Temperature Distribution Measurement Based on ML-EM Method Using Enclosed Acoustic CT System

Size: px
Start display at page:

Download "Temperature Distribution Measurement Based on ML-EM Method Using Enclosed Acoustic CT System"

Transcription

1 Sensors & Transducers 2013 by IFSA Temperature Distribution Measurement Based on ML-EM Method Using Enclosed Acoustic CT System Shinji Ohyama, Masato Mukouyama Graduate School of Science and Engineering, Tokyo Institute of Technology , O-Okayama, Meguro-Ku, Tokyo, Japan Tel.: Received: 23 January 2013 /Accepted: 19 March 2013 /Published: 29 March 2013 Abstract: In this paper, a measurement method for cross-sectional temperature distributions is considered. A novel method based on an acoustic computed tomography (CT) technique is proposed. Specifically, the temperature distributions are estimated using the time of flight (TOF) of multidirectional ultrasonic propagation paths. Maximum Likelihood Expectation Maximization (ML-EM) method and the Median Filter are introduced to reconstruct the temperature distributions in a square area properly. The effectiveness of the proposed reconstruction method is confirmed experimentally. Copyright 2013 IFSA. Keywords: Acoustic tomography, ML-EM, Temperature distribution measurement. 1. Introduction The computed tomography (CT) technique is a well-known means of measuring the density distribution in a plain. X-ray CT, for example, can be applied to estimate cross-sections of human bodies in a medical field. This CT technique can be expanded to many other fields. Among them, ultrasonic CT system is studied and applied to temperature distribution measurement. In the ultrasonic CT system, the projection data are obtained from the time of flight (TOF) between transmitters and receivers. It is based on the fact that TOF is depending on the temperature distribution on the propagation path. In this report, the method to improve accuracy in the practical application of ultrasonic CT system is discussed. In the practical application case, the measurement plain is square and TOF measurement between not all of the ultrasonic transducers is possible because of its directivities; therefore, conventional reconstruction technique; Filtered back projection that requires complete projection can t reconstruct properly in the corner of the measurement plain. For this reason new reconstruction technique has been newly introduced, and effectiveness of the proposed method has been confirmed. First, a principle of the ultrasonic CT technique, especially about a separation technique of temperature and wind velocity effects from measured time of flight data and CT reconstruction method, is explained. Next, by numerical experiments, measurement precision of the temperature distribution will be confirmed. Finally, by using fabricated experimental system, measurement of the temperature distribution is executed, and performance of proposed method will be evaluated. Article number P_

2 2. Principle of Ultrasonic CT 2.1. Ultrasonic CT System and its Projection Data An arrangement of multiple ultrasonic transducers is shown in Fig. 1. Transducers are arranged on a circumference of the square measurement plain. In the ultrasonic CT system, TOF between all pairs of transmitters and receivers are measured. Equation (1) expresses mathematically-modeled TOF t mn between transmitter m and receiver n as shown in Fig. 1 based on straight line propagation path model shown in Fig. 2. (1) determined by absolute temperature T, specific heat ratio, gas constant R and molecular weight of air M as expressed in eq. (2). Therefore, distribution of c T corresponds to temperature distribution. (2) Equation (1) shows that TOF include not only components of temperature c T but also components of wind velocity v x, v y therefore, to reconstruct only temperature distribution, the components of temperature c T should be separated from TOF by using TOF of both-way t mn, t nm and eq. (4) expressed by r-s coordinate as shown in Fig. 1. In this research, line integral in outside of the measurement plain is assumed to be zero. (3) (4) The components of temperature c T separated from TOF expressed in eq. (4) are regarded as the projection data of ultrasonic CT. In order to obtain temperature distribution, reconstruction technique is applied for these projection data. Fig. 1. Configuration of Ultrasonic CT Reconstruction Technique Concerning the CT technique, many researches have been investigated in terms of image reconstructions from projection data. Filtered Back projection (FBP) is used most extensively for image reconstruction, which is based on the relations shown in Fig. 3. Fig. 3 shows relations among scalar distribution (x, y) corresponding to the 1/ c T for ultrasonic CT, 2-Dimensional Fourier Transform of f(x, y), and projection data p(r, ). Fig. 2. Straight line propagation path model. In this propagation model, the line between a transmitter and a receiver is assumed as a propagation path and only tangential component of the wind vector to the propagation path is assumed as effects of the wind velocity. It is based on following assumption; c T >> v x, v y. Assuming that c T represents a sound velocity without effects of wind velocity v x, that is Fig. 3. Relationship among objective distribution, projection data and k -space on projection slice theorem. 52

3 Equation (5) shows the relation based on the inverse-fourier transformation and eq. (6) shows the relation based on the projection slice theorem. (5) (6) incomplete projection; Maximum Likelihood Expectation Maximization (ML-EM), introduced by L. A. Shepp and Y. Vardi [3]. Unlike Algebraic Reconstruction Technique that can be also applied to incomplete projection, this method does not require large matrix operation therefore it saves computational cost. Equation (10) shows projection data discretized spatially based on concept of ML-EM. (10) From these equations, eq. (7) can be obtained, it shows that f(x, y) is reconstructed by the inverse-fourier transformation of a product of and a Fourier transformation of p(r, ). (7) Therefore, the objective distribution (x, y) is calculated from eq. (8) in a spatial-domain. (8) where q(r, ) means convolution between h(r) (which is spatial-domain expression of ) and p(r, ), that is given by the following equation., (9) As expressed in eq. (8), reconstruction based on FBP requires complete projection (which means that a pixel is configured in the measurement plain is covered with the propagation paths from all directions). However, in the ultrasonic CT system complete projection cannot be obtained all over the area because transducers are fixed on the circumference of measurement plain and actual transducers have directivities. Fig. 4 shows the area assured complete projection under the condition that transducers are arranged at equal distances and directed center of measurement plain, and TOF measurement can be done on the condition that transducers are within 45 degrees from direction of the strongest directivity characteristics each other. Outside of the area surrounded by bold line in Fig. 4, specifically in the corner of the measurement plain, is not assured complete projection and cannot be reconstructed properly based on FBP. For this reason, we focus on one of the reconstruction techniques that can be applied to Fig. 4. The area covered with the propagation paths from all directions. Each parameter in eq. (10) is denoted as follows: i: suffix of propagation path {i i=1, 2, 3,, M} j: suffix of pixel configured in measurement plain {j j=1, 2, 3,, N} p i : projection data of propagation path i {p i p i p} i : propagation time per unit distance in pixel j { i i } C ij : length of propagation path i in pixel j { C ij C ij C} ML-EM tries to improve the estimated result to a solution iteratively. As described in Ref. [3], this algorithm is based on the update equation as shown in Fig. 5. Assuming that k represents number of iterations of reconstruction procedure, C represents length of propagation path which can be calculated from arrangement of transducers. Fig. 5. The update equation of the ML-EM algorithm. 53

4 Fig. 6 shows a transition of data in the implemented reconstruction procedure based on ML-EM. In the practical application case, measurement errors are included in the projection data and they cause spike-like artifacts. Therefore we adopt the filtering by Median Filter as shown in Fig. 6 to reduce these artifacts. Actual procedure of reconstruction based on ML-EM is shown as follows; (0) Let k pre-specified initial distribution (k=0), e.g., uniform. (1) Calculate forward projection pˆ from k estimated in the last iteration. (2) Calculate weighted back projection of ratio between measured projection data p and calculated projection data pˆ. (3) Normalize effect of weight. (4) Update the distribution (k=k+1) and filter by Median Filter. (5) Iterate the procedure from (1) to (4) until convergence of k. 3. Numerical Experiments In order to confirm the effectiveness of ML-EM to the reconstruction of temperature distributions in the corner of the measurement plain, we set the numerical models of ultrasonic CT system as shown in Fig. 7 and temperature distribution as shown in Fig. 8, calculate the forward projection from numerical model, and reconstruct the temperature distribution from calculated forward projection data. In the numerical model of ultrasonic CT system, 80 transducers are arranged at equal distance and directed to the center of the measurement plain, and TOF measurement can be done on the condition that transducers are within 45 degrees from direction of the strongest directivity characteristics each other. To verify the effectiveness of the adoption of ML-EM instead of FBP, reconstructed temperature distributions are compared with each other. Fig. 6. Implemented reconstruction procedure based on ML-EM including Median Filter. Fig. 7. Configuration of Experimental system. Fig. 9 shows temperature distribution reconstructed by FBP from projection data calculated from numerical temperature distribution model shown in Fig. 8. Deformation of heat source caused by incomplete projection is shown in Fig. 9. Moreover, the peak of reconstructed temperature distribution (22.93 degree) is less than that of numerical temperature distribution model (25.0 degree) by 2.07 K, also, it is confirmed that in the corner of the measurement plain FBP cannot reconstruct the objective distribution with a high degree of accuracy. Fig. 10 shows temperature distribution reconstructed by introduced method; ML-EM from projection data calculated from numerical temperature distribution model shown in Fig. 8. The peak of reconstructed temperature distribution (24.99 degree) is close to that 54

5 of numerical temperature distribution model (25.0 degree) and deformation of heat source is much smaller than temperature distribution reconstructed by FBP. In addition, to evaluate reconstructed results quantitatively, Sum of Square Difference (SSD) between numerical temperature distribution model and reconstructed temperature distributions are calculated. The SSD of temperature distribution reconstructed by ML-EM is less than 30 % of that by FBP as shown in Fig. 11. Furthermore, Root Mean Square Error of the temperature distribution reconstructed by ML-EM is 0.09 K, and sufficiently small for assumed system. From these results, possibility of improvement in the reconstruction accuracy caused by adaptation of ML-EM is confirmed. Fig. 8. Numerical experimental conditions. Fig. 9. Reconstructed results by means of FBP. Fig. 10. Reconstructed results by means of ML-EM. 55

6 characteristics and result of fundamental experiments, we assume TOF measurement can be done on the condition that transducers are within 45 degrees from direction of the strongest directivity characteristics each other. Fig. 11. SSD of reconstructed temperature distributions. 4. Experiments In order to confirm the effectiveness of ML-EM in the actual experimental system, we set some conditions and reconstruct the temperature distribution from ultrasonic TOF measured by experimental system. Fig. 13. Photograph of ultrasonic transducer Experimental Setups Fig. 12 shows a photograph of the measurement plain and transducer array. In the experimental system, 80 transducers (20 transducers per side) are arranged on circumference of the square area that is 100 cm on a side. Fig. 14. Directivities of transmitter module and receiver module. Fig. 12. Photograph of the measurement plain and transducer array. Fig. 13 shows a photograph of the transducer employed in the experimental system. A transmitter module (MA40S4S produced by Murata Manufacturing Co., Ltd.) and a receiver module (MA40S4R produced by Murata Manufacturing Co., Ltd.) are contained in the transducer. Fig. 14 shows the directivities of transmitter module and receiver module. From these Fig. 15 shows the two configurations of the heat source. In the configuration (1), the hair drier used as heat source is arranged at center of the measurement plain and 15 cm below the measurement plain. In the configuration (2), the hair drier is arranged in the corner of the measurement plain to verify the effectiveness of the adoption of ML-EM instead of FBP Experimental Results The temperature distribution reconstructed from TOF measured in configuration (1) is shown in Fig. 16. In addition, to verify the precision of the temperature measurement, profiles (y=0) of the reconstructed temperature distributions are compared 56

7 with referential temperature data obtained by thermistors as shown in Fig. 17. Fig. 16 shows that there are few differences in re-construction accuracy between FBP and ML-EM, in the case of reconstruction at the center of the measurement plain in which complete projection is assured. Given set condition as shown in Fig. 15, both reconstructed temperature distributions are likely estimated results. Whereas, in comparison with the temperature distribution reconstructed by ML-EM, the temperature distribution reconstructed by FBP includes the line artifact as shown in Fig. 16 (b). Fig. 15. Arrangement of heat source. Fig. 16. Temperature distributions reconstructed from TOF measured in the configuration (1). Fig. 17. Profiles of reconstructed temperature distributions (y=0). The temperature distribution reconstructed from TOF measured in configuration (2) is shown in Fig. 18, and profiles (yy =40) of reconstructed results are shown in Fig. 19. Given set condition as shown in Fig. 15, the temperature distribution reconstructed by ML-EM is likely estimated result. By contrast, in the temperature distribution reconstructed by FBP deformation of heat source is included. Besides, in comparison with the temperature distribution reconstructed by FBP, the temperature distribution reconstructed by ML-EM is close to the referential data obtained by thermistors. As a result, by using proposed method, a temperature distribution in the corner of the measurement plain can be reconstructed more accurately. To conclude, the certain advantages of the proposed method have been confirmed experimentally. 57

8 Fig. 18. Temperature distributions reconstructed from TOF measured in the configuration (2). Fig. 19. Profiles of reconstructed temperature distributions (y = 40). 5. Conclusions In this paper, the novel method to measure two dimensional temperature distribution with enclosed square type ultrasonic CT is proposed. In the square type ultrasonic CT, not all of the area is assured complete projection because of directivities of transducers, specifically corner of the area. Therefore, conventional reconstruction technique; FBP cannot reconstruct temperature distribution in such area properly. For this reason, ML-EM is introduced as a reconstruction technique that is applicable for incomplete projection and the effectiveness of adaptation of ML-EM is confirmed by both numerical and actual experiments. In the future work, measurement range of temperature should be expanded and scale of measurement plain should be expanded. References [1]. Shinji Ohyama, Junya Takayama, Yuuki Watanabe, Tetsuya Takahoshi and Kazuo Oshima, Temperature distribution and wind vector measurement using ultrasonic CT based on the time of flight detection, Sensors and Actuators A: Physical, Vol. 151, Issue 2, 2009, pp [2]. L. A. Shepp and B. F. Logan, The Fourier Reconstruction of a Head Section, IEEE Trans. Nucl. Sci, Vol. 21, 1974, pp [3]. L. A. Shepp and Y. Vardi, Maximum likelihood reconstruction for emission tomography, IEEE Trans. Med. Imaging, Vol. MI-1, 1982, pp [4]. K. Lange and R. Carson, EM reconstruction algorithms for emission and transmission tomography, J. Computer Assisted Tomography, Vol. 8, 1984, pp [5]. Murata Manufacturing Co., Ltd., Product catalog, Copyright, International Frequency Sensor Association (IFSA). All rights reserved. ( 58

A Weighted Least Squares PET Image Reconstruction Method Using Iterative Coordinate Descent Algorithms

A Weighted Least Squares PET Image Reconstruction Method Using Iterative Coordinate Descent Algorithms A Weighted Least Squares PET Image Reconstruction Method Using Iterative Coordinate Descent Algorithms Hongqing Zhu, Huazhong Shu, Jian Zhou and Limin Luo Department of Biological Science and Medical Engineering,

More information

Tomographic Algorithm for Industrial Plasmas

Tomographic Algorithm for Industrial Plasmas Tomographic Algorithm for Industrial Plasmas More info about this article: http://www.ndt.net/?id=22342 1 Sudhir K. Chaudhary, 1 Kavita Rathore, 2 Sudeep Bhattacharjee, 1 Prabhat Munshi 1 Nuclear Engineering

More information

UNIT I READING: GRAPHICAL METHODS

UNIT I READING: GRAPHICAL METHODS UNIT I READING: GRAPHICAL METHODS One of the most effective tools for the visual evaluation of data is a graph. The investigator is usually interested in a quantitative graph that shows the relationship

More information

Index. aliasing artifacts and noise in CT images, 200 measurement of projection data, nondiffracting

Index. aliasing artifacts and noise in CT images, 200 measurement of projection data, nondiffracting Index Algebraic equations solution by Kaczmarz method, 278 Algebraic reconstruction techniques, 283-84 sequential, 289, 293 simultaneous, 285-92 Algebraic techniques reconstruction algorithms, 275-96 Algorithms

More information

Medical Image Reconstruction Term II 2012 Topic 6: Tomography

Medical Image Reconstruction Term II 2012 Topic 6: Tomography Medical Image Reconstruction Term II 2012 Topic 6: Tomography Professor Yasser Mostafa Kadah Tomography The Greek word tomos means a section, a slice, or a cut. Tomography is the process of imaging a cross

More information

Assessment of OSEM & FBP Reconstruction Techniques in Single Photon Emission Computed Tomography Using SPECT Phantom as Applied on Bone Scintigraphy

Assessment of OSEM & FBP Reconstruction Techniques in Single Photon Emission Computed Tomography Using SPECT Phantom as Applied on Bone Scintigraphy Assessment of OSEM & FBP Reconstruction Techniques in Single Photon Emission Computed Tomography Using SPECT Phantom as Applied on Bone Scintigraphy Physics Department, Faculty of Applied Science,Umm Al-Qura

More information

Workshop on Quantitative SPECT and PET Brain Studies January, 2013 PUCRS, Porto Alegre, Brasil Corrections in SPECT and PET

Workshop on Quantitative SPECT and PET Brain Studies January, 2013 PUCRS, Porto Alegre, Brasil Corrections in SPECT and PET Workshop on Quantitative SPECT and PET Brain Studies 14-16 January, 2013 PUCRS, Porto Alegre, Brasil Corrections in SPECT and PET Físico João Alfredo Borges, Me. Corrections in SPECT and PET SPECT and

More information

Unit I Reading Graphical Methods

Unit I Reading Graphical Methods Unit I Reading Graphical Methods One of the most effective tools for the visual evaluation of data is a graph. The investigator is usually interested in a quantitative graph that shows the relationship

More information

THE general task in emission computed tomography (CT)

THE general task in emission computed tomography (CT) 228 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 17, NO. 2, APRIL 1998 List-Mode Likelihood: EM Algorithm and Image Quality Estimation Demonstrated on 2-D PET Lucas Parra* and Harrison H. Barrett, Member,

More information

Simulation of Multipoint Ultrasonic Flowmeter

Simulation of Multipoint Ultrasonic Flowmeter Simulation of Multipoint Ultrasonic Flowmeter Jakub Filipský 1,*, Jiří Nožička 2 1,2 CTU in Prague, Faculty of Mechanical Engineering, Department of Fluid Mechanics and Thermodynamics, Technická 4, 166

More information

APPLICATION OF RADON TRANSFORM IN CT IMAGE MATCHING Yufang Cai, Kuan Shen, Jue Wang ICT Research Center of Chongqing University, Chongqing, P.R.

APPLICATION OF RADON TRANSFORM IN CT IMAGE MATCHING Yufang Cai, Kuan Shen, Jue Wang ICT Research Center of Chongqing University, Chongqing, P.R. APPLICATION OF RADON TRANSFORM IN CT IMAGE MATCHING Yufang Cai, Kuan Shen, Jue Wang ICT Research Center of Chongqing University, Chongqing, P.R.China Abstract: When Industrial Computerized Tomography (CT)

More information

Adaptive algebraic reconstruction technique

Adaptive algebraic reconstruction technique Adaptive algebraic reconstruction technique Wenkai Lua) Department of Automation, Key State Lab of Intelligent Technology and System, Tsinghua University, Beijing 10084, People s Republic of China Fang-Fang

More information

Advanced Image Reconstruction Methods for Photoacoustic Tomography

Advanced Image Reconstruction Methods for Photoacoustic Tomography Advanced Image Reconstruction Methods for Photoacoustic Tomography Mark A. Anastasio, Kun Wang, and Robert Schoonover Department of Biomedical Engineering Washington University in St. Louis 1 Outline Photoacoustic/thermoacoustic

More information

A Source Localization Technique Based on a Ray-Trace Technique with Optimized Resolution and Limited Computational Costs

A Source Localization Technique Based on a Ray-Trace Technique with Optimized Resolution and Limited Computational Costs Proceedings A Source Localization Technique Based on a Ray-Trace Technique with Optimized Resolution and Limited Computational Costs Yoshikazu Kobayashi 1, *, Kenichi Oda 1 and Katsuya Nakamura 2 1 Department

More information

NONLINEAR BACK PROJECTION FOR TOMOGRAPHIC IMAGE RECONSTRUCTION

NONLINEAR BACK PROJECTION FOR TOMOGRAPHIC IMAGE RECONSTRUCTION NONLINEAR BACK PROJECTION FOR TOMOGRAPHIC IMAGE RECONSTRUCTION Ken Sauef and Charles A. Bournant *Department of Electrical Engineering, University of Notre Dame Notre Dame, IN 46556, (219) 631-6999 tschoo1

More information

AN ANALYSIS OF ITERATIVE ALGORITHMS FOR IMAGE RECONSTRUCTION FROM SATELLITE EARTH REMOTE SENSING DATA Matthew H Willis Brigham Young University, MERS Laboratory 459 CB, Provo, UT 8462 8-378-4884, FAX:

More information

Video Inter-frame Forgery Identification Based on Optical Flow Consistency

Video Inter-frame Forgery Identification Based on Optical Flow Consistency Sensors & Transducers 24 by IFSA Publishing, S. L. http://www.sensorsportal.com Video Inter-frame Forgery Identification Based on Optical Flow Consistency Qi Wang, Zhaohong Li, Zhenzhen Zhang, Qinglong

More information

Travel Time Tomography using Neural Networks

Travel Time Tomography using Neural Networks Travel Time Tomography using Neural Networks Yoshiya Oda Tokyo Metropolitan University, Japan Tomohisa Ishiyama Tokyo Metropolitan University, Japan Shinya Yokono Tokyo Metropolitan University, Japan SUMMARY:

More information

Expectation Maximization and Total Variation Based Model for Computed Tomography Reconstruction from Undersampled Data

Expectation Maximization and Total Variation Based Model for Computed Tomography Reconstruction from Undersampled Data Expectation Maximization and Total Variation Based Model for Computed Tomography Reconstruction from Undersampled Data Ming Yan and Luminita A. Vese Department of Mathematics, University of California,

More information

MEDICAL IMAGE ANALYSIS

MEDICAL IMAGE ANALYSIS SECOND EDITION MEDICAL IMAGE ANALYSIS ATAM P. DHAWAN g, A B IEEE Engineering in Medicine and Biology Society, Sponsor IEEE Press Series in Biomedical Engineering Metin Akay, Series Editor +IEEE IEEE PRESS

More information

Consistency in Tomographic Reconstruction by Iterative Methods

Consistency in Tomographic Reconstruction by Iterative Methods Consistency in Tomographic Reconstruction by Iterative Methods by M. Reha Civanlar and H.J. Trussell Center for Communications and Signal Processing Department of Electrical and Computer Engineering North

More information

Unmatched Projector/Backprojector Pairs in an Iterative Reconstruction Algorithm

Unmatched Projector/Backprojector Pairs in an Iterative Reconstruction Algorithm 548 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 19, NO. 5, MAY 2000 Unmatched Projector/Backprojector Pairs in an Iterative Reconstruction Algorithm Gengsheng L. Zeng*, Member, IEEE, and Grant T. Gullberg,

More information

A numerical simulator in VC++ on PC for iterative image reconstruction

A numerical simulator in VC++ on PC for iterative image reconstruction Journal of X-Ray Science and Technology 11 (2003) 61 70 61 IOS Press A numerical simulator in VC++ on PC for iterative image reconstruction Xiang Li a,, Ming Jiang c and Ge Wang a,b a Department of Biomedical

More information

Phase Reversed Image Reconstruction Method of. Industrial Ultrasonic CT

Phase Reversed Image Reconstruction Method of. Industrial Ultrasonic CT 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China Phase Reversed Image Reconstruction Method of Industrial Ultrasonic CT Yi-Fang CHEN 1, Wen-Ai SONG 1, Ke-Yi YUAN 1 1 Department

More information

Central Slice Theorem

Central Slice Theorem Central Slice Theorem Incident X-rays y f(x,y) R x r x Detected p(, x ) The thick line is described by xcos +ysin =R Properties of Fourier Transform F [ f ( x a)] F [ f ( x)] e j 2 a Spatial Domain Spatial

More information

Phase problem and the Radon transform

Phase problem and the Radon transform Phase problem and the Radon transform Andrei V. Bronnikov Bronnikov Algorithms The Netherlands The Radon transform and applications Inverse problem of phase-contrast CT Fundamental theorem Image reconstruction

More information

Application of optimal sampling lattices on CT image reconstruction and segmentation or three dimensional printing

Application of optimal sampling lattices on CT image reconstruction and segmentation or three dimensional printing Application of optimal sampling lattices on CT image reconstruction and segmentation or three dimensional printing XIQIANG ZHENG Division of Health and Natural Sciences, Voorhees College, Denmark, SC 29042

More information

ADVANCED IMAGE PROCESSING METHODS FOR ULTRASONIC NDE RESEARCH C. H. Chen, University of Massachusetts Dartmouth, N.

ADVANCED IMAGE PROCESSING METHODS FOR ULTRASONIC NDE RESEARCH C. H. Chen, University of Massachusetts Dartmouth, N. ADVANCED IMAGE PROCESSING METHODS FOR ULTRASONIC NDE RESEARCH C. H. Chen, University of Massachusetts Dartmouth, N. Dartmouth, MA USA Abstract: The significant progress in ultrasonic NDE systems has now

More information

A method and algorithm for Tomographic Imaging of highly porous specimen using Low Frequency Acoustic/Ultrasonic signals

A method and algorithm for Tomographic Imaging of highly porous specimen using Low Frequency Acoustic/Ultrasonic signals More Info at Open Access Database www.ndt.net/?id=15210 A method and algorithm for Tomographic Imaging of highly porous specimen using Low Frequency Acoustic/Ultrasonic signals Subodh P S 1,a, Reghunathan

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle   holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/8289 holds various files of this Leiden University dissertation Author: Plantagie, L. Title: Algebraic filters for filtered backprojection Issue Date: 2017-0-13

More information

Towards an Estimation of Acoustic Impedance from Multiple Ultrasound Images

Towards an Estimation of Acoustic Impedance from Multiple Ultrasound Images Towards an Estimation of Acoustic Impedance from Multiple Ultrasound Images Christian Wachinger 1, Ramtin Shams 2, Nassir Navab 1 1 Computer Aided Medical Procedures (CAMP), Technische Universität München

More information

WEINER FILTER AND SUB-BLOCK DECOMPOSITION BASED IMAGE RESTORATION FOR MEDICAL APPLICATIONS

WEINER FILTER AND SUB-BLOCK DECOMPOSITION BASED IMAGE RESTORATION FOR MEDICAL APPLICATIONS WEINER FILTER AND SUB-BLOCK DECOMPOSITION BASED IMAGE RESTORATION FOR MEDICAL APPLICATIONS ARIFA SULTANA 1 & KANDARPA KUMAR SARMA 2 1,2 Department of Electronics and Communication Engineering, Gauhati

More information

x' = c 1 x + c 2 y + c 3 xy + c 4 y' = c 5 x + c 6 y + c 7 xy + c 8

x' = c 1 x + c 2 y + c 3 xy + c 4 y' = c 5 x + c 6 y + c 7 xy + c 8 1. Explain about gray level interpolation. The distortion correction equations yield non integer values for x' and y'. Because the distorted image g is digital, its pixel values are defined only at integer

More information

Detection of Narrow Gaps Using Hessian Eigenvalues for Shape Segmentation of a CT Volume of Assembled Parts

Detection of Narrow Gaps Using Hessian Eigenvalues for Shape Segmentation of a CT Volume of Assembled Parts Detection of Narrow Gaps Using Hessian Eigenvalues for Shape Segmentation of a CT Volume of Assembled Parts More info about this article: http://www.ndt.net/?id=21958 Sho Watanabe 1, Yutaka Ohtake 1, Yukie

More information

A Fast Implementation of the Incremental Backprojection Algorithms for Parallel Beam Geometries5

A Fast Implementation of the Incremental Backprojection Algorithms for Parallel Beam Geometries5 A Fast mplementation of the ncremental Backprojection Algorithms for Parallel Beam Geometries5 Chung-Ming Chent, Zang-Hee Cho*, Cheng-Yi Wang t +Center for Biomedical Engineering, College of Medicine,

More information

Iterative SPECT reconstruction with 3D detector response

Iterative SPECT reconstruction with 3D detector response Iterative SPECT reconstruction with 3D detector response Jeffrey A. Fessler and Anastasia Yendiki COMMUNICATIONS & SIGNAL PROCESSING LABORATORY Department of Electrical Engineering and Computer Science

More information

Research Collection. Localisation of Acoustic Emission in Reinforced Concrete using Heterogeneous Velocity Models. Conference Paper.

Research Collection. Localisation of Acoustic Emission in Reinforced Concrete using Heterogeneous Velocity Models. Conference Paper. Research Collection Conference Paper Localisation of Acoustic Emission in Reinforced Concrete using Heterogeneous Velocity Models Author(s): Gollob, Stephan; Vogel, Thomas Publication Date: 2014 Permanent

More information

Compressed Sensing Algorithm for Real-Time Doppler Ultrasound Image Reconstruction

Compressed Sensing Algorithm for Real-Time Doppler Ultrasound Image Reconstruction Mathematical Modelling and Applications 2017; 2(6): 75-80 http://www.sciencepublishinggroup.com/j/mma doi: 10.11648/j.mma.20170206.14 ISSN: 2575-1786 (Print); ISSN: 2575-1794 (Online) Compressed Sensing

More information

Investigation on reconstruction methods applied to 3D terahertz computed Tomography

Investigation on reconstruction methods applied to 3D terahertz computed Tomography Investigation on reconstruction methods applied to 3D terahertz computed Tomography B. Recur, 3 A. Younus, 1, P. Mounaix 1, S. Salort, 2 B. Chassagne, 2 P. Desbarats, 3 J-P. Caumes, 2 and E. Abraham 1

More information

DUE to beam polychromacity in CT and the energy dependence

DUE to beam polychromacity in CT and the energy dependence 1 Empirical Water Precorrection for Cone-Beam Computed Tomography Katia Sourbelle, Marc Kachelrieß, Member, IEEE, and Willi A. Kalender Abstract We propose an algorithm to correct for the cupping artifact

More information

Noise weighting with an exponent for transmission CT

Noise weighting with an exponent for transmission CT doi:10.1088/2057-1976/2/4/045004 RECEIVED 13 January 2016 REVISED 4 June 2016 ACCEPTED FOR PUBLICATION 21 June 2016 PUBLISHED 27 July 2016 PAPER Noise weighting with an exponent for transmission CT Gengsheng

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Image Restoration and Reconstruction (Image Reconstruction from Projections) Christophoros Nikou cnikou@cs.uoi.gr University of Ioannina - Department of Computer Science and Engineering

More information

Axial block coordinate descent (ABCD) algorithm for X-ray CT image reconstruction

Axial block coordinate descent (ABCD) algorithm for X-ray CT image reconstruction Axial block coordinate descent (ABCD) algorithm for X-ray CT image reconstruction Jeffrey A. Fessler and Donghwan Kim EECS Department University of Michigan Fully 3D Image Reconstruction Conference July

More information

Blob-Representation of Multidimensional Objects and Surfaces

Blob-Representation of Multidimensional Objects and Surfaces Blob-Representation of Multidimensional Objects and Surfaces Edgar Garduño and Gabor T. Herman Department of Computer Science The Graduate Center City University of New York Presentation Outline Reconstruction

More information

NIH Public Access Author Manuscript Med Phys. Author manuscript; available in PMC 2009 March 13.

NIH Public Access Author Manuscript Med Phys. Author manuscript; available in PMC 2009 March 13. NIH Public Access Author Manuscript Published in final edited form as: Med Phys. 2008 February ; 35(2): 660 663. Prior image constrained compressed sensing (PICCS): A method to accurately reconstruct dynamic

More information

Accurate and Dense Wide-Baseline Stereo Matching Using SW-POC

Accurate and Dense Wide-Baseline Stereo Matching Using SW-POC Accurate and Dense Wide-Baseline Stereo Matching Using SW-POC Shuji Sakai, Koichi Ito, Takafumi Aoki Graduate School of Information Sciences, Tohoku University, Sendai, 980 8579, Japan Email: sakai@aoki.ecei.tohoku.ac.jp

More information

Advanced phase retrieval: maximum likelihood technique with sparse regularization of phase and amplitude

Advanced phase retrieval: maximum likelihood technique with sparse regularization of phase and amplitude Advanced phase retrieval: maximum likelihood technique with sparse regularization of phase and amplitude A. Migukin *, V. atkovnik and J. Astola Department of Signal Processing, Tampere University of Technology,

More information

Algebraic Iterative Methods for Computed Tomography

Algebraic Iterative Methods for Computed Tomography Algebraic Iterative Methods for Computed Tomography Per Christian Hansen DTU Compute Department of Applied Mathematics and Computer Science Technical University of Denmark Per Christian Hansen Algebraic

More information

A Projection Access Scheme for Iterative Reconstruction Based on the Golden Section

A Projection Access Scheme for Iterative Reconstruction Based on the Golden Section A Projection Access Scheme for Iterative Reconstruction Based on the Golden Section Thomas Köhler Philips Research Laboratories Roentgenstrasse - Hamburg Germany Abstract A new access scheme for projections

More information

GE s Revolution CT MATLAB III: CT. Kathleen Chen March 20, 2018

GE s Revolution CT MATLAB III: CT. Kathleen Chen March 20, 2018 GE s Revolution CT MATLAB III: CT Kathleen Chen chens18@rpi.edu March 20, 2018 https://www.zmescience.com/medicine/inside-human-body-real-time-gifs-demo-power-ct-scan/ Reminders Make sure you have MATLAB

More information

Refraction Corrected Transmission Ultrasound Computed Tomography for Application in Breast Imaging

Refraction Corrected Transmission Ultrasound Computed Tomography for Application in Breast Imaging Refraction Corrected Transmission Ultrasound Computed Tomography for Application in Breast Imaging Joint Research With Trond Varslot Marcel Jackowski Shengying Li and Klaus Mueller Ultrasound Detection

More information

Development of Electrical Capacitance Volume Tomography (ECVT) and Electrostatic Tomography (EST) for 3D Density Imaging of Fluidized Bed System

Development of Electrical Capacitance Volume Tomography (ECVT) and Electrostatic Tomography (EST) for 3D Density Imaging of Fluidized Bed System Refereed Proceedings The 12th International Conference on Fluidization - New Horizons in Fluidization Engineering Engineering Conferences International Year 2007 Development of Electrical Capacitance Volume

More information

Material for Chapter 6: Basic Principles of Tomography M I A Integral Equations in Visual Computing Material

Material for Chapter 6: Basic Principles of Tomography M I A Integral Equations in Visual Computing Material Material for Chapter : Integral Equations in Visual Computing Material Basic Principles of Tomography c 00 Bernhard Burgeth 0 Source: Images Figure : Radon Transform: ttenuation http://en.wikimedia.org/wiki/image:radon_transform.png

More information

Analysis of ARES Data using ML-EM

Analysis of ARES Data using ML-EM Analysis of ARES Data using ML-EM Nicole Eikmeier Hosting Site: Lawrence Berkeley National Laboratory Mentor(s): Brian Quiter, Mark Bandstra Abstract. Imaging analysis of background data collected from

More information

Revisit of the Ramp Filter

Revisit of the Ramp Filter IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 62, NO. 1, FEBRUARY 2015 131 Revisit of the Ramp Filter Gengsheng L. Zeng, Fellow, IEEE Abstract An important part of the filtered backprojection (FBP) algorithm

More information

Projection Space Maximum A Posterior Method for Low Photon Counts PET Image Reconstruction

Projection Space Maximum A Posterior Method for Low Photon Counts PET Image Reconstruction Proection Space Maximum A Posterior Method for Low Photon Counts PET Image Reconstruction Liu Zhen Computer Department / Zhe Jiang Wanli University / Ningbo ABSTRACT In this paper, we proposed a new MAP

More information

Méthodes d imagerie pour les écoulements et le CND

Méthodes d imagerie pour les écoulements et le CND Méthodes d imagerie pour les écoulements et le CND Journée scientifique FED3G CEA LIST/Lab Imagerie Tomographie et Traitement Samuel Legoupil 15 juin 2012 2D/3D imaging tomography Example Petrochemical

More information

Analysis and extensions of the Frankle-McCann

Analysis and extensions of the Frankle-McCann Analysis and extensions of the Frankle-McCann Retinex algorithm Jounal of Electronic Image, vol.13(1), pp. 85-92, January. 2004 School of Electrical Engineering and Computer Science Kyungpook National

More information

Reconstruction in CT and relation to other imaging modalities

Reconstruction in CT and relation to other imaging modalities Reconstruction in CT and relation to other imaging modalities Jørgen Arendt Jensen November 1, 2017 Center for Fast Ultrasound Imaging, Build 349 Department of Electrical Engineering Center for Fast Ultrasound

More information

SPECT reconstruction

SPECT reconstruction Regional Training Workshop Advanced Image Processing of SPECT Studies Tygerberg Hospital, 19-23 April 2004 SPECT reconstruction Martin Šámal Charles University Prague, Czech Republic samal@cesnet.cz Tomography

More information

Hybrid Quasi-Monte Carlo Method for the Simulation of State Space Models

Hybrid Quasi-Monte Carlo Method for the Simulation of State Space Models The Tenth International Symposium on Operations Research and Its Applications (ISORA 211) Dunhuang, China, August 28 31, 211 Copyright 211 ORSC & APORC, pp. 83 88 Hybrid Quasi-Monte Carlo Method for the

More information

Kwabena Arthur. at the. June2017. Certified by: George Barbastathis Professor Thesis Supervisor

Kwabena Arthur. at the. June2017. Certified by: George Barbastathis Professor Thesis Supervisor Simulation of X-Ray Phase Imaging on Integrated Circuits by Kwabena Arthur Submitted to the Department of Mechanical Engineering in Partial Fulfillment of the Requirements for the Degree of Bachelor of

More information

Coupling of surface roughness to the performance of computer-generated holograms

Coupling of surface roughness to the performance of computer-generated holograms Coupling of surface roughness to the performance of computer-generated holograms Ping Zhou* and Jim Burge College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA *Corresponding author:

More information

Novel evaluation method of low contrast resolution performance of dimensional X-ray CT

Novel evaluation method of low contrast resolution performance of dimensional X-ray CT More Info at Open Access Database www.ndt.net/?id=18754 Novel evaluation method of low contrast resolution performance of dimensional X-ray CT Makoto Abe 1, Hiroyuki Fujimoto 1, Osamu Sato 1, Kazuya Matsuzaki

More information

Sound-speed tomography using first-arrival transmission ultrasound for a ring array

Sound-speed tomography using first-arrival transmission ultrasound for a ring array Sound-speed tomography using first-arrival transmission ultrasound for a ring array Youli Quan* a,b and Lianjie Huang b a Department of Geophysics, Stanford University, Stanford, CA 9435-2215 b Mail Stop

More information

The simplex method and the diameter of a 0-1 polytope

The simplex method and the diameter of a 0-1 polytope The simplex method and the diameter of a 0-1 polytope Tomonari Kitahara and Shinji Mizuno May 2012 Abstract We will derive two main results related to the primal simplex method for an LP on a 0-1 polytope.

More information

Acknowledgments and financial disclosure

Acknowledgments and financial disclosure AAPM 2012 Annual Meeting Digital breast tomosynthesis: basic understanding of physics principles James T. Dobbins III, Ph.D., FAAPM Director, Medical Physics Graduate Program Ravin Advanced Imaging Laboratories

More information

Approximating Algebraic Tomography Methods by Filtered Backprojection: A Local Filter Approach

Approximating Algebraic Tomography Methods by Filtered Backprojection: A Local Filter Approach Fundamenta Informaticae 135 (2014) 1 19 1 DOI 10.3233/FI-2014-1109 IOS Press Approximating Algebraic Tomography Methods by Filtered Backprojection: A Local Filter Approach Linda Plantagie Centrum Wiskunde

More information

Introduction to Biomedical Imaging

Introduction to Biomedical Imaging Alejandro Frangi, PhD Computational Imaging Lab Department of Information & Communication Technology Pompeu Fabra University www.cilab.upf.edu X-ray Projection Imaging Computed Tomography Digital X-ray

More information

A Novel Low Complexity Clipping Method for OFDM Signals

A Novel Low Complexity Clipping Method for OFDM Signals A Novel Low Complexity Clipping Method for OFDM Signals Takashi NAKAMURA, Satoshi KIMURA, Masato SAITO, Minoru OKADA Nara Institute of Science and Technology (NAIST 8916 5 Takayama-cho, Ikoma-shi, Nara,

More information

Obstacle Avoidance of Redundant Manipulator Using Potential and AMSI

Obstacle Avoidance of Redundant Manipulator Using Potential and AMSI ICCAS25 June 2-5, KINTEX, Gyeonggi-Do, Korea Obstacle Avoidance of Redundant Manipulator Using Potential and AMSI K. Ikeda, M. Minami, Y. Mae and H.Tanaka Graduate school of Engineering, University of

More information

TERM PAPER ON The Compressive Sensing Based on Biorthogonal Wavelet Basis

TERM PAPER ON The Compressive Sensing Based on Biorthogonal Wavelet Basis TERM PAPER ON The Compressive Sensing Based on Biorthogonal Wavelet Basis Submitted By: Amrita Mishra 11104163 Manoj C 11104059 Under the Guidance of Dr. Sumana Gupta Professor Department of Electrical

More information

Quality control phantoms and protocol for a tomography system

Quality control phantoms and protocol for a tomography system Quality control phantoms and protocol for a tomography system Lucía Franco 1 1 CT AIMEN, C/Relva 27A O Porriño Pontevedra, Spain, lfranco@aimen.es Abstract Tomography systems for non-destructive testing

More information

ATTENUATION CORRECTION IN SPECT DURING IMAGE RECONSTRUCTION USING INVERSE MONTE CARLO METHOD A SIMULATION STUDY *

ATTENUATION CORRECTION IN SPECT DURING IMAGE RECONSTRUCTION USING INVERSE MONTE CARLO METHOD A SIMULATION STUDY * Romanian Reports in Physics, Vol. 66, No. 1, P. 200 211, 2014 ATTENUATION CORRECTION IN SPECT DURING IMAGE RECONSTRUCTION USING INVERSE MONTE CARLO METHOD A SIMULATION STUDY * S. AHMADI 1, H. RAJABI 2,

More information

Image Restoration by Revised Bayesian-Based Iterative Method

Image Restoration by Revised Bayesian-Based Iterative Method ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences Image Restoration by Revised Bayesian-Based Iterative Method Sigeru Omatu, Hideo Araki Osaka

More information

THE FAN-BEAM scan for rapid data acquisition has

THE FAN-BEAM scan for rapid data acquisition has 190 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 26, NO. 2, FEBRUARY 2007 Hilbert Transform Based FBP Algorithm for Fan-Beam CT Full Partial Scans Jiangsheng You*, Member, IEEE, Gengsheng L. Zeng, Senior

More information

my working notes on HYPR for Math 597

my working notes on HYPR for Math 597 my working notes on HYPR for Math 597 Nasser M. Abbasi California State University, Fullerton. Summer 2008 page compiled on July 1, 2015 at 10:08pm 1 Notations and definitions 1. MLEM Maximum-Likelihood

More information

A Fourier Extension Based Algorithm for Impulse Noise Removal

A Fourier Extension Based Algorithm for Impulse Noise Removal A Fourier Extension Based Algorithm for Impulse Noise Removal H. Sahoolizadeh, R. Rajabioun *, M. Zeinali Abstract In this paper a novel Fourier extension based algorithm is introduced which is able to

More information

Ultrasonic Robot Eye for Shape Recognition Employing a Genetic Algorithm

Ultrasonic Robot Eye for Shape Recognition Employing a Genetic Algorithm 7 XVII IMEKO World Congress Metrology in the 3rd Millennium June 22 27, 2003, Dubrovnik, Croatia Ultrasonic Robot Eye for Shape Recognition Employing a Genetic Algorithm Kozo Ohtani* and Mitsuru Baba**

More information

Reconstruction from Projections

Reconstruction from Projections Reconstruction from Projections M.C. Villa Uriol Computational Imaging Lab email: cruz.villa@upf.edu web: http://www.cilab.upf.edu Based on SPECT reconstruction Martin Šámal Charles University Prague,

More information

Production of Video Images by Computer Controlled Cameras and Its Application to TV Conference System

Production of Video Images by Computer Controlled Cameras and Its Application to TV Conference System Proc. of IEEE Conference on Computer Vision and Pattern Recognition, vol.2, II-131 II-137, Dec. 2001. Production of Video Images by Computer Controlled Cameras and Its Application to TV Conference System

More information

Fresnel Zone based Frequency domain reconstruction of Ultrasonic data- Fresnel SAFT

Fresnel Zone based Frequency domain reconstruction of Ultrasonic data- Fresnel SAFT Fresnel Zone based Frequency domain reconstruction of Ultrasonic data- Fresnel SAFT Aswath Rangarajan Abstract An Ultrasound Synthetic Aperture Imaging method based on the Fresnel Zone concept is presented

More information

ABSTRACT 1. INTRODUCTION 2. METHODS

ABSTRACT 1. INTRODUCTION 2. METHODS Finding Seeds for Segmentation Using Statistical Fusion Fangxu Xing *a, Andrew J. Asman b, Jerry L. Prince a,c, Bennett A. Landman b,c,d a Department of Electrical and Computer Engineering, Johns Hopkins

More information

Determination of Three-Dimensional Voxel Sensitivity for Two- and Three-Headed Coincidence Imaging

Determination of Three-Dimensional Voxel Sensitivity for Two- and Three-Headed Coincidence Imaging IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 50, NO. 3, JUNE 2003 405 Determination of Three-Dimensional Voxel Sensitivity for Two- and Three-Headed Coincidence Imaging Edward J. Soares, Kevin W. Germino,

More information

Visual Tracking (1) Feature Point Tracking and Block Matching

Visual Tracking (1) Feature Point Tracking and Block Matching Intelligent Control Systems Visual Tracking (1) Feature Point Tracking and Block Matching Shingo Kagami Graduate School of Information Sciences, Tohoku University swk(at)ic.is.tohoku.ac.jp http://www.ic.is.tohoku.ac.jp/ja/swk/

More information

CoE4TN4 Image Processing. Chapter 5 Image Restoration and Reconstruction

CoE4TN4 Image Processing. Chapter 5 Image Restoration and Reconstruction CoE4TN4 Image Processing Chapter 5 Image Restoration and Reconstruction Image Restoration Similar to image enhancement, the ultimate goal of restoration techniques is to improve an image Restoration: a

More information

Multigrid Reconstruction of Micro-CT Data

Multigrid Reconstruction of Micro-CT Data DEGREE PROJECT IN MEDICAL ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2017 Multigrid Reconstruction of Micro-CT Data BO GAO KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF TECHNOLOGY AND HEALTH

More information

maximum likelihood estimates. The performance of

maximum likelihood estimates. The performance of International Journal of Computer Science and Telecommunications [Volume 2, Issue 6, September 2] 8 ISSN 247-3338 An Efficient Approach for Medical Image Segmentation Based on Truncated Skew Gaussian Mixture

More information

Adaptive osculatory rational interpolation for image processing

Adaptive osculatory rational interpolation for image processing Journal of Computational and Applied Mathematics 195 (2006) 46 53 www.elsevier.com/locate/cam Adaptive osculatory rational interpolation for image processing Min Hu a, Jieqing Tan b, a College of Computer

More information

EM+TV Based Reconstruction for Cone-Beam CT with Reduced Radiation

EM+TV Based Reconstruction for Cone-Beam CT with Reduced Radiation Appears in ISVC 2011, Part I, LNCS 6938, pp. 1-10, 2011 EM+TV Based Reconstruction for Cone-Beam CT with Reduced Radiation Ming Yan 1, Jianwen Chen 2, Luminita A. Vese 1, John Villasenor 2, Ale Bui 3,

More information

Sparse Component Analysis (SCA) in Random-valued and Salt and Pepper Noise Removal

Sparse Component Analysis (SCA) in Random-valued and Salt and Pepper Noise Removal Sparse Component Analysis (SCA) in Random-valued and Salt and Pepper Noise Removal Hadi. Zayyani, Seyyedmajid. Valliollahzadeh Sharif University of Technology zayyani000@yahoo.com, valliollahzadeh@yahoo.com

More information

CHAPTER 9 INPAINTING USING SPARSE REPRESENTATION AND INVERSE DCT

CHAPTER 9 INPAINTING USING SPARSE REPRESENTATION AND INVERSE DCT CHAPTER 9 INPAINTING USING SPARSE REPRESENTATION AND INVERSE DCT 9.1 Introduction In the previous chapters the inpainting was considered as an iterative algorithm. PDE based method uses iterations to converge

More information

Reconstruction in CT and relation to other imaging modalities

Reconstruction in CT and relation to other imaging modalities Reconstruction in CT and relation to other imaging modalities Jørgen Arendt Jensen November 16, 2015 Center for Fast Ultrasound Imaging, Build 349 Department of Electrical Engineering Center for Fast Ultrasound

More information

CHAPTER 4 RAY COMPUTATION. 4.1 Normal Computation

CHAPTER 4 RAY COMPUTATION. 4.1 Normal Computation CHAPTER 4 RAY COMPUTATION Ray computation is the second stage of the ray tracing procedure and is composed of two steps. First, the normal to the current wavefront is computed. Then the intersection of

More information

Mapping Common Core State Standard Clusters and. Ohio Grade Level Indicator. Grade 5 Mathematics

Mapping Common Core State Standard Clusters and. Ohio Grade Level Indicator. Grade 5 Mathematics Mapping Common Core State Clusters and Ohio s Grade Level Indicators: Grade 5 Mathematics Operations and Algebraic Thinking: Write and interpret numerical expressions. Operations and Algebraic Thinking:

More information

An imaging technique for subsurface faults using Teleseismic-Wave Records II Improvement in the detectability of subsurface faults

An imaging technique for subsurface faults using Teleseismic-Wave Records II Improvement in the detectability of subsurface faults Earth Planets Space, 52, 3 11, 2000 An imaging technique for subsurface faults using Teleseismic-Wave Records II Improvement in the detectability of subsurface faults Takumi Murakoshi 1, Hiroshi Takenaka

More information

Image Processing. Filtering. Slide 1

Image Processing. Filtering. Slide 1 Image Processing Filtering Slide 1 Preliminary Image generation Original Noise Image restoration Result Slide 2 Preliminary Classic application: denoising However: Denoising is much more than a simple

More information

Introduction to Inverse Problems

Introduction to Inverse Problems Introduction to Inverse Problems What is an image? Attributes and Representations Forward vs Inverse Optical Imaging as Inverse Problem Incoherent and Coherent limits Dimensional mismatch: continuous vs

More information

CENTER FOR ADVANCED COMPUTATION

CENTER FOR ADVANCED COMPUTATION CENTER FOR ADVANCED COMPUTATION MODIFIED EXPECTATION MAXIMIZATION ALGORITHM FOR TRANSMISSION TOMOGRAPHY PATIWAT KAMONPET VENKATARAMA KRISHNAN Technical Report CAC T94-01 January 28, 1994 Parts of this

More information

Hydraulic pump fault diagnosis with compressed signals based on stagewise orthogonal matching pursuit

Hydraulic pump fault diagnosis with compressed signals based on stagewise orthogonal matching pursuit Hydraulic pump fault diagnosis with compressed signals based on stagewise orthogonal matching pursuit Zihan Chen 1, Chen Lu 2, Hang Yuan 3 School of Reliability and Systems Engineering, Beihang University,

More information