Combining Isometries- The Symmetry Group of a Square

Size: px
Start display at page:

Download "Combining Isometries- The Symmetry Group of a Square"

Transcription

1 Combining Isometries- The Symmetry Group of a Square L.A. Romero August 22, The Symmetry Group of a Square We begin with a definition. Definition 1.1. The symmetry group of a figure is the collection of all isometries that leave the figure invariant. For example, Fig. 1 shows a square with its lines of reflection drawn in. It should be clear that the square looks the same if we rotate it by 0, 90, 180, or 270 degrees. It may appear silly to include a rotation by 0 degrees, since any figure looks the same if you rotate it by 0 degrees. However, much as our number system would be very clumsy without the number zero (how would your write 101?), talking about symmetry is clumsy if we do not include the identity element ( a transformation sending every element into itself) The square also looks the same if we rotate it by 360 or degrees. However, we consider a rotation by degrees to be the same as a rotation by 90 degrees. That is, we are only concerned with where points in the plane end up, not exactly how we got them to where they are. It should be clear that a square is also invariant under a reflection about a horizontal or vertical axis. It is also invariant under reflections about the diagonals. It can be shown that these are the only isometries that leave the square looking the same. It is useful to give each of these a symbol, which we will now do. I- The identity. This sends every element in the plane into itself. R 90 - This is a rotation by 90 degrees about the center of the square. R This is a rotation by 180 degrees about the center of the square. R 90 - This is a rotation by 90 degrees about the center of the square. This is the same as rotating by 270 degrees. S x - This a a reflection about the horizontal axis. S y This is a reflection about the vertical axis. S + This is a reflection about the diagonal that goes from the center to the upper right hand corner of the square. S - This is a reflection about the line that goes from the center to the upper left hand corner of the square. As when choosing what to call an unknown in algebra, this labeling of the symmetry operations is not universally used. That is, at a different time we mauy choose to label these using a different notation. For example, we might label the operations as g k, k = 1, 8. For example, letting g 1 = I, g 2 = R 90, etc. In this course we will not delve into the abstract mathematics of groups. However, we will point out that the symmetry group of the square (or any object ) forms what mathematicians call a group. In particular 1

2 Figure 1: A square with its lines of reflections drawn. There is an operation usually called multiplication. In our case the elements in our group are isometries, and multiplying two elements together means first applying one is isometry, then the other. For example S x S y means apply S y then S x. The multiplication is not necessarily commutative. For example, it turns out that S x S y is a different isometry than S y S x. The elements are closed under multiplication. That means that if you multiply any two elements in the group together, you get another element in the group. For a symmetry group, this is clearly true, since if an object looks the same when you apply an isometry A, and it looks the same when you apply an isometry B, then it must looks the same when you apply an isometry AB. There is an identity element I such that when you multiply any element by I, you get the element back. In our case, the identity is jsut the transformation that sends every element into itself. Every element has an inverse. The inverse of A is usually denoted by A 1. The inverse is an element such that AA 1 = I. It turns out that we also have A 1 A = I. As an example, R90 1 = R 90, and Sx 1 = S x. 2 Breaking the Symmetry of a Square The symmetry group of a square consists of 4 rotations (including a rotation by 0 degrees), and 4 reflections. We now give some examples of figures that are symmetric under a subset of these symmetry operations. Fig. 2 shows a figure that is symmetric under the same rotations as a square, but not under any of the reflections. Its symmetry group consists of the four rotations I, R 90, R 90, and R 180. The following definition will be useful when discussing symmetry. Definition 2.1. The rotation group of a figure is the set of all proper isometries that leave the figure invariant. For example, the square has the same rotation group as Fig. 2. Fig. 3) shows a figure that is symmetric under the rotations I and R 180 as well as the reflections S x and S y. 2

3 Is it possible to choose any subset of the operations and find a figure whose symmetry group con these and only these operations. For example, could we find a figure whose symmetry group is I, R 90? Clearly this is impossible, since if a figure looks the same when you rotate it by 90 degrees, it must look the same when you rotate it by 180 degrees, since you can rotate by 180 degrees by rotating it twice by 90. If it looks the same after you rotate it once, it will also look the same after you rotate it twice. It follows that if the symmetry group has I and R 90 it must also have R 180 (and also R 90 ). Would it be possible to have a figure that has the same rotation group as a square, but is only invariant under the reflections S x and S y (not S + and S )? No matter how hard you try, you will not be able to find such a figure. In the next section We explain why you cannot do this. Figure 2: A figure that has the rotational symmetry of a square, but none of the reflectional symmetry. 3 Combining a Rotation and a Reflection What is the result of combining the rotation S x and R 90? In particular, what is R 90 S x? We can use our general theorems on isometries to note that the resulting operation must be a reflection about a line passing through the center of the square. This follows from the fact that: R 90 S x is the combination of a proper and an improper isometry, and hence must be an improper isometry. R 90 S x clearly leaves the center of the square fixed, and hence it is not a glide reflection. This means that it must be a reflection, and one whose line of reflection passes through the center of the square. This implies that any line that gets mapped into itself must in fact be the line of reflection. We will now find the line of reflection using Fig. 4. Suppose that we first reflect about the horizontal line, and then rotate by 90 degrees. We can see that the green line will get mapped into itself by these operations. In particular, the reflection will send the green line into the orange line. When we rotate by 90 3

4 Figure 3: A figure that is invariant under the symmetry group consisiting of the operations I, R 180, S x, and S y. It has the same symmetry group as a rectangle. degrees we then send the orange line back into the green line. It follows that the combination of these two operations sends the green line into itself, and hence the green line is the line of reflection. It should be noted that if we reversed the order of the operations ( S x R 90 ) we would send the orange line into itself. These are special cases of the following general theorem. Theorem 3.1. Let S be a reflection about a line l passing through the origin, and R be a rotation by α degrees. Then RS is a reflection about a line l obtained by rotating l by α/2 degrees. Also, SR is a reflection about a line l obtained by rotating l by α/2 degrees. This theorem shows that if a figure has the rotation group of a square, and it has a line of reflection, then it must in fact have lines of reflection obtained by rotating this line of reflection by any multiple of 45 degrees. This explains why a figure that has the rotational symmetry of the square must have all of the lines of reflection that a square has. 4 Combining Reflections In the last section we saw that any pattern that has the rotational symmetry of a square, and some line of reflection l, must have lines of reflection inclined at multiples of 45 degrees to l. This shows that any such pattern must have all of the lines of reflection of the square. We now ask if it would be possible to have a pattern that has the rotational symmetry of the square, has all of the lines of reflection of the square and also has some additional lines of reflection. We will now see that this would be impossible. We begin by considering what happens when we combine two reflections whose lines of symmetry pass through the center of the square. As an example, suppose we reflect about the green line in Fig 4, followed by a refleciton about the horizontal line. Using our notation this is the isometry S x S +. We would like to know what this is. Using general principles we know that Since S x S + is the combination of two improper isometries, it must be a proper isometry. 4

5 Figure 4: If you reflect about the horizontal line, and then rotate by 90 degrees,the green line gets sent into itself. This shows that R 0 S x is a refleciton about the green line. Since both S x and S + leave the center of the square fixed, the isometry S x S + must leave the center of the square fixed. Any proper isometry that leaves a point fixed must be a rotation about that point. It follows that S x S + must be a rotation about the center of the square. Once we know that S x S + is a rotation about the center of the square, all we need to do is to track a single point and see how much it gets rotated by. We will do this by tracking the green line. Clearly the transformation S + sends the green line into itself. The transformation S x now sends the green line into the orange line. It follows that S x S + sends the green line into the orange line. That is, it is a rotation by 90 degrees. We could use a similar argument to show that S + S x is a rotation by 90 degrees. These are both specific examples of a general theorem. Theorem 4.1. Suppose you reflect about a line l and then about a line l. If α is the angle between the two lines, then this a rotation about the point of intersection of the two lines by 2α. the direction of rotation is from the first line to the second. This theorem now shows that we cannot make a figure that has rotational symmetry of a square and that has any lines of reflection other than those of the square. If it had any additional lines of reflection, then two of the lines of reflection would have to make an angle of less than 45 degrees with each other. By combining these two reflections together, we could get a rotation about the origin by less than 90 degrees. This would give us a rotation that was not in the rotation group of the square, and hence the figure would not have the same rotation group as the square. 5

Exercises for Chapter Three You know you've got to exercise your brain just like your muscles. Will Rogers ( )

Exercises for Chapter Three You know you've got to exercise your brain just like your muscles. Will Rogers ( ) Exercises for Chapter Three You know you've got to exercise your brain just like your muscles. Will Rogers (1879 1935) Investigation Exercise 3.1. (a) Construct a tessellation. (Directions for construction.)

More information

Escher s Tessellations: The Symmetry of Wallpaper Patterns III. Symmetry III

Escher s Tessellations: The Symmetry of Wallpaper Patterns III. Symmetry III Escher s Tessellations: The Symmetry of Wallpaper Patterns III Symmetry III 1/20 In the past two classes we saw many examples of Escher s tessellations, and different combinations of symmetry. We will

More information

Line Symmetry a figure has line symmetry if the figure can be mapped onto itself by a reflection over a line drawn through the figure.

Line Symmetry a figure has line symmetry if the figure can be mapped onto itself by a reflection over a line drawn through the figure. Geometry Unit 3 Transformations Test Review Packet Name: The Unit Test on Transformations contains the following topics: Isometries Translations Using Mapping Notation Using Vector Notation Naming Vectors,

More information

Transformations Geometry

Transformations Geometry Transformations Geometry Preimage the original figure in the transformation of a figure in a plane. Image the new figure that results from the transformation of a figure in a plane. Example: If function

More information

TRANSFORMATIONS. The original figure is called the pre-image; the new (copied) picture is called the image of the transformation.

TRANSFORMATIONS. The original figure is called the pre-image; the new (copied) picture is called the image of the transformation. Quiz Review Sheet A transformation is a correspondence that maps a point. TRANSFORMATIONS The original figure is called the pre-image; the new (copied) picture is called the image of the transformation.

More information

Vocabulary. Term Page Definition Clarifying Example. center of dilation. composition of transformations. enlargement. glide reflection.

Vocabulary. Term Page Definition Clarifying Example. center of dilation. composition of transformations. enlargement. glide reflection. CHAPTER 12 Vocabulary The table contains important vocabulary terms from Chapter 12. As you work through the chapter, fill in the page number, definition, and a clarifying example. center of dilation Term

More information

Unit 1 Algebraic Functions and Graphs

Unit 1 Algebraic Functions and Graphs Algebra 2 Unit 1 Algebraic Functions and Graphs Name: Unit 1 Day 1: Function Notation Today we are: Using Function Notation We are successful when: We can Use function notation to evaluate a function This

More information

Junior Circle Meeting 9 Commutativity and Inverses. May 30, We are going to examine different ways to transform the square below:

Junior Circle Meeting 9 Commutativity and Inverses. May 30, We are going to examine different ways to transform the square below: Junior Circle Meeting 9 Commutativity and Inverses May 0, 2010 We are going to examine different ways to transform the square below: Just as with the triangle from last week, we are going to examine flips

More information

Geometry. 4.4 Congruence and Transformations

Geometry. 4.4 Congruence and Transformations Geometry 4.4 Congruence and Transformations 4.4 Warm Up Day 1 Plot and connect the points in a coordinate plane to make a polygon. Name the polygon. 1. A( 3, 2), B( 2, 1), C(3, 3) 2. E(1, 2), F(3, 1),

More information

Geometry. 4.4 Congruence and Transformations

Geometry. 4.4 Congruence and Transformations Geometry 4.4 Congruence and Transformations 4.4 Warm Up Day 1 Plot and connect the points in a coordinate plane to make a polygon. Name the polygon. 1. A(-3, 2), B(-2, 1), C(3, 3) 2. E(1, 2), F(3, 1),

More information

An angle that has a measure less than a right angle.

An angle that has a measure less than a right angle. Unit 1 Study Strategies: Two-Dimensional Figures Lesson Vocab Word Definition Example Formed by two rays or line segments that have the same 1 Angle endpoint. The shared endpoint is called the vertex.

More information

Uniform edge-c-colorings of the Archimedean Tilings

Uniform edge-c-colorings of the Archimedean Tilings Discrete & Computational Geometry manuscript No. (will be inserted by the editor) Uniform edge-c-colorings of the Archimedean Tilings Laura Asaro John Hyde Melanie Jensen Casey Mann Tyler Schroeder Received:

More information

Computer Science 280 Fall 2002 Homework 10 Solutions

Computer Science 280 Fall 2002 Homework 10 Solutions Computer Science 280 Fall 2002 Homework 10 Solutions Part A 1. How many nonisomorphic subgraphs does W 4 have? W 4 is the wheel graph obtained by adding a central vertex and 4 additional "spoke" edges

More information

DIHEDRAL GROUPS KEITH CONRAD

DIHEDRAL GROUPS KEITH CONRAD DIHEDRAL GROUPS KEITH CONRAD 1. Introduction For n 3, the dihedral group D n is defined as the rigid motions 1 of the plane preserving a regular n-gon, with the operation being composition. These polygons

More information

Vesa Halava Tero Harju. Walks on Borders of Polygons

Vesa Halava Tero Harju. Walks on Borders of Polygons Vesa Halava Tero Harju Walks on Borders of Polygons TUCS Technical Report No 698, June 2005 Walks on Borders of Polygons Vesa Halava Tero Harju Department of Mathematics and TUCS - Turku Centre for Computer

More information

Geometric Transformations: Translation:

Geometric Transformations: Translation: Geometric Transformations: Translation: slide Reflection: Rotation: Dialation: mirror turn enlarge or reduce Notation: Pre-Image: original figure Image: after transformation. Use prime notation C A B C

More information

The Humble Tetrahedron

The Humble Tetrahedron The Humble Tetrahedron C. Godsalve email:seagods@hotmail.com November 4, 010 In this article, it is assumed that the reader understands Cartesian coordinates, basic vectors, trigonometry, and a bit of

More information

Escher s Tessellations: The Symmetry of Wallpaper Patterns II. Symmetry II

Escher s Tessellations: The Symmetry of Wallpaper Patterns II. Symmetry II Escher s Tessellations: The Symmetry of Wallpaper Patterns II Symmetry II 1/38 Brief Review of the Last Class Last time we started to talk about the symmetry of wallpaper patterns. Recall that these are

More information

202 The National Strategies Secondary Mathematics exemplification: Y7

202 The National Strategies Secondary Mathematics exemplification: Y7 202 The National Strategies Secondary Mathematics exemplification: Y7 GEOMETRY ND MESURES Pupils should learn to: Understand and use the language and notation associated with reflections, translations

More information

Geometry: Unit 1: Transformations. Chapter 14 (In Textbook)

Geometry: Unit 1: Transformations. Chapter 14 (In Textbook) Geometry: Unit 1: Transformations Chapter 14 (In Textbook) Transformations Objective: Students will be able to do the following, regarding geometric transformations. Write Transformations Symbolically

More information

GEOMETRIC MOVEMENTS IN A PLANE

GEOMETRIC MOVEMENTS IN A PLANE GEOMETRIC MOVEMENTS IN A PLANE I.E.S Carlos Cano 1 Geometric Movements in a Plane Departamento de Matemáticas BEFORE BEGINNING REMEMBER In a system of Cartesian axes, every point is expressed by means

More information

Chapter 5. Transforming Shapes

Chapter 5. Transforming Shapes Chapter 5 Transforming Shapes It is difficult to walk through daily life without being able to see geometric transformations in your surroundings. Notice how the leaves of plants, for example, are almost

More information

Geometry. 4.1 Translations

Geometry. 4.1 Translations Geometry 4.1 Translations 4.1 Warm Up Translate point P. State the coordinates of P'. 1. P(-4, 4); 2 units down, 2 units right 2. P(-3, -2); 3 units right, 3 units up 3. P(2,2); 2 units down, 2 units right

More information

4-7 Study Guide and Intervention Congruence Transformations

4-7 Study Guide and Intervention Congruence Transformations 4-7 Study Guide and Intervention Congruence Transformations Identify Congruence Transformations A congruence transformation is a transformation where the original figure, or preimage, and the transformed

More information

Vocabulary. Term Page Definition Clarifying Example. center of dilation. composition of transformations. enlargement. glide reflection.

Vocabulary. Term Page Definition Clarifying Example. center of dilation. composition of transformations. enlargement. glide reflection. CHAPTER 12 Vocabulary The table contains important vocabulary terms from Chapter 12. As you work through the chapter, fill in the page number, definition, and a clarifying example. center of dilation Term

More information

Chapter 2: Transformations. Chapter 2 Transformations Page 1

Chapter 2: Transformations. Chapter 2 Transformations Page 1 Chapter 2: Transformations Chapter 2 Transformations Page 1 Unit 2: Vocabulary 1) transformation 2) pre-image 3) image 4) map(ping) 5) rigid motion (isometry) 6) orientation 7) line reflection 8) line

More information

1.5 Part - 2 Inverse Relations and Inverse Functions

1.5 Part - 2 Inverse Relations and Inverse Functions 1.5 Part - 2 Inverse Relations and Inverse Functions What happens when we reverse the coordinates of all the ordered pairs in a relation? We obviously get another relation, but does it have any similarities

More information

2 Review of Set Theory

2 Review of Set Theory 2 Review of Set Theory Example 2.1. Let Ω = {1, 2, 3, 4, 5, 6} 2.2. Venn diagram is very useful in set theory. It is often used to portray relationships between sets. Many identities can be read out simply

More information

Introduction to Transformations. In Geometry

Introduction to Transformations. In Geometry + Introduction to Transformations In Geometry + What is a transformation? A transformation is a copy of a geometric figure, where the copy holds certain properties. Example: copy/paste a picture on your

More information

Caltech Harvey Mudd Mathematics Competition March 3, 2012

Caltech Harvey Mudd Mathematics Competition March 3, 2012 Team Round Caltech Harvey Mudd Mathematics Competition March 3, 2012 1. Let a, b, c be positive integers. Suppose that (a + b)(a + c) = 77 and (a + b)(b + c) = 56. Find (a + c)(b + c). Solution: The answer

More information

MTH 120 Fall 2007 Essex County College Division of Mathematics Handout Version 6 1 October 3, 2007

MTH 120 Fall 2007 Essex County College Division of Mathematics Handout Version 6 1 October 3, 2007 MTH 10 Fall 007 Essex County College Division of Mathematics Handout Version 6 1 October, 007 1 Inverse Functions This section is a simple review of inverses as presented in MTH-119. Definition: A function

More information

Prime Time (Factors and Multiples)

Prime Time (Factors and Multiples) CONFIDENCE LEVEL: Prime Time Knowledge Map for 6 th Grade Math Prime Time (Factors and Multiples). A factor is a whole numbers that is multiplied by another whole number to get a product. (Ex: x 5 = ;

More information

Geometry Review for Test 3 January 13, 2016

Geometry Review for Test 3 January 13, 2016 Homework #7 Due Thursday, 14 January Ch 7 Review, pp. 292 295 #1 53 Test #3 Thurs, 14 Jan Emphasis on Ch 7 except Midsegment Theorem, plus review Betweenness of Rays Theorem Whole is Greater than Part

More information

Geometry Transformations

Geometry Transformations Geometry Transformations NAME Period 1 Transformations Notes Transformation: Maps an, called a, onto a final, called an. Reflection: a transformation representing a of a figure Reflecting over the x-axis,

More information

If three points A (h, 0), P (a, b) and B (0, k) lie on a line, show that: a b 1.

If three points A (h, 0), P (a, b) and B (0, k) lie on a line, show that: a b 1. ASSIGNMENT ON STRAIGHT LINES LEVEL 1 (CBSE/NCERT/STATE BOARDS) 1 Find the angle between the lines joining the points (0, 0), (2, 3) and the points (2, 2), (3, 5). 2 What is the value of y so that the line

More information

Representing 2D Transformations as Matrices

Representing 2D Transformations as Matrices Representing 2D Transformations as Matrices John E. Howland Department of Computer Science Trinity University One Trinity Place San Antonio, Texas 78212-7200 Voice: (210) 999-7364 Fax: (210) 999-7477 E-mail:

More information

Definition of Inverse Function

Definition of Inverse Function Definition of Inverse Function A function and its inverse function can be described as the "DO" and the "UNDO" functions. A function takes a starting value, performs some operation on this value, and creates

More information

The Further Mathematics Support Programme

The Further Mathematics Support Programme Degree Topics in Mathematics Groups A group is a mathematical structure that satisfies certain rules, which are known as axioms. Before we look at the axioms, we will consider some terminology. Elements

More information

Point Groups. Such transformations include:

Point Groups. Such transformations include: Point Groups Group of symmetry transformations of an object under which at least one point on the object remains fixed under all such transformations. Such transformations include: Reflections across planes

More information

Handout 1: Viewing an Animation

Handout 1: Viewing an Animation Handout 1: Viewing an Animation Answer the following questions about the animation your teacher shows in class. 1. Choose one character to focus on. Describe this character s range of motion and emotions,

More information

Isometries. 1 Identifying Isometries

Isometries. 1 Identifying Isometries Isometries 1 Identifying Isometries 1. Modeling isometries as dynamic maps. 2. GeoGebra files: isoguess1.ggb, isoguess2.ggb, isoguess3.ggb, isoguess4.ggb. 3. Guessing isometries. 4. What can you construct

More information

Chapter 2 Rigid Transformations Geometry. For 1-10, determine if the following statements are always, sometimes, or never true.

Chapter 2 Rigid Transformations Geometry. For 1-10, determine if the following statements are always, sometimes, or never true. Chapter 2 Rigid Transformations Geometry Name For 1-10, determine if the following statements are always, sometimes, or never true. 1. Right triangles have line symmetry. 2. Isosceles triangles have line

More information

Introduction to Homogeneous coordinates

Introduction to Homogeneous coordinates Last class we considered smooth translations and rotations of the camera coordinate system and the resulting motions of points in the image projection plane. These two transformations were expressed mathematically

More information

Graphing Techniques. Domain (, ) Range (, ) Squaring Function f(x) = x 2 Domain (, ) Range [, ) f( x) = x 2

Graphing Techniques. Domain (, ) Range (, ) Squaring Function f(x) = x 2 Domain (, ) Range [, ) f( x) = x 2 Graphing Techniques In this chapter, we will take our knowledge of graphs of basic functions and expand our ability to graph polynomial and rational functions using common sense, zeros, y-intercepts, stretching

More information

DIHEDRAL GROUPS KEITH CONRAD

DIHEDRAL GROUPS KEITH CONRAD DIHEDRAL GROUPS KEITH CONRAD 1. Introduction For n 3, the dihedral group D n is defined as the rigid motions 1 taking a regular n-gon back to itself, with the operation being composition. These polygons

More information

AH Matrices.notebook November 28, 2016

AH Matrices.notebook November 28, 2016 Matrices Numbers are put into arrays to help with multiplication, division etc. A Matrix (matrices pl.) is a rectangular array of numbers arranged in rows and columns. Matrices If there are m rows and

More information

Stage 7 Checklists Have you reached this Standard?

Stage 7 Checklists Have you reached this Standard? Stage 7 Checklists Have you reached this Standard? Main Criteria for the whole year. J K L Use positive integer powers and associated real roots Apply the four operations with decimal numbers Write a quantity

More information

Polyominoes and Polyiamonds as Fundamental Domains for Isohedral Tilings of Crystal Class D 2

Polyominoes and Polyiamonds as Fundamental Domains for Isohedral Tilings of Crystal Class D 2 Symmetry 2011, 3, 325-364; doi:10.3390/sym3020325 OPEN ACCESS symmetry ISSN 2073-8994 www.mdpi.com/journal/symmetry Article Polyominoes and Polyiamonds as Fundamental Domains for Isohedral Tilings of Crystal

More information

Polyominoes and Polyiamonds as Fundamental Domains for Isohedral Tilings of Crystal Class D 2

Polyominoes and Polyiamonds as Fundamental Domains for Isohedral Tilings of Crystal Class D 2 Symmetry 2011, 3, 325-364; doi:10.3390/sym3020325 OPEN ACCESS symmetry ISSN 2073-8994 www.mdpi.com/journal/symmetry Article Polyominoes and Polyiamonds as Fundamental Domains for Isohedral Tilings of Crystal

More information

Geometry Ch 7 Quadrilaterals January 06, 2016

Geometry Ch 7 Quadrilaterals January 06, 2016 Theorem 17: Equal corresponding angles mean that lines are parallel. Corollary 1: Equal alternate interior angles mean that lines are parallel. Corollary 2: Supplementary interior angles on the same side

More information

7.1 INVERSE FUNCTIONS

7.1 INVERSE FUNCTIONS 1 7.1 INVERSE FUNCTIONS One to one functions are important because their equations, f(x) = k, have (at most) a single solution. One to one functions are also important because they are the functions that

More information

Given ABC with A(-1, 1), B(2, 4), and C(4, 1). Translate ABC left 4 units and up 1 unit. a) Vertex matrix: b) Algebraic (arrow) rule:

Given ABC with A(-1, 1), B(2, 4), and C(4, 1). Translate ABC left 4 units and up 1 unit. a) Vertex matrix: b) Algebraic (arrow) rule: Unit 7 Transformations 7 Rigid Motion in a Plane Transformation: The operation that maps, or moves, a preimage onto an image. Three basic transformations are reflection, rotation, and translation. Translation

More information

DISTANCE FORMULA: to find length or distance =( ) +( )

DISTANCE FORMULA: to find length or distance =( ) +( ) MATHEMATICS ANALYTICAL GEOMETRY DISTANCE FORMULA: to find length or distance =( ) +( ) A. TRIANGLES: Distance formula is used to show PERIMETER: sum of all the sides Scalene triangle: 3 unequal sides Isosceles

More information

Mathematics in Art and Architecture GEK1518

Mathematics in Art and Architecture GEK1518 Mathematics in Art and Architecture GEK1518 Helmer Aslaksen Department of Mathematics National University of Singapore aslaksen@math.nus.edu.sg www.math.nus.edu.sg/aslaksen/ Symmetry and Patterns Introduction

More information

Rigid Tilings of Quadrants by L-Shaped n-ominoes and Notched Rectangles

Rigid Tilings of Quadrants by L-Shaped n-ominoes and Notched Rectangles Rigid Tilings of Quadrants by L-Shaped n-ominoes and Notched Rectangles Aaron Calderon a, Samantha Fairchild b, Michael Muir c, Viorel Nitica c, Samuel Simon d a Department of Mathematics, The University

More information

Therefore, after becoming familiar with the Matrix Method, you will be able to solve a system of two linear equations in four different ways.

Therefore, after becoming familiar with the Matrix Method, you will be able to solve a system of two linear equations in four different ways. Grade 9 IGCSE A1: Chapter 9 Matrices and Transformations Materials Needed: Straightedge, Graph Paper Exercise 1: Matrix Operations Matrices are used in Linear Algebra to solve systems of linear equations.

More information

Unit 7. Transformations

Unit 7. Transformations Unit 7 Transformations 1 A transformation moves or changes a figure in some way to produce a new figure called an. Another name for the original figure is the. Recall that a translation moves every point

More information

Hello, welcome to the video lecture series on Digital Image Processing. So in today's lecture

Hello, welcome to the video lecture series on Digital Image Processing. So in today's lecture Digital Image Processing Prof. P. K. Biswas Department of Electronics and Electrical Communications Engineering Indian Institute of Technology, Kharagpur Module 02 Lecture Number 10 Basic Transform (Refer

More information

Exercise Find angles x and y as shown in Figure The lines m and n are parallel. 60 y m. x n. Figure

Exercise Find angles x and y as shown in Figure The lines m and n are parallel. 60 y m. x n. Figure Exercise 1.2.1. Find angles x and y as shown in Figure 1.2.11. The lines m and n are parallel. 60 y m 45 x n Figure 1.2.11 Exercise 1.2.2. Find angles α, β and γ as shown in Figure 1.2.12. The lines p

More information

GLOSSARY OF TERMS. Commutative property. Numbers can be added or multiplied in either order. For example, = ; 3 x 8 = 8 x 3.

GLOSSARY OF TERMS. Commutative property. Numbers can be added or multiplied in either order. For example, = ; 3 x 8 = 8 x 3. GLOSSARY OF TERMS Algorithm. An established step-by-step procedure used 1 to achieve a desired result. For example, the 55 addition algorithm for the sum of two two-digit + 27 numbers where carrying is

More information

Isometries of the Plane Teacher s Notes

Isometries of the Plane Teacher s Notes Isometries of the Plane Teacher s Notes Henri Picciotto This unit is intended to be consistent with the Common Core State Standards for Mathematics (CCSSM), but it does go quite a bit further than is required

More information

Unit 14: Transformations (Geometry) Date Topic Page

Unit 14: Transformations (Geometry) Date Topic Page Unit 14: Transformations (Geometry) Date Topic Page image pre-image transformation translation image pre-image reflection clockwise counterclockwise origin rotate 180 degrees rotate 270 degrees rotate

More information

Chapter 12 Transformations: Shapes in Motion

Chapter 12 Transformations: Shapes in Motion Chapter 12 Transformations: Shapes in Motion 1 Table of Contents Reflections Day 1.... Pages 1-10 SWBAT: Graph Reflections in the Coordinate Plane HW: Pages #11-15 Translations Day 2....... Pages 16-21

More information

Unit Circle. Project Response Sheet

Unit Circle. Project Response Sheet NAME: PROJECT ACTIVITY: Trigonometry TOPIC Unit Circle GOALS MATERIALS Explore Degree and Radian Measure Explore x- and y- coordinates on the Unit Circle Investigate Odd and Even functions Investigate

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6 Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

Groups, Linear Algebra, and the Geometry of the Torus

Groups, Linear Algebra, and the Geometry of the Torus Groups, Linear Algebra, and the Geometry of the Torus These are some notes and exercises to help you complete the group project. You should try all the exercises but should not feel pressured to complete

More information

Reflection (M): Reflect simple plane figures in horizontal or vertical lines;

Reflection (M): Reflect simple plane figures in horizontal or vertical lines; IGCSE - Extended Mathematics Transformation Content: Transformation: Reflection (M): Reflect simple plane figures in horizontal or vertical lines; Rotation (R): Rotate simple plane figures about the origin,

More information

UNM - PNM STATEWIDE MATHEMATICS CONTEST XLI. February 7, 2009 Second Round Three Hours

UNM - PNM STATEWIDE MATHEMATICS CONTEST XLI. February 7, 2009 Second Round Three Hours UNM - PNM STATEWIDE MATHEMATICS CONTEST XLI February 7, 009 Second Round Three Hours (1) An equilateral triangle is inscribed in a circle which is circumscribed by a square. This square is inscribed in

More information

Symmetric Product Graphs

Symmetric Product Graphs Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 5-20-2015 Symmetric Product Graphs Evan Witz Follow this and additional works at: http://scholarworks.rit.edu/theses

More information

CT5510: Computer Graphics. Transformation BOCHANG MOON

CT5510: Computer Graphics. Transformation BOCHANG MOON CT5510: Computer Graphics Transformation BOCHANG MOON 2D Translation Transformations such as rotation and scale can be represented using a matrix M.., How about translation? No way to express this using

More information

Glossary Common Core Curriculum Maps Math/Grade 6 Grade 8

Glossary Common Core Curriculum Maps Math/Grade 6 Grade 8 Glossary Common Core Curriculum Maps Math/Grade 6 Grade 8 Grade 6 Grade 8 absolute value Distance of a number (x) from zero on a number line. Because absolute value represents distance, the absolute value

More information

1.8 Composition of Transformations

1.8 Composition of Transformations 1.8. Composition of Transformations www.ck12.org 1.8 Composition of Transformations Here you ll learn how to perform a composition of transformations. You ll also learn some common composition of transformations.

More information

Parallel and perspective projections such as used in representing 3d images.

Parallel and perspective projections such as used in representing 3d images. Chapter 5 Rotations and projections In this chapter we discuss Rotations Parallel and perspective projections such as used in representing 3d images. Using coordinates and matrices, parallel projections

More information

Parameterized Complexity of Independence and Domination on Geometric Graphs

Parameterized Complexity of Independence and Domination on Geometric Graphs Parameterized Complexity of Independence and Domination on Geometric Graphs Dániel Marx Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany. dmarx@informatik.hu-berlin.de

More information

11.1 Rigid Motions. Symmetry

11.1 Rigid Motions. Symmetry 11.1 Rigid Motions Rigid Motions We will now take a closer look at the ideas behind the different types of symmetries that we have discussed by studying four different rigid motions. The act of taking

More information

9-1 GCSE Maths. GCSE Mathematics has a Foundation tier (Grades 1 5) and a Higher tier (Grades 4 9).

9-1 GCSE Maths. GCSE Mathematics has a Foundation tier (Grades 1 5) and a Higher tier (Grades 4 9). 9-1 GCSE Maths GCSE Mathematics has a Foundation tier (Grades 1 5) and a Higher tier (Grades 4 9). In each tier, there are three exams taken at the end of Year 11. Any topic may be assessed on each of

More information

Section 12.1 Translations and Rotations

Section 12.1 Translations and Rotations Section 12.1 Translations and Rotations Any rigid motion that preserves length or distance is an isometry. We look at two types of isometries in this section: translations and rotations. Translations A

More information

Grade 4 Math Proficiency Scales-T1

Grade 4 Math Proficiency Scales-T1 Measurement & Data Geometry Critical Thinking Communication Grade 4 Math Proficiency Scales-T1 Novice 1 and of the Make mathematical arguments and critique the reasoning of others. Partially Proficient

More information

Prentice Hall Mathematics: Course Correlated to: Ohio Academic Content Standards for Mathematics (Grade 7)

Prentice Hall Mathematics: Course Correlated to: Ohio Academic Content Standards for Mathematics (Grade 7) Ohio Academic Content Standards for Mathematics (Grade 7) NUMBER, NUMBER SENSE AND OPERATIONS STANDARD 1. Demonstrate an understanding of place value using powers of 10 and write large numbers in scientific

More information

B ABC is mapped into A'B'C'

B ABC is mapped into A'B'C' h. 00 Transformations Sec. 1 Mappings & ongruence Mappings Moving a figure around a plane is called mapping. In the figure below, was moved (mapped) to a new position in the plane and the new triangle

More information

Big Mathematical Ideas and Understandings

Big Mathematical Ideas and Understandings Big Mathematical Ideas and Understandings A Big Idea is a statement of an idea that is central to the learning of mathematics, one that links numerous mathematical understandings into a coherent whole.

More information

Homework 5: Transformations in geometry

Homework 5: Transformations in geometry Math b: Linear Algebra Spring 08 Homework 5: Transformations in geometry This homework is due on Wednesday, February 7, respectively on Thursday February 8, 08. a) Find the reflection matrix at the line

More information

On the undecidability of the tiling problem. Jarkko Kari. Mathematics Department, University of Turku, Finland

On the undecidability of the tiling problem. Jarkko Kari. Mathematics Department, University of Turku, Finland On the undecidability of the tiling problem Jarkko Kari Mathematics Department, University of Turku, Finland Consider the following decision problem, the tiling problem: Given a finite set of tiles (say,

More information

Name. YouTube Playlist: https://goo.gl/bpgam

Name. YouTube Playlist: https://goo.gl/bpgam Unit 2 Transformations Target 1: Identify and determine congruent parts given a rigid motion. Target 2: Perform and identify rigid transformations of points, segments, and figures. a. Perform and identify

More information

Euclid s Axioms. 1 There is exactly one line that contains any two points.

Euclid s Axioms. 1 There is exactly one line that contains any two points. 11.1 Basic Notions Euclid s Axioms 1 There is exactly one line that contains any two points. Euclid s Axioms 1 There is exactly one line that contains any two points. 2 If two points line in a plane then

More information

Whole Numbers and Integers. Angles and Bearings

Whole Numbers and Integers. Angles and Bearings Whole Numbers and Integers Multiply two 2-digit whole numbers without a calculator Know the meaning of square number Add and subtract two integers without a calculator Multiply an integer by a single digit

More information

Proportional Relationships: Connections

Proportional Relationships: Connections Proportional Relationships: Connections Henri Picciotto A set of activities using multiple mathematical tools (and some real world applications) to help middle school students make connections between

More information

SECTION 1.3: BASIC GRAPHS and SYMMETRY

SECTION 1.3: BASIC GRAPHS and SYMMETRY (Section.3: Basic Graphs and Symmetry).3. SECTION.3: BASIC GRAPHS and SYMMETRY LEARNING OBJECTIVES Know how to graph basic functions. Organize categories of basic graphs and recognize common properties,

More information

Glossary of dictionary terms in the AP geometry units

Glossary of dictionary terms in the AP geometry units Glossary of dictionary terms in the AP geometry units affine linear equation: an equation in which both sides are sums of terms that are either a number times y or a number times x or just a number [SlL2-D5]

More information

Chapel Hill Math Circle: Symmetry and Fractals

Chapel Hill Math Circle: Symmetry and Fractals Chapel Hill Math Circle: Symmetry and Fractals 10/7/17 1 Introduction This worksheet will explore symmetry. To mathematicians, a symmetry of an object is, roughly speaking, a transformation that does not

More information

x = 12 x = 12 1x = 16

x = 12 x = 12 1x = 16 2.2 - The Inverse of a Matrix We've seen how to add matrices, multiply them by scalars, subtract them, and multiply one matrix by another. The question naturally arises: Can we divide one matrix by another?

More information

Digits. Value The numbers a digit. Standard Form. Expanded Form. The symbols used to show numbers: 0,1,2,3,4,5,6,7,8,9

Digits. Value The numbers a digit. Standard Form. Expanded Form. The symbols used to show numbers: 0,1,2,3,4,5,6,7,8,9 Digits The symbols used to show numbers: 0,1,2,3,4,5,6,7,8,9 Value The numbers a digit represents, which is determined by the position of the digits Standard Form Expanded Form A common way of the writing

More information

1 The Platonic Solids

1 The Platonic Solids 1 The We take the celebration of Dodecahedron Day as an opportunity embark on a discussion of perhaps the best-known and most celebrated of all polyhedra the Platonic solids. Before doing so, however,

More information

Exam 2 Review. 2. What the difference is between an equation and an expression?

Exam 2 Review. 2. What the difference is between an equation and an expression? Exam 2 Review Chapter 1 Section1 Do You Know: 1. What does it mean to solve an equation? 2. What the difference is between an equation and an expression? 3. How to tell if an equation is linear? 4. How

More information

Vector Addition. Qty Item Part Number 1 Force Table ME-9447B 1 Mass and Hanger Set ME Carpenter s level 1 String

Vector Addition. Qty Item Part Number 1 Force Table ME-9447B 1 Mass and Hanger Set ME Carpenter s level 1 String rev 05/2018 Vector Addition Equipment List Qty Item Part Number 1 Force Table ME-9447B 1 Mass and Hanger Set ME-8979 1 Carpenter s level 1 String Purpose The purpose of this lab is for the student to gain

More information

Geometry Midterm Review 2019

Geometry Midterm Review 2019 Geometry Midterm Review 2019 Name To prepare for the midterm: Look over past work, including HW, Quizzes, tests, etc Do this packet Unit 0 Pre Requisite Skills I Can: Solve equations including equations

More information

A Framework for Achieving the Essential Academic Learning. Requirements in Mathematics Grades 8-10 Glossary

A Framework for Achieving the Essential Academic Learning. Requirements in Mathematics Grades 8-10 Glossary A Framework for Achieving the Essential Academic Learning Requirements in Mathematics Grades 8-10 Glossary absolute value the numerical value of a number without regard to its sign; the distance of the

More information

Rational Numbers: Graphing: The Coordinate Plane

Rational Numbers: Graphing: The Coordinate Plane Rational Numbers: Graphing: The Coordinate Plane A special kind of plane used in mathematics is the coordinate plane, sometimes called the Cartesian plane after its inventor, René Descartes. It is one

More information

Planting the Seeds Exploring Cubic Functions

Planting the Seeds Exploring Cubic Functions 295 Planting the Seeds Exploring Cubic Functions 4.1 LEARNING GOALS In this lesson, you will: Represent cubic functions using words, tables, equations, and graphs. Interpret the key characteristics of

More information

Relation between 3 Utility Problem And Eulerian Trail

Relation between 3 Utility Problem And Eulerian Trail IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 2, Ver. X (Mar-Apr. 2014), PP 13-22 Relation between 3 Utility Problem And Eulerian Trail Yashasvini

More information