EE 570: Location and Navigation: Theory & Practice

Size: px
Start display at page:

Download "EE 570: Location and Navigation: Theory & Practice"

Transcription

1 EE 570: Location and Navigation: Theory & Practice Navigation Mathematics Tuesday 15 Jan 2013 NMT EE 570: Location and Navigation: Theory & Practice Slide 1 of 14

2 Coordinate Frames - ECI The Earth-Centered Inertial (ECI) Coordinate Frame An Inertial coordinate frame is one that does NOT accelerate (rectilinearly) or change its orientation (wrt the stars ) o All inertial sensors measure inertial motion Gyroscopes measure rate of change of inertial orientation Accelerometers measure inertial acceleration The ECI frame will be referred to as the i-frame Tuesday 15 Jan 2013 NMT EE 570: Location and Navigation: Theory & Practice Slide 2 of 14

3 Coordinate Frames - ECI The Earth-Centered Inertial (ECI) Coordinate Frame The origin of the ECI frame is located at the center of mass of the Earth The z-axis points along the nominal axis of rotation of the earth o True North NOT magnetic North!! The x-axis lies in the equatorial plane and points from the Earth to the Sun at the vernal equinox o Defined by the intersection of the equatorial plane and Earth-Sun orbital plane The y-axis is simply chosen to conform to a right hand coordinate system The ECI coordinate frame does NOT rotate with the Earth Tuesday 15 Jan 2013 NMT EE 570: Location and Navigation: Theory & Practice Slide 3 of 14

4 Coordinate Frames - ECI The Earth-Centered Inertial (ECI) Coordinate Frame z-axis points along the nominal Earth axis of rotation Equatorial Plane x-axis points towards vernal (spring) equinox hudsonvalleygeologist.blogspot.com/ y-axis completes a right hand coord sys Tuesday 15 Jan 2013 NMT EE 570: Location and Navigation: Theory & Practice Slide 4 of 14

5 Coordinate Frames - ECEF The Earth-Centered Earth-Fixed (ECEF) Coordinate Frame The ECEF coordinate frame is NOT an inertial frame The ECEF coordinate frame is fixed with respect to the Earth The ECEF frame will be referred to as the e-frame The ECEF coordinate frame is fixed with respect to the Earth Tuesday 15 Jan 2013 NMT EE 570: Location and Navigation: Theory & Practice Slide 5 of 14

6 Coordinate Frames - ECEF The Earth-Centered Earth-Fixed (ECEF) Coordinate Frame The origin of the ECEF frame is located at the center of mass of the Earth (same as ECI) The z-axis points along the nominal axis of rotation of the earth (same as ECI) The x-axis lies at the intersection of the equatorial plane and the reference meridian plane (i.e. Greenwich meridian) o Concept of latitude and longitude The y-axis is simply chosen to conform to a right hand coordinate system Tuesday 15 Jan 2013 NMT EE 570: Location and Navigation: Theory & Practice Slide 6 of 14

7 Coordinate Frames - ECEF The Earth-Centered Earth-Fixed (ECEF) Coordinate Frame z-axis points along the nominal Earth axis of rotation x-axis points towards zero longitude y-axis completes a right hand coord sys Tuesday 15 Jan 2013 NMT EE 570: Location and Navigation: Theory & Practice Slide 7 of 14

8 Coordinate Frames - Nav The Local Navigation (Nav) Coordinate Frame The Nav coordinate frame is typically NOT fixed with respect to the Earth o The x/y axes lie in a plane which is locally-level or tangential to the Earth s surface The Nav frame is sometimes called the goedetic, geographic, locally-level, or tangential frame The Nav frame will be referred to as the n-frame The Nav coordinate frame moves with the vehicle of interest Tuesday 15 Jan 2013 NMT EE 570: Location and Navigation: Theory & Practice Slide 8 of 14

9 Coordinate Frames - Nav The Local Navigation (Nav) Coordinate Frame The origin of the Nav frame is located at the center of mass of the vehicle The z-axis points down along the normal to the Earth s surface o Approximately towards the center of the Earth The x-axis points to the North pole The y-axis is simply chosen to conform to a right hand coordinate system This configuration is often referred to as a NED frame o x North, y East, z Down Tuesday 15 Jan 2013 NMT EE 570: Location and Navigation: Theory & Practice Slide 9 of 14

10 Coordinate Frames - Nav The Local Navigation (Nav) Coordinate Frame x-axis points North y-axis points East z-axis points down Tuesday 15 Jan 2013 NMT EE 570: Location and Navigation: Theory & Practice Slide 10 of 14

11 Coordinate Frames - Body The Body Coordinate Frame The body coordinate frame is fixed with respect to the vehicle The body frame will be referred to as the b-frame y b x b z b The Body coordinate frame is attached to the vehicle of interest Tuesday 15 Jan 2013 NMT EE 570: Location and Navigation: Theory & Practice Slide 11 of 14

12 Coordinate Frames - Body The Body Coordinate Frame The origin of the body frame is located at the center of mass of the vehicle (same as the Nav frame) The x-axis points forward wrt the moving vehicle The z-axis points loosely down o Changes with the roll/pitch of the vehicle The y-axis is simply chosen to conform to a right hand coordinate system Tuesday 15 Jan 2013 NMT EE 570: Location and Navigation: Theory & Practice Slide 12 of 14

13 Coordinate Frames - Body The Body Coordinate Frame x-axis points forward z-axis points down y-axis points to the right Tuesday 15 Jan 2013 NMT EE 570: Location and Navigation: Theory & Practice Slide 13 of 14

14 Coordinate Frames Other Frames Other Coordinate Frames: Wander Azimuth Frame (alternative to the Nav frame) o Does not always point North to avoid numerical stability problems near the poles Other Locally level frames o Tangential Frame Typically, refers to another type of ECEF frame fixed to the Earth s surface (not moving like the n-frame) Computer Frame o Virtual coordinate frame that represents where we think that we are Tuesday 15 Jan 2013 NMT EE 570: Location and Navigation: Theory & Practice Slide 14 of 14

Navigational Aids 1 st Semester/2007/TF 7:30 PM -9:00 PM

Navigational Aids 1 st Semester/2007/TF 7:30 PM -9:00 PM Glossary of Navigation Terms accelerometer. A device that senses inertial reaction to measure linear or angular acceleration. In its simplest form, it consists of a case-mounted spring and mass arrangement

More information

Astromechanics. 12. Satellite Look Angle

Astromechanics. 12. Satellite Look Angle Astromechanics 12. Satellite Look Angle The satellite look angle refers to the angle that one would look for a satellite at a given time from a specified position on the Earth. For example, if you had

More information

Introduction to quaternions. Mathematics. Operations

Introduction to quaternions. Mathematics. Operations Introduction to quaternions Topics: Definition Mathematics Operations Euler Angles (optional) intro to quaternions 1 noel.h.hughes@gmail.com Euler's Theorem y y Angle! rotation follows right hand rule

More information

LOCAL GEODETIC HORIZON COORDINATES

LOCAL GEODETIC HORIZON COORDINATES LOCAL GEODETIC HOIZON COODINATES In many surveying applications it is necessary to convert geocentric Cartesian coordinates X,,Z to local geodetic horizon Cartesian coordinates E,N,U (East,North,Up). Figure

More information

CHAPTER 2 SENSOR DATA SIMULATION: A KINEMATIC APPROACH

CHAPTER 2 SENSOR DATA SIMULATION: A KINEMATIC APPROACH 27 CHAPTER 2 SENSOR DATA SIMULATION: A KINEMATIC APPROACH 2.1 INTRODUCTION The standard technique of generating sensor data for navigation is the dynamic approach. As revealed in the literature (John Blakelock

More information

Performance Evaluation of INS Based MEMES Inertial Measurement Unit

Performance Evaluation of INS Based MEMES Inertial Measurement Unit Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 2, Issue 1 (215) ISSN 2349-1469 EISSN 2349-1477 Performance Evaluation of Based MEMES Inertial Measurement Unit Othman Maklouf

More information

Mathematics in Orbit

Mathematics in Orbit Mathematics in Orbit Dan Kalman American University Slides and refs at www.dankalman.net Outline Basics: 3D geospacial models Keyhole Problem: Related Rates! GPS: space-time triangulation Sensor Diagnosis:

More information

Navigation coordinate systems

Navigation coordinate systems Lecture 3 Navigation coordinate systems Topic items: 1. Basic Coordinate Systems. 2. Plane Cartesian Coordinate Systems. 3. Polar Coordinate Systems. 4. Earth-Based Locational Reference Systems. 5. Reference

More information

This was written by a designer of inertial guidance machines, & is correct. **********************************************************************

This was written by a designer of inertial guidance machines, & is correct. ********************************************************************** EXPLANATORY NOTES ON THE SIMPLE INERTIAL NAVIGATION MACHINE How does the missile know where it is at all times? It knows this because it knows where it isn't. By subtracting where it is from where it isn't

More information

navigation Isaac Skog

navigation Isaac Skog Foot-mounted zerovelocity aided inertial navigation Isaac Skog skog@kth.se Course Outline 1. Foot-mounted inertial navigation a. Basic idea b. Pros and cons 2. Inertial navigation a. The inertial sensors

More information

COORDINATE TRANSFORMATION. Lecture 6

COORDINATE TRANSFORMATION. Lecture 6 COORDINATE TRANSFORMATION Lecture 6 SGU 1053 SURVEY COMPUTATION 1 Introduction Geomatic professional are mostly confronted in their work with transformations from one two/three-dimensional coordinate system

More information

PIXEL GEOLOCATION ALGORITHM FOR SATELLITE SCANNER DATA

PIXEL GEOLOCATION ALGORITHM FOR SATELLITE SCANNER DATA Scientific Papers. Series E. Land Reclamation, Earth Observation & Surveying, Environmental Engineering. Vol. III, 04 PIXEL GEOLOCATION ALGORITHM FOR SATELLITE SCANNER DATA Abstract Gabriel POPESCU University

More information

( ) Derivation of Polar Reduction Formula for a Calculator Robert Bernecky April, 2018 ( )

( ) Derivation of Polar Reduction Formula for a Calculator Robert Bernecky April, 2018 ( ) Derivation of Polar Reduction Formula for a Calculator Robert Bernecky April, 2018 1 Problem Statement The polar reduction formula takes an observer's assumed position (lat, lon), and a body's celestial

More information

Vehicle Positioning with Map Matching Using Integration of a Dead Reckoning System and GPS

Vehicle Positioning with Map Matching Using Integration of a Dead Reckoning System and GPS Vehicle Positioning with Map Matching Using Integration of a Dead Reckoning System and GPS Examensarbete utfört i Reglerteknik vid Tekniska Högskolan i Linköping av David Andersson Johan Fjellström Reg

More information

EE 570: Location and Navigation: Theory & Practice

EE 570: Location and Navigation: Theory & Practice EE 570: Location and Navigation: Theory & Practice Navigation Sensors and INS Mechanization Thursday 14 Feb 2013 NMT EE 570: Location and Navigation: Theory & Practice Slide 1 of 14 Inertial Sensor Modeling

More information

Coordinate Transformations

Coordinate Transformations Global Positioning Systems, Inertial Navigation, and Integration, Mohinder S. Grewal, Lawrence R. Weill, Angus P. Andrews Copyright # 001 John Wiley & Sons, Inc. Print ISBN0-1-50-X Electronic ISBN0-1-001-9

More information

LECTURE TWO Representations, Projections and Coordinates

LECTURE TWO Representations, Projections and Coordinates LECTURE TWO Representations, Projections and Coordinates GEOGRAPHIC COORDINATE SYSTEMS Why project? What is the difference between a Geographic and Projected coordinate system? PROJECTED COORDINATE SYSTEMS

More information

Strapdown Inertial Navigation Technology, Second Edition D. H. Titterton J. L. Weston

Strapdown Inertial Navigation Technology, Second Edition D. H. Titterton J. L. Weston Strapdown Inertial Navigation Technology, Second Edition D. H. Titterton J. L. Weston NavtechGPS Part #1147 Progress in Astronautics and Aeronautics Series, 207 Published by AIAA, 2004, Revised, 2nd Edition,

More information

Use of n-vector for Radar Applications

Use of n-vector for Radar Applications Use of n-vector for Radar Applications Nina Ødegaard, Kenneth Gade Norwegian Defence Research Establishment Kjeller, NORWAY email: Nina.Odegaard@ffi.no Kenneth.Gade@ffi.no Abstract: This paper aims to

More information

DEVELOPMENT OF CAMERA MODEL AND GEOMETRIC CALIBRATION/VALIDATION OF XSAT IRIS IMAGERY

DEVELOPMENT OF CAMERA MODEL AND GEOMETRIC CALIBRATION/VALIDATION OF XSAT IRIS IMAGERY DEVELOPMENT OF CAMERA MODEL AND GEOMETRIC CALIBRATION/VALIDATION OF XSAT IRIS IMAGERY Leong Keong Kwoh, Xiaojing Huang, Wee Juan Tan Centre for Remote, Imaging Sensing and Processing (CRISP), National

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 3.2: Sensors Jürgen Sturm Technische Universität München Sensors IMUs (inertial measurement units) Accelerometers

More information

Strapdown Inertial Navigation Technology

Strapdown Inertial Navigation Technology Strapdown Inertial Navigation Technology 2nd Edition David Titterton and John Weston The Institution of Engineering and Technology Preface xv 1 Introduction 1 1.1 Navigation 1 1.2 Inertial navigation 2

More information

Relating Local Vision Measurements to Global Navigation Satellite Systems Using Waypoint Based Maps

Relating Local Vision Measurements to Global Navigation Satellite Systems Using Waypoint Based Maps Relating Local Vision Measurements to Global Navigation Satellite Systems Using Waypoint Based Maps John W. Allen Samuel Gin College of Engineering GPS and Vehicle Dynamics Lab Auburn University Auburn,

More information

Satellite Attitude Determination

Satellite Attitude Determination Satellite Attitude Determination AERO4701 Space Engineering 3 Week 5 Last Week Looked at GPS signals and pseudorange error terms Looked at GPS positioning from pseudorange data Looked at GPS error sources,

More information

Video integration in a GNSS/INS hybridization architecture for approach and landing

Video integration in a GNSS/INS hybridization architecture for approach and landing Author manuscript, published in "IEEE/ION PLANS 2014, Position Location and Navigation Symposium, Monterey : United States (2014)" Video integration in a GNSS/INS hybridization architecture for approach

More information

ME 597: AUTONOMOUS MOBILE ROBOTICS SECTION 2 COORDINATE TRANSFORMS. Prof. Steven Waslander

ME 597: AUTONOMOUS MOBILE ROBOTICS SECTION 2 COORDINATE TRANSFORMS. Prof. Steven Waslander ME 597: AUTONOMOUS MOILE ROOTICS SECTION 2 COORDINATE TRANSFORMS Prof. Steven Waslander OUTLINE Coordinate Frames and Transforms Rotation Matrices Euler Angles Quaternions Homogeneous Transforms 2 COORDINATE

More information

DYNAMIC POSITIONING CONFERENCE September 16-17, Sensors

DYNAMIC POSITIONING CONFERENCE September 16-17, Sensors DYNAMIC POSITIONING CONFERENCE September 16-17, 2003 Sensors An Integrated acoustic positioning and inertial navigation system Jan Erik Faugstadmo, Hans Petter Jacobsen Kongsberg Simrad, Norway Revisions

More information

Strapdown inertial navigation technology

Strapdown inertial navigation technology Strapdown inertial navigation technology D. H. Titterton and J. L. Weston Peter Peregrinus Ltd. on behalf of the Institution of Electrical Engineers Contents Preface Page xiii 1 Introduction 1 1.1 Navigation

More information

Module 4. Stereographic projection: concept and application. Lecture 4. Stereographic projection: concept and application

Module 4. Stereographic projection: concept and application. Lecture 4. Stereographic projection: concept and application Module 4 Stereographic projection: concept and application Lecture 4 Stereographic projection: concept and application 1 NPTEL Phase II : IIT Kharagpur : Prof. R. N. Ghosh, Dept of Metallurgical and Materials

More information

How to Use GOCE Level 2 Products

How to Use GOCE Level 2 Products How to Use GOCE Level 2 Products Thomas Gruber 1), Reiner Rummel 1), Radboud Koop 2) 1) Institute of Astronomical and Physical Geodesy, Technical University Munich 2) Netherlands Institute for Space Research

More information

Windows Phone Week5 Tuesday -

Windows Phone Week5 Tuesday - Windows Phone 8.1 - Week5 Tuesday - Smart Embedded System Lab Kookmin University 1 Objectives and what to study Training 1: To Get Accelerometer Sensor Value Training 2: To Get Compass Sensor Value To

More information

Inaccuracies When Mixing Coordinate Reference Frameworks in a System of Systems Simulation

Inaccuracies When Mixing Coordinate Reference Frameworks in a System of Systems Simulation 1 Inaccuracies When Mixing Coordinate Reference Frameworks in a System of Systems Simulation Bernardt Duvenhage and Jan Jacobus Nel Abstract The modelling of military systems of systems invariably involves

More information

Lesson 7 Determining Direction. Key Terms. azimuth back azimuth degree grid azimuth grid north magnetic azimuth magnetic north true north

Lesson 7 Determining Direction. Key Terms. azimuth back azimuth degree grid azimuth grid north magnetic azimuth magnetic north true north Lesson 7 Determining Direction U.S. ARMY Key Terms J R O T C azimuth back azimuth degree grid azimuth grid north magnetic azimuth magnetic north true north WHAT YOU WILL LEARN TO DO Calculate direction

More information

PATTERNS AND ALGEBRA. He opened mathematics to many discoveries and exciting applications.

PATTERNS AND ALGEBRA. He opened mathematics to many discoveries and exciting applications. PATTERNS AND ALGEBRA The famous French philosopher and mathematician René Descartes (596 65) made a great contribution to mathematics in 67 when he published a book linking algebra and geometr for the

More information

Introduction to Inertial Navigation (INS tutorial short)

Introduction to Inertial Navigation (INS tutorial short) Introduction to Inertial Navigation (INS tutorial short) Note 1: This is a short (20 pages) tutorial. An extended (57 pages) tutorial that also includes Kalman filtering is available at http://www.navlab.net/publications/introduction_to

More information

Fall 2016 Semester METR 3113 Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics

Fall 2016 Semester METR 3113 Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics Fall 2016 Semester METR 3113 Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics Lecture 5 August 31 2016 Topics: Polar coordinate system Conversion of polar coordinates to 2-D

More information

Experimental Assessment of MEMS INS Stochastic Error Model

Experimental Assessment of MEMS INS Stochastic Error Model Experimental Assessment of MEMS INS Stochastic Error Model Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University

More information

Rational Numbers: Graphing: The Coordinate Plane

Rational Numbers: Graphing: The Coordinate Plane Rational Numbers: Graphing: The Coordinate Plane A special kind of plane used in mathematics is the coordinate plane, sometimes called the Cartesian plane after its inventor, René Descartes. It is one

More information

3D Motion Tracking by Inertial and Magnetic sensors with or without GPS

3D Motion Tracking by Inertial and Magnetic sensors with or without GPS 3D Motion Tracking by Inertial and Magnetic sensors with or without GPS Junping Cai M.Sc. E. E, PhD junping@mci.sdu.dk Centre for Product Development (CPD) Mads Clausen Institute (MCI) University of Southern

More information

Photogrammetry Metadata Set for Digital Motion Imagery

Photogrammetry Metadata Set for Digital Motion Imagery MISB RP 0801.4 RECOMMENDED PRACTICE Photogrammetry Metadata Set for Digital Motion Imagery 4 October 013 1 Scope This Recommended Practice presents the Key-Length-Value (KLV) metadata necessary for the

More information

Estimation of position and orientation of truck kinematic frames. Master s Thesis in Systems, Control and Mechatronics EDVIN AGNAS MARCUS JERENVIK

Estimation of position and orientation of truck kinematic frames. Master s Thesis in Systems, Control and Mechatronics EDVIN AGNAS MARCUS JERENVIK Estimation of position and orientation of truck kinematic frames Master s Thesis in Systems, Control and Mechatronics EDVIN AGNAS MARCUS JERENVIK Department of Signals and Systems CHALMERS UNIVERSITY OF

More information

Lecture 12: Grids Steven Skiena. skiena

Lecture 12: Grids Steven Skiena.   skiena Lecture 12: Grids Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Rectilinear Grids Rectilinear grids are typically

More information

Publ. Astron. Obs. Belgrade No. 91 (2012), COSMIC NAVIGATION AND INERTIAL NAVIGATION SYSTEM 1. INTRODUCTION

Publ. Astron. Obs. Belgrade No. 91 (2012), COSMIC NAVIGATION AND INERTIAL NAVIGATION SYSTEM 1. INTRODUCTION Publ. Astron. Obs. Belgrade No. 91 (212), 89-96 Contributed paper COSMIC NAVIGATION AND INERTIAL NAVIGATION SYSTEM B. SAMARDŽIJA and S. ŠEGAN Department of Astronomy, Faculty of Mathematics, Studentski

More information

Combined GPS and Inertial Navigation System

Combined GPS and Inertial Navigation System Combined GPS and Inertial Navigation System By Andrew Aubry Advised by Dr. In Soo Ahn Dr. Yufeng Lu January 17, 2016 Electrical and Computer Engineering Department Bradley University 1501 W Bradley Ave

More information

Higher Surveying Dr. Ajay Dashora Department of Civil Engineering Indian Institute of Technology, Guwahati

Higher Surveying Dr. Ajay Dashora Department of Civil Engineering Indian Institute of Technology, Guwahati Higher Surveying Dr. Ajay Dashora Department of Civil Engineering Indian Institute of Technology, Guwahati Module - 2 Lecture - 03 Coordinate System and Reference Frame Hello everyone. Welcome back on

More information

Strapdown Inertial Navigation Technology. Second Edition. Volume 207 PROGRESS IN ASTRONAUTICS AND AERONAUTICS

Strapdown Inertial Navigation Technology. Second Edition. Volume 207 PROGRESS IN ASTRONAUTICS AND AERONAUTICS Strapdown Inertial Navigation Technology Second Edition D. H. Titterton Technical leader in Laser Systems at the Defence Science and Technology Laboratory (DSTL) Hampshire, UK J. L. Weston Principal Scientist

More information

4INERTIAL NAVIGATION CHAPTER 20. INTRODUCTION TO INERTIAL NAVIGATION...333

4INERTIAL NAVIGATION CHAPTER 20. INTRODUCTION TO INERTIAL NAVIGATION...333 4INERTIAL NAVIGATION CHAPTER 20. INTRODUCTION TO INERTIAL NAVIGATION...333 4 CHAPTER 20 INTRODUCTION TO INERTIAL NAVIGATION INTRODUCTION 2000. Background Inertial navigation is the process of measuring

More information

Review Exercise. 1. Determine vector and parametric equations of the plane that contains the

Review Exercise. 1. Determine vector and parametric equations of the plane that contains the Review Exercise 1. Determine vector and parametric equations of the plane that contains the points A11, 2, 12, B12, 1, 12, and C13, 1, 42. 2. In question 1, there are a variety of different answers possible,

More information

Lab 21.1 The Tangent Galvanometer

Lab 21.1 The Tangent Galvanometer Name School Date Lab 21.1 The Tangent Galvanometer Purpose To investigate the magnetic field at the center of a current-carrying loop of wire. To verify the right-hand rule for the field inside a current

More information

Fundamentals of Structural Geology Exercise: concepts from chapter 2

Fundamentals of Structural Geology Exercise: concepts from chapter 2 0B Reading: Fundamentals of Structural Geology, Ch 2 1) Develop a MATLAB script that plots the spherical datum (Fig. 2.1a) with unit radius as a wire-frame diagram using lines of constant latitude and

More information

12.6 Cylinders and Quadric Surfaces

12.6 Cylinders and Quadric Surfaces 12 Vectors and the Geometry of Space 12.6 and Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and We have already looked at two special types of surfaces:

More information

Satellite Attitude Determination II

Satellite Attitude Determination II Satellite Attitude Determination II AERO4701 Space Engineering 3 Week 7 Last Week Looked at the problem of attitude determination for satellites Examined several common methods such as inertial navigation,

More information

Section 1.2: Points and Lines

Section 1.2: Points and Lines Section 1.2: Points and Lines Objective: Graph points and lines using x and y coordinates. Often, to get an idea of the behavior of an equation we will make a picture that represents the solutions to the

More information

Calculation of Azimuth, Elevation and Polarization for non-horizontal aligned Antennas

Calculation of Azimuth, Elevation and Polarization for non-horizontal aligned Antennas Calculation of Azimuth, Elevation and Polarization for non-horizontal aligned Antennas Algorithm Description Technical Document TD-1205-a Version 2.2 08.07.2015 (with update in page 8 of 06.09.2016) In

More information

Technical Manual SATGEN II SATELLITE DATA GENERATION PROGRAM. Document M Revision 1.0 April dbm. 32A Spruce Street Oakland, NJ 07436

Technical Manual SATGEN II SATELLITE DATA GENERATION PROGRAM. Document M Revision 1.0 April dbm. 32A Spruce Street Oakland, NJ 07436 Technical Manual SATGEN II SATELLITE DATA GENERATION PROGRAM Document M2001322 Revision 1.0 April 2011 dbm 32A Spruce Street Oakland, NJ 07436 Phone 201-677-0008 FAX 201-667-9444 1 Table of Contents Contents

More information

Analysis of the Motion Control Methods for Stratospheric Balloon-Borne Gondola Platform

Analysis of the Motion Control Methods for Stratospheric Balloon-Borne Gondola Platform Journal of Physics: Conference Series Analysis of the Motion Control Methods for Stratospheric Balloon-Borne ondola Platform To cite this article: H H Wang et al 26 J. Phys.: Conf. Ser. 48 1295 View the

More information

16.6. Parametric Surfaces. Parametric Surfaces. Parametric Surfaces. Vector Calculus. Parametric Surfaces and Their Areas

16.6. Parametric Surfaces. Parametric Surfaces. Parametric Surfaces. Vector Calculus. Parametric Surfaces and Their Areas 16 Vector Calculus 16.6 and Their Areas Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and Their Areas Here we use vector functions to describe more general

More information

EE565:Mobile Robotics Lecture 2

EE565:Mobile Robotics Lecture 2 EE565:Mobile Robotics Lecture 2 Welcome Dr. Ing. Ahmad Kamal Nasir Organization Lab Course Lab grading policy (40%) Attendance = 10 % In-Lab tasks = 30 % Lab assignment + viva = 60 % Make a group Either

More information

Solar Panel Irradiation Exposure efficiency of solar panels with shadow

Solar Panel Irradiation Exposure efficiency of solar panels with shadow Solar Panel Irradiation Exposure efficiency of solar panels with shadow Frits F.M. de Mul MEDPHYS Software & Services 2012 www.medphys.nl email: info(at)medphys.nl Solar Panel Irradiation 1. Local Times,

More information

A Sensor Fusion Approach for Localization with Cumulative Error Elimination

A Sensor Fusion Approach for Localization with Cumulative Error Elimination 1 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI) September 13-15, 1. Hamburg, Germany A Sensor Fusion Approach for Localization with Cumulative Error

More information

Class IX Mathematics (Ex. 3.1) Questions

Class IX Mathematics (Ex. 3.1) Questions Class IX Mathematics (Ex. 3.1) Questions 1. How will you describe the position of a table lamp on your study table to another person? 2. (Street Plan): A city has two main roads which cross each other

More information

Introduction to Inertial Navigation and Kalman filtering

Introduction to Inertial Navigation and Kalman filtering Introduction to Inertial Navigation and Kalman filtering INS Tutorial, Norwegian Space Centre 2008.06.09 Kenneth Gade, FFI Outline Notation Inertial navigation Aided inertial navigation system (AINS) Implementing

More information

ADVANTAGES OF INS CONTROL SYSTEMS

ADVANTAGES OF INS CONTROL SYSTEMS ADVANTAGES OF INS CONTROL SYSTEMS Pavol BOŽEK A, Aleksander I. KORŠUNOV B A Institute of Applied Informatics, Automation and Mathematics, Faculty of Material Science and Technology, Slovak University of

More information

Mapping with Vectors

Mapping with Vectors GEOL 595 - Mathematical Tools in Geology Lab Assignment # 6 - Oct 2, 2008 (Due Oct 8) Name: Mapping with Vectors Paiute Monument in Inyo Mountains A. Where in Owen s Valley Are You? (Using Polar Coordinates)

More information

Vectors and the Geometry of Space

Vectors and the Geometry of Space Vectors and the Geometry of Space In Figure 11.43, consider the line L through the point P(x 1, y 1, z 1 ) and parallel to the vector. The vector v is a direction vector for the line L, and a, b, and c

More information

Temporal Processing of Millimeter Wave Flight Test Data

Temporal Processing of Millimeter Wave Flight Test Data Distribution Statement C Distribution authorized to U.S. Government agencies Section and 5 their contractors. Other requests for this document shall be referred to BAE Systems. Note This information is

More information

United States Patent (19) Hose

United States Patent (19) Hose United States Patent (19) Hose 4 INERTIAL NAVIGATION SYSTEM (7) Inventor: Eddy Hose, Del Mar, Calif. 73) Assignee: (21) Appl. No. 794,19 22 Filed: May, 1977 The United States of America as represented

More information

An Intro to Gyros. FTC Team #6832. Science and Engineering Magnet - Dallas ISD

An Intro to Gyros. FTC Team #6832. Science and Engineering Magnet - Dallas ISD An Intro to Gyros FTC Team #6832 Science and Engineering Magnet - Dallas ISD Gyro Types - Mechanical Hubble Gyro Unit Gyro Types - Sensors Low cost MEMS Gyros High End Gyros Ring laser, fiber optic, hemispherical

More information

Tizen Sensors (Tizen Ver. 2.3)

Tizen Sensors (Tizen Ver. 2.3) Tizen Sensors (Tizen Ver. 2.3) Spring 2015 Soo Dong Kim, Ph.D. Professor, Department of Computer Science Software Engineering Laboratory Soongsil University Office 02-820-0909 Mobile 010-7392-2220 sdkim777@gmail.com

More information

Camera Drones Lecture 2 Control and Sensors

Camera Drones Lecture 2 Control and Sensors Camera Drones Lecture 2 Control and Sensors Ass.Prof. Friedrich Fraundorfer WS 2017 1 Outline Quadrotor control principles Sensors 2 Quadrotor control - Hovering Hovering means quadrotor needs to hold

More information

Worksheet 3.5: Triple Integrals in Spherical Coordinates. Warm-Up: Spherical Coordinates (ρ, φ, θ)

Worksheet 3.5: Triple Integrals in Spherical Coordinates. Warm-Up: Spherical Coordinates (ρ, φ, θ) Boise State Math 275 (Ultman) Worksheet 3.5: Triple Integrals in Spherical Coordinates From the Toolbox (what you need from previous classes) Know what the volume element dv represents. Be able to find

More information

Three-Dimensional Magnetometer Calibration with Small Space Coverage for Pedestrians

Three-Dimensional Magnetometer Calibration with Small Space Coverage for Pedestrians 1 Three-Dimensional Magnetometer Calibration with Small Space Coverage for Pedestrians Ahmed Wahdan 1, 2, Jacques Georgy 2, and Aboelmagd Noureldin 1,3 1 NavINST Navigation and Instrumentation Research

More information

LANDSAT 7 (L7) IMAGE ASSESSMENT SYSTEM (IAS) GEOMETRIC ALGORITHM THEORETICAL BASIS DOCUMENT (ATBD)

LANDSAT 7 (L7) IMAGE ASSESSMENT SYSTEM (IAS) GEOMETRIC ALGORITHM THEORETICAL BASIS DOCUMENT (ATBD) LS-IAS-01 Department of the Interior U.S. Geological Survey LANDSAT 7 (L7) IMAGE ASSESSMENT SYSTEM (IAS) GEOMETRIC ALGORITHM THEORETICAL BASIS DOCUMENT (ATBD) December 006 LANDSAT 7 (L7) IMAGE ASSESSMENT

More information

Error Simulation and Multi-Sensor Data Fusion

Error Simulation and Multi-Sensor Data Fusion Error Simulation and Multi-Sensor Data Fusion AERO4701 Space Engineering 3 Week 6 Last Week Looked at the problem of attitude determination for satellites Examined several common methods such as inertial

More information

Rational Numbers on the Coordinate Plane. 6.NS.C.6c

Rational Numbers on the Coordinate Plane. 6.NS.C.6c Rational Numbers on the Coordinate Plane 6.NS.C.6c Copy all slides into your composition notebook. Lesson 14 Ordered Pairs Objective: I can use ordered pairs to locate points on the coordinate plane. Guiding

More information

CS4620/5620. Professor: Kavita Bala. Cornell CS4620/5620 Fall 2012 Lecture Kavita Bala 1 (with previous instructors James/Marschner)

CS4620/5620. Professor: Kavita Bala. Cornell CS4620/5620 Fall 2012 Lecture Kavita Bala 1 (with previous instructors James/Marschner) CS4620/5620 Affine and 3D Transformations Professor: Kavita Bala 1 Announcements Updated schedule on course web page 2 Prelim days finalized and posted Oct 11, Nov 29 No final exam, final project will

More information

Indoor navigation using smartphones. Chris Hide IESSG, University of Nottingham, UK

Indoor navigation using smartphones. Chris Hide IESSG, University of Nottingham, UK Indoor navigation using smartphones Chris Hide IESSG, University of Nottingham, UK Overview Smartphones Available sensors Current positioning methods Positioning research at IESSG 1. Wi-Fi fingerprinting

More information

Satellite and Inertial Navigation and Positioning System

Satellite and Inertial Navigation and Positioning System Satellite and Inertial Navigation and Positioning System Project Proposal By: Luke Pfister Dan Monroe Project Advisors: Dr. In Soo Ahn Dr. Yufeng Lu EE 451 Senior Capstone Project December 10, 2009 PROJECT

More information

Strapdown system technology

Strapdown system technology Chapter 9 Strapdown system technology 9.1 Introduction The preceding chapters have described the fundamental principles of strapdown navigation systems and the sensors required to provide the necessary

More information

WHERE THEORY MEETS PRACTICE

WHERE THEORY MEETS PRACTICE world from others, leica geosystems WHERE THEORY MEETS PRACTICE A NEW BULLETIN COLUMN BY CHARLES GHILANI ON PRACTICAL ASPECTS OF SURVEYING WITH A THEORETICAL SLANT february 2012 ² ACSM BULLETIN ² 27 USGS

More information

APN-065: Determining Rotations for Inertial Explorer and SPAN

APN-065: Determining Rotations for Inertial Explorer and SPAN APN-065 Rev A APN-065: Determining Rotations for Inertial Explorer and SPAN Page 1 May 5, 2014 Both Inertial Explorer (IE) and SPAN use intrinsic -order Euler angles to define the rotation between the

More information

Creating Mercator s Map Projection

Creating Mercator s Map Projection Creating Mercator s Map Projection Andrew Geldean December 17, 2014 Abstract: This map developed by Gerardus Mercator in 1569 is created by producing a cylinder around the globe projecting the surface

More information

Modern Navigation. Thomas Herring

Modern Navigation. Thomas Herring 12.215 Modern Navigation Thomas Herring Review of Wednesday Class Definition of heights Ellipsoidal height (geometric) Orthometric height (potential field based) Shape of equipotential surface: Geoid for

More information

TEST RESULTS OF A GPS/INERTIAL NAVIGATION SYSTEM USING A LOW COST MEMS IMU

TEST RESULTS OF A GPS/INERTIAL NAVIGATION SYSTEM USING A LOW COST MEMS IMU TEST RESULTS OF A GPS/INERTIAL NAVIGATION SYSTEM USING A LOW COST MEMS IMU Alison K. Brown, Ph.D.* NAVSYS Corporation, 1496 Woodcarver Road, Colorado Springs, CO 891 USA, e-mail: abrown@navsys.com Abstract

More information

Yandex.Maps API Background theory

Yandex.Maps API Background theory 8.02.2018 .. Version 1.0 Document build date: 8.02.2018. This volume is a part of Yandex technical documentation. Yandex helpdesk site: http://help.yandex.ru 2008 2018 Yandex LLC. All rights reserved.

More information

ROTATING IMU FOR PEDESTRIAN NAVIGATION

ROTATING IMU FOR PEDESTRIAN NAVIGATION ROTATING IMU FOR PEDESTRIAN NAVIGATION ABSTRACT Khairi Abdulrahim Faculty of Science and Technology Universiti Sains Islam Malaysia (USIM) Malaysia A pedestrian navigation system using a low-cost inertial

More information

Fundamentals of Inertial Navigation, Satellite-based Positioning and their Integration

Fundamentals of Inertial Navigation, Satellite-based Positioning and their Integration Fundamentals of Inertial Navigation, Satellite-based Positioning and their Integration Bearbeitet von Aboelmagd Noureldin, Tashfeen B. Karamat, Jacques Georgy 1. Auflage 01. Buch. xviii, 14 S. Hardcover

More information

Exterior Orientation Parameters

Exterior Orientation Parameters Exterior Orientation Parameters PERS 12/2001 pp 1321-1332 Karsten Jacobsen, Institute for Photogrammetry and GeoInformation, University of Hannover, Germany The georeference of any photogrammetric product

More information

INTEGRATED TECH FOR INDUSTRIAL POSITIONING

INTEGRATED TECH FOR INDUSTRIAL POSITIONING INTEGRATED TECH FOR INDUSTRIAL POSITIONING Integrated Tech for Industrial Positioning aerospace.honeywell.com 1 Introduction We are the world leader in precision IMU technology and have built the majority

More information

Inertial Measurement Units I!

Inertial Measurement Units I! ! Inertial Measurement Units I! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 9! stanford.edu/class/ee267/!! Lecture Overview! coordinate systems (world, body/sensor, inertial,

More information

Calibration of Triaxial Accelerometer and Triaxial Magnetometer for Tilt Compensated Electronic Compass

Calibration of Triaxial Accelerometer and Triaxial Magnetometer for Tilt Compensated Electronic Compass Calibration of Triaxial ccelerometer and Triaxial agnetometer for Tilt Compensated Electronic Compass les Kuncar artin ysel Tomas Urbanek Faculty of pplied Informatics Tomas ata University in lin Nad tranemi

More information

LESSON 6: DETERMINING DIRECTION

LESSON 6: DETERMINING DIRECTION LESSON 6: DETERMINING DIRECTION PURPOSE Directions play an important role in everyday life. People oftentimes express them as right, left, straight ahead, and so forth; but then the question arises, to

More information

INERTIAL NAVIGATION SYSTEM OF IN-PIPE INSPECTION ROBOT

INERTIAL NAVIGATION SYSTEM OF IN-PIPE INSPECTION ROBOT INERTIAL NAVIGATION SYSTEM OF IN-PIPE INSPECTION ROBOT by Wasim Al-Masri A Thesis Presented to the Faculty of the American University of Sharjah College of Engineering in Partial Fulfillment of the Requirements

More information

TLS Parameters, Workflows and Field Methods

TLS Parameters, Workflows and Field Methods TLS Parameters, Workflows and Field Methods Marianne Okal, UNAVCO GSA, September 23 rd, 2016 How a Lidar instrument works (Recap) Transmits laser signals and measures the reflected light to create 3D point

More information

ESTIMATION OF FLIGHT PATH DEVIATIONS FOR SAR RADAR INSTALLED ON UAV

ESTIMATION OF FLIGHT PATH DEVIATIONS FOR SAR RADAR INSTALLED ON UAV Metrol. Meas. Syst., Vol. 23 (216), No. 3, pp. 383 391. METROLOGY AND MEASUREMENT SYSTEMS Index 3393, ISSN 86-8229 www.metrology.pg.gda.pl ESTIMATION OF FLIGHT PATH DEVIATIONS FOR SAR RADAR INSTALLED ON

More information

Boeing s CubeSat TestBed 1 Attitude Determination Design and On Orbit Experience. Michael Taraba Primary Author, Former Employee of the Boeing Company

Boeing s CubeSat TestBed 1 Attitude Determination Design and On Orbit Experience. Michael Taraba Primary Author, Former Employee of the Boeing Company SSC9 X 6 Boeing s CubeSat TestBed 1 Attitude Determination Design and On Orbit Experience Michael Taraba Primary Author, Former Employee of the Boeing Company Christian ; Senior Embedded Software Engineer

More information

8. SPHERICAL PROJECTIONS (I)

8. SPHERICAL PROJECTIONS (I) I Main Topics A What is a spherical projecgon? B Equal- angle (stereographic) projecgon of a line C Equal- angle (stereographic) projecgon of a plane D IntersecGon of two planes 9/14/16 GG303 1 Focal Mechanism,

More information

2013 International Conference on Virtual and Augmented Reality in Education. Considerations on Designing a Geo-targeted AR Application DRAFT

2013 International Conference on Virtual and Augmented Reality in Education. Considerations on Designing a Geo-targeted AR Application DRAFT Available online at www.sciencedirect.com Procedia Computer Science 00 (2013) 000 000 www.elsevier.com/locate/procedia 2013 International Conference on Virtual and Augmented Reality in Education Considerations

More information

esa Space Station Reference Coordinate Systems International Space Station Program Russian Space Agency Revision F 26 October 2001

esa Space Station Reference Coordinate Systems International Space Station Program Russian Space Agency Revision F 26 October 2001 SSP 30219 Space Station Reference Coordinate Systems International Space Station Program Revision F 26 October 2001 Russian Space Agency esa european space agency National Space Development Agency of Japan

More information

AMG Series. Motorized Position and Rate Gimbals. Continuous 360 rotation of azimuth and elevation including built-in slip ring

AMG Series. Motorized Position and Rate Gimbals. Continuous 360 rotation of azimuth and elevation including built-in slip ring AMG Series Optical Mounts AMG Series Motorized Position and Rate Gimbals Continuous rotation of azimuth and elevation including built-in slip ring High accuracy angular position and rate capability Direct-drive

More information