Glossary Terms and Definitions

Interactive Math Glossary Terms and Definitions Terms and Definitions Absolute Value the magnitude of a number, or the distance from 0 on a real number line Addend any number or quantity being added addend + addend = sum Additive Property of Area the

More information

A M B O H W E V C T D U K Y I X. Answers. Investigation 1. ACE Assignment Choices. Applications. Note: The O has infinite lines of symmetry.

A M B O H W E V C T D U K Y I X. Answers. Investigation 1. ACE Assignment Choices. Applications. Note: The O has infinite lines of symmetry. Answers Investigation ACE Assignment Choices Problem. Core 9 Other Connections ; unassigned choices from previous problems Problem.2 Core 0 7, 4 40 Other Applications 8, 9; Connections 4 45; Extensions

More information

Chapter 20 Tilings For All Practical Purposes: Effective Teaching Chapter Briefing Chapter Topics to the Point Tilings with Regular Polygons

Chapter 20 Tilings For All Practical Purposes: Effective Teaching Chapter Briefing Chapter Topics to the Point Tilings with Regular Polygons Chapter 20 Tilings For All Practical Purposes: Effective Teaching With this day and age of technology, most students are adept at using E-mail as a form of communication. Many institutions automatically

More information

Integrated Math 1 Module 7 Honors Connecting Algebra and Geometry Ready, Set, Go! Homework Solutions

Integrated Math 1 Module 7 Honors Connecting Algebra and Geometry Ready, Set, Go! Homework Solutions 1 Integrated Math 1 Module 7 Honors Connecting Algebra and Geometry Ready, Set, Go! Homework Solutions Adapted from The Mathematics Vision Project: Scott Hendrickson, Joleigh Honey, Barbara Kuehl, Travis

More information

The Interplay Between Hyperbolic Symmetry and History

The Interplay Between Hyperbolic Symmetry and History The Interplay Between Hyperbolic Symmetry and History Douglas Dunham Department of Computer Science University of Minnesota, Duluth Duluth, MN 55812-3036, USA E-mail: ddunham@d.umn.edu Web Site: http://www.d.umn.edu/

More information

HOLLINS GRUNDY PRIMARY SCHOOL

HOLLINS GRUNDY PRIMARY SCHOOL HOLLINS GRUNDY PRIMARY SCHOOL Happiness, Health and Respect for Confident, Creative Learners Year 1 Maths Objectives Over view Term Mathematical Strand Time Focus Objective (2014 National Curriculum) No.

More information

Patterns on Triply Periodic Uniform Polyhedra

Patterns on Triply Periodic Uniform Polyhedra Patterns on Triply Periodic Uniform Polyhedra Douglas Dunham Department of Computer Science University of Minnesota, Duluth Duluth, MN 55812-3036, USA E-mail: ddunham@d.umn.edu Web Site: http://www.d.umn.edu/

More information

For more information, see the Math Notes box in Lesson of the Core Connections, Course 1 text.

For more information, see the Math Notes box in Lesson of the Core Connections, Course 1 text. Number TYPES OF NUMBERS When two or more integers are multiplied together, each number is a factor of the product. Nonnegative integers that have eactly two factors, namely, one and itself, are called

More information

Oaktree School Curriculum Ladder. Maths: Geometry & Measure Step 2 (7-12)

Oaktree School Curriculum Ladder. Maths: Geometry & Measure Step 2 (7-12) Maths: Geometry & Measure Step 2 (7-12) I can look for hidden objects- sight, hearing or touch I can match objects by size I can fill a container I can take objects out of a container I can help build

More information

Position. By the end of the year, it is expected that children will be able to sequence events in chronological order. My Numeracy Targets Year 1

Position. By the end of the year, it is expected that children will be able to sequence events in chronological order. My Numeracy Targets Year 1 My Numeracy Targets Year 1 Number and place value Multiplication and Division Addition and subtraction I can count up and down from 0 to 100 and more. I can count, read and write numbers up to 100. I can

More information

Pattern tessellates the plane Template with modifications turned in Appearance and Neatness Creativity/Originality/Difficulty

Pattern tessellates the plane Template with modifications turned in Appearance and Neatness Creativity/Originality/Difficulty Name: Date: Hour: A tessellation is a repeated polygon and/or combinations of polygons on a two dimensional plane. Each tessellated tile fits perfectly next to its adjacent twin. A true tessellation could

More information

12-6 Exercises KEYWORD: MG7 12-6

12-6 Exercises KEYWORD: MG7 12-6 THINK AND DISCUSS 1. Explain how you can identify a frieze pattern that has glide reflection symmetry. 2. Is it possible to tessellate a plane using circles? Why or why not? 3. GET ORGANIZED Copy and complete

More information

Correlation of Ontario Mathematics 2005 Curriculum to. Addison Wesley Mathematics Makes Sense

Correlation of Ontario Mathematics 2005 Curriculum to. Addison Wesley Mathematics Makes Sense Correlation of Ontario Mathematics 2005 Curriculum to Addison Wesley Math Makes Sense 3 Number Sense and Numeration Overall Expectations By the end of Grade 3, students will: read, represent, compare,

More information

Technical Arts 101 Prof. Anupam Saxena Department of Mechanical engineering Indian Institute of Technology, Kanpur. Lecture - 7 Think and Analyze

Technical Arts 101 Prof. Anupam Saxena Department of Mechanical engineering Indian Institute of Technology, Kanpur. Lecture - 7 Think and Analyze Technical Arts 101 Prof. Anupam Saxena Department of Mechanical engineering Indian Institute of Technology, Kanpur Lecture - 7 Think and Analyze Last time I asked you to come up with a single funniest

More information

An Investigation of the Planarity Condition of Grötzsch s Theorem

An Investigation of the Planarity Condition of Grötzsch s Theorem Le Chen An Investigation of the Planarity Condition of Grötzsch s Theorem The University of Chicago: VIGRE REU 2007 July 16, 2007 Abstract The idea for this paper originated from Professor László Babai

More information

Given ABC with A(-1, 1), B(2, 4), and C(4, 1). Translate ABC left 4 units and up 1 unit. a) Vertex matrix: b) Algebraic (arrow) rule:

Given ABC with A(-1, 1), B(2, 4), and C(4, 1). Translate ABC left 4 units and up 1 unit. a) Vertex matrix: b) Algebraic (arrow) rule: Unit 7 Transformations 7 Rigid Motion in a Plane Transformation: The operation that maps, or moves, a preimage onto an image. Three basic transformations are reflection, rotation, and translation. Translation

More information

Bulgarian Math Olympiads with a Challenge Twist

Bulgarian Math Olympiads with a Challenge Twist Bulgarian Math Olympiads with a Challenge Twist by Zvezdelina Stankova Berkeley Math Circle Beginners Group September 0, 03 Tasks throughout this session. Harder versions of problems from last time appear

More information

Transformations. Working backwards is performing the inverse operation. + - and x 3. Given coordinate rule

Transformations. Working backwards is performing the inverse operation. + - and x 3. Given coordinate rule Transformations In geometry we use input/output process when we determine how shapes are altered or moved. Geometric objects can be moved in the coordinate plane using a coordinate rule. These rules can

More information

Line Symmetry a figure has line symmetry if the figure can be mapped onto itself by a reflection over a line drawn through the figure.

Line Symmetry a figure has line symmetry if the figure can be mapped onto itself by a reflection over a line drawn through the figure. Geometry Unit 3 Transformations Test Review Packet Name: The Unit Test on Transformations contains the following topics: Isometries Translations Using Mapping Notation Using Vector Notation Naming Vectors,

More information

CCM6+/7+ - Unit 13 - Page 1 UNIT 13. Transformations CCM6+/7+ Name: Math Teacher: Projected Test Date:

CCM6+/7+ - Unit 13 - Page 1 UNIT 13. Transformations CCM6+/7+ Name: Math Teacher: Projected Test Date: CCM6+/7+ - Unit 13 - Page 1 UNIT 13 Transformations CCM6+/7+ Name: Math Teacher: Projected Test Date: Main Idea Pages Unit 9 Vocabulary 2 Translations 3 10 Rotations 11 17 Reflections 18 22 Transformations

More information

A FAMILY OF THREE ELEMENT M.C. ESCHER PATTERNS

A FAMILY OF THREE ELEMENT M.C. ESCHER PATTERNS A FAMILY OF THREE ELEMENT M.C. ESCHER PATTERNS Douglas J. DUNHAM University of Minnesota Duluth, USA ABSTRACT: In 1952, the Dutch artist M.C. Escher created his striking Notebook Drawing 85. It is a repeating

More information

Composition Transformation

Composition Transformation Name: Date: 1. Describe the sequence of transformations that results in the transformation of Figure A to Figure A. 2. Describe the sequence of transformations that results in the transformation of Figure

More information

Fractal Wallpaper Patterns

Fractal Wallpaper Patterns Fractal Wallpaper Patterns Douglas Dunham Department of Computer Science University of Minnesota, Duluth Duluth, MN 55812-3036, USA ddunham@d.umn.edu http://www.d.umn.edu/ ddunham/ John Shier 6935 133rd

More information

Rainforest maths. Australian Mathematics Curriculum Achievement Standards Correlations Foundation year

Rainforest maths. Australian Mathematics Curriculum Achievement Standards Correlations Foundation year Australian Mathematics Curriculum Achievement Standards Correlations Foundation year NUMBER and ALGEBRA ACMNA Establish understanding of the language and processes of counting by naming numbers in sequences,

More information

Math 13 Spring 13 Liberal Arts Mathematics Chapters 19&20 Test Name

Math 13 Spring 13 Liberal Arts Mathematics Chapters 19&20 Test Name Math 13 Spring 13 Liberal Arts Mathematics Chapters 19&0 Test Name Write your answers to the following questions with thorough explanations written in complete sentences. 1. You may remember having to

More information

MAT 003 Brian Killough s Instructor Notes Saint Leo University

MAT 003 Brian Killough s Instructor Notes Saint Leo University MAT 003 Brian Killough s Instructor Notes Saint Leo University Success in online courses requires self-motivation and discipline. It is anticipated that students will read the textbook and complete sample

More information