Refraction Ch. 29 in your text book

Size: px
Start display at page:

Download "Refraction Ch. 29 in your text book"

Transcription

1 Refraction Ch. 29 in your text book Objectives Students will be able to: 1) Identify incident and refracted angles 2) Explain what the index of refraction tells about a material 3) Calculate the index of refraction based on the refracted angle

2 Refraction When light enters a material, it changes speed. The frequency of the light stays the same. When it changes speed, it also changes the angle at which it is traveling. Check for understanding If the speed changes and the frequency doesn t, what about the wavelength? Remember, v = λf Example: Say you were pulling a wagon on the grass in a park. If one of the wheels were to hit a soggy patch of grass, how would the motion of the wagon change?

3 Refraction Refraction The bending of a wave when it crosses the boundary between two different materials The part of the light wave in the new material travels at a different speed than the part of the wave that is not in the new material How much it bends depends on the index of refraction.

4 Refraction Index of refraction The ratio of the speed of light in a vacuum to the speed of light in a medium - the ratio will always be greater than 1 - no units n = c v n index of refraction c speed of light in vacuum v speed of light in material Check for understanding: Material A has an index of refraction of 1.5 and material B has an index of refraction of In which material does light travel faster?

5 Refraction Examples of refractive indices for different materials. Check for understanding Based on the table to the left, how fast does light travel through water? n = c v 1.33 = 3 x 108 v v = 2.26 x 10 8 m/s

6 Refraction Check for understanding What is the index of refraction for a plastic if light travels 2.68 x 10 8 m/s in the plastic? n = c v n = 3 x x 10 8 n = 1.12

7 Refraction Incident angle the angle between the normal and the incident ray of light Refracted angle the angle between the normal and the refracted ray of light Incident angle Incident ray θ θ Refracted angle Refracted ray Notice that the incident ray and the refracted ray are on opposite sides of the normal line

8 Refraction Refraction Lab

9 Snell s Law How do we know which way the light will bend? The direction the light bends depends on the index of the materials. If the light goes from a material with a smaller index to a larger index, the light will bend closer to the normal. n 1 = 1 n 2 = 1.5

10 Snell s Law How do we know which way the light will bend? If the light goes from a material with a larger index to a smaller index, the light will bend away from the normal. n 1 = 1.5 n 2 = 1

11 The light from the fish bends when it leaves the water and that it makes us think the fish is in a different location than where it actually is. Snell s Law

12 Snell s Law Draw which way the light will bend when it enters the green? n 1 = 1 n 2 = 1.1

13 Snell s Law Draw which way the light will bend when it enters the green? n 1 = 1 n 2 = 1.5

14 Snell s Law Draw which way the light will bend when it enters the green? n 1 = 2 n 2 = 1.5

15 Snell s Law Draw which way the light will bend when it enters the triangle? n 1 = 1 n 2 = 1.5 How will the light bend when it leaves the triangle?

16 Snell s Law When light refracts, it bends. Each wavelength bends at a different angle. When light has to refract a couple times, the differences in the angles becomes more obvious and we see all the colors.

17 Snell s Law Rainbows are formed by refracting light. Light refracts in the raindrops, reflects once, and then refracts again when it comes out, but a couple things have to line up just right for you to see it. Sometimes the light will reflect an extra time in the raindrop and you will get a double rainbow. The two rainbows will always be reflections of each other. Violet is usually hardest to see in the second rainbow.

18 Snell s Law n 1 sin(θ 1 )= n 2 sin(θ 2 ) n 1 index of refraction for one material n 2 index of refraction for the other material θ 1 angle for one material θ 2 angle for the other material θ 1 θ 2 n 1 n 2 Mathematically, it doesn t matter which material is 1 and which is 2. It does matter that the corresponding angle and the index of refraction stay together.

19 Snell s Law Light from the sun passes from air to a piece of plastic. The light hits the plastic at an angle of 50 to the normal. Inside the plastic, the light makes an angle of 40 to the normal. The index of refraction for air is 1. What is the index of refraction for the plastic? Hint: make sure your calculator is in degree mode 50 n 1 = 1 40 n 2 =? n 1 sin(θ 1 )= n 2 sin(θ 2 ) (1)sin(50)= n 2 sin(40) n 2 = 1.19

20 Snell s Law Light from the sun passes from air to a piece of plastic. The light hits the plastic at an angle of 50 to the normal. The index of refraction for air is 1 and the index of refraction for the plastic is 1.5. What is the angle of refraction inside the plastic? Hint: make sure your calculator is in degree mode 50 θ 2 n 1 = 1 n 2 = 1.5 n 1 sin(θ 1 )= n 2 sin(θ 2 ) (1)sin(50)= (1.5)sin(θ 2 ) sin(θ 2 ) =.51 θ 2 = sin -1 (.51) θ 2 = 30.7

21 Total Internal Reflection Total internal reflection is when no light escapes; it doesn t refract out of a medium. This typically occurs when the index of refraction is much higher in the first material and/or if the incident angle is large.

22 Total Internal Reflection Fiber optic cables use total internal reflection to transmit information using light. It is a much more efficient way of communicating. Google has set up networks in some cities (Google Fiber). Their intemet speed is up around 1 Gb/s.

Reflection & refraction

Reflection & refraction 2015 EdExcel A Level Physics 2015 EdExcel A Level Physics Topic Topic 5 5 Reflection & refraction Reflection revision Reflection is the bouncing of light rays off a surface Reflection from a mirror: Normal

More information

Physics 1C. Lecture 25B. "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton

Physics 1C. Lecture 25B. There are two ways of spreading light: to be the candle or the mirror that reflects it. --Edith Wharton Physics 1C Lecture 25B "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton Refraction of Light When light passes from one medium to another, it is

More information

speed of light in vacuum = speed of light in the material

speed of light in vacuum = speed of light in the material Chapter 5 Let Us Entertain You Snell s law states that as light enters a substance such as acrylic (high index of refraction) from air (low index of refraction), the light bends toward the normal. When

More information

Purpose: To determine the index of refraction of glass, plastic and water.

Purpose: To determine the index of refraction of glass, plastic and water. LAB 9 REFRACTION-THE BENDING OF LIGHT Purpose: To determine the index of refraction of glass, plastic and water. Materials: Common pins, glass block, plastic block, small semi-circular water container,

More information

PY106 Class31. Index of refraction. Refraction. Index of refraction. Sample values of n. Rays and wavefronts. index of refraction: n v.

PY106 Class31. Index of refraction. Refraction. Index of refraction. Sample values of n. Rays and wavefronts. index of refraction: n v. Refraction Index of refraction When an EM wave travels in a vacuum, its speed is: c = 3.00 x 10 8 m/s. In any other medium, light generally travels at a slower speed. The speed of light v in a material

More information

Lecture 14: Refraction

Lecture 14: Refraction Lecture 14: Refraction We know from experience that there are several transparent substances through which light can travel air, water, and glass are three examples When light passes from one such medium

More information

Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2

Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2 Amount of bending depends on: - angle of incidence - refractive index of medium Recap: Refraction λ 1 (n 2 > n 1 ) Snell s Law: When light passes from one transparent medium to another, the rays will be

More information

Physics 132: Lecture Fundamentals of Physics II Agenda for Today

Physics 132: Lecture Fundamentals of Physics II Agenda for Today Physics 132: Lecture Fundamentals of Physics II Agenda for Today Reflection of light Law of reflection Refraction of light Snell s law Dispersion PHY132 Lecture 17, Pg1 Electromagnetic waves A changing

More information

Refraction of Light. c = m / s. n = c v. The index of refraction is never less than 1. Some common indices of refraction are listed below.

Refraction of Light. c = m / s. n = c v. The index of refraction is never less than 1. Some common indices of refraction are listed below. Refraction of Light The speed of light in a vacuum is c = 3.00 10 8 m / s In air, the speed is only slightly less. In other transparent materials, such as glass and water, the speed is always less than

More information

Physics 1C. Lecture 22A. "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton

Physics 1C. Lecture 22A. There are two ways of spreading light: to be the candle or the mirror that reflects it. --Edith Wharton Physics 1C Lecture 22A "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton The Nature of Light An interesting question developed as to the nature of

More information

Chapter 24. Geometric optics. Assignment No. 11, due April 27th before class: Problems 24.4, 24.11, 24.13, 24.15, 24.24

Chapter 24. Geometric optics. Assignment No. 11, due April 27th before class: Problems 24.4, 24.11, 24.13, 24.15, 24.24 Chapter 24 Geometric optics Assignment No. 11, due April 27th before class: Problems 24.4, 24.11, 24.13, 24.15, 24.24 A Brief History of Light 1000 AD It was proposed that light consisted of tiny particles

More information

M = h' h = #i. n = c v

M = h' h = #i. n = c v Name: Physics Chapter 14 Study Guide ----------------------------------------------------------------------------------------------------- Useful Information: c = 3 "10 8 m s 1 i + 1 o = 1 f M = h' h =

More information

Mathematics of Rainbows

Mathematics of Rainbows Mathematics of Rainbows MATH 171 Freshman Seminar for Mathematics Majors J. Robert Buchanan Department of Mathematics 2010 What is a Rainbow? A rainbow is created by water, sunlight, and the principles

More information

11.2 Refraction. December 10, Wednesday, 11 December, 13

11.2 Refraction. December 10, Wednesday, 11 December, 13 11.2 Refraction December 10, 2013. Refraction Light bends when it passes from one medium (material) to another this bending is called refraction this is because the speed of light changes The Speed of

More information

Lesson Plan: Refraction of light at boundaries OVERVIEW

Lesson Plan: Refraction of light at boundaries OVERVIEW Lesson Plan: Refraction of light at boundaries OVERVIEW This lesson is broken up into several small units. The focus is on observations of optical phenomena resulting from the refraction of light and the

More information

Optics: Laser Light Show Student Advanced Version

Optics: Laser Light Show Student Advanced Version Optics: Laser Light Show Student Advanced Version In this lab, you will explore the behavior of light. You will observe reflection and refraction of a laser beam in jello, and use a diffraction pattern

More information

Refracon. Refracon The spoon in the glass photo can be translated into a ray diagram.

Refracon. Refracon The spoon in the glass photo can be translated into a ray diagram. The of Light Learning Goals: to understand why light refracts when travelling through different media to calculate the index of refraction to use the index of refraction to calculate the speed of light

More information

Physics 10. Lecture 28A. "If Dracula can t see his reflection in the mirror, how come his hair is always so neatly combed?

Physics 10. Lecture 28A. If Dracula can t see his reflection in the mirror, how come his hair is always so neatly combed? Physics 10 Lecture 28A "If Dracula can t see his reflection in the mirror, how come his hair is always so neatly combed?" --Steven Wright The Nature of Light From now on we will have to treat light as

More information

Refraction of Light. This bending of the ray is called refraction

Refraction of Light. This bending of the ray is called refraction Refraction & Lenses Refraction of Light When a ray of light traveling through a transparent medium encounters a boundary leading into another transparent medium, part of the ray is reflected and part of

More information

Index of Refraction and Total Internal Reflection

Index of Refraction and Total Internal Reflection Index of Refraction and Total Internal Reflection Name: Group Members: Date: TA s Name: Materials: Ray box, two different transparent blocks, two letter size white pages, pencil, protractor, two nails,

More information

Reflection and Refraction

Reflection and Refraction Reflection and Refraction 1) Students will be able to state the law of reflection. 2) Students will be able to describe refraction and use Snell's law. 1 Teachers' notes Subject Topic Title Grade(s) Cross

More information

Physics 102: Lecture 17 Reflection and Refraction of Light

Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17, Slide 1 Today Last Time Recall from last time. Reflection: q i = q r Flat Mirror: image equidistant behind Spherical

More information

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation Chapter 6 Geometrical Optics Outline 6-1 The Reflection of Light 6- Forming Images with a Plane Mirror 6-3 Spherical Mirror 6-4 Ray Tracing and the Mirror Equation 6-5 The Refraction of Light 6-6 Ray Tracing

More information

Physics 202, Lecture 23

Physics 202, Lecture 23 Physics 202, Lecture 23 Today s Topics Lights and Laws of Geometric Optics Nature of Light Reflection and Refraction Law of Reflection Law of Refraction Index of Reflection, Snell s Law Total Internal

More information

Review: 22.4: Dispersion. Refraction in a Prism. Announcements

Review: 22.4: Dispersion. Refraction in a Prism. Announcements Announcements The second midterm exam is coming Monday, Nov 8 Will cover from 18.1 thru 22.7 Same format as Exam 1 20 multiple choice questions Room assignments TBA QUESTIONS? PLEASE ASK! Review: Light

More information

Chapter 22. Reflection and Refraction of Light

Chapter 22. Reflection and Refraction of Light Chapter 22 Reflection and Refraction of Light Nature of Light Light has a dual nature. Particle Wave Wave characteristics will be discussed in this chapter. Reflection Refraction These characteristics

More information

The Ray model of Light. Reflection. Class 18

The Ray model of Light. Reflection. Class 18 The Ray model of Light Over distances of a terrestrial scale light travels in a straight line. The path of a laser is now the best way we have of defining a straight line. The model of light which assumes

More information

Student Exploration: Refraction

Student Exploration: Refraction Name: Date: Student Exploration: Refraction Vocabulary: angle of incidence, angle of refraction, frequency, index of refraction, medium, refraction, Snell s law, total internal reflection, wave front,

More information

Physics 102: Lecture 17 Reflection and Refraction of Light

Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17, Slide 1 Recall from last time. Today Last Time Reflection: θ i = θ r Flat Mirror: image equidistant behind Spherical

More information

Geometrical Optics. 1 st year physics laboratories. University of Ottawa

Geometrical Optics. 1 st year physics laboratories. University of Ottawa Geometrical Optics 1 st year physics laboratories University of Ottawa https://uottawa.brightspace.com/d2l/home INTRODUCTION Geometrical optics deals with light as a ray that can be bounced (reflected)

More information

Introduction: The Nature of Light

Introduction: The Nature of Light O1 Introduction: The Nature of Light Introduction Optical elements and systems Basic properties O1.1 Overview Generally Geometrical Optics is considered a less abstract subject than Waves or Physical Optics

More information

(Equation 24.1: Index of refraction) We can make sense of what happens in Figure 24.1

(Equation 24.1: Index of refraction) We can make sense of what happens in Figure 24.1 24-1 Refraction To understand what happens when light passes from one medium to another, we again use a model that involves rays and wave fronts, as we did with reflection. Let s begin by creating a short

More information

Physics 1502: Lecture 28 Today s Agenda

Physics 1502: Lecture 28 Today s Agenda Physics 1502: Lecture 28 Today s Agenda Announcements: Midterm 2: Monday Nov. 16 Homework 08: due next Friday Optics Waves, Wavefronts, and Rays Reflection Index of Refraction 1 Waves, Wavefronts, and

More information

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses LIGHT Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses Light = Electromagnetic Wave Requires No Medium to Travel Oscillating Electric and Magnetic Field Travel at the speed of light

More information

Lecture 7 Notes: 07 / 11. Reflection and refraction

Lecture 7 Notes: 07 / 11. Reflection and refraction Lecture 7 Notes: 07 / 11 Reflection and refraction When an electromagnetic wave, such as light, encounters the surface of a medium, some of it is reflected off the surface, while some crosses the boundary

More information

θ =θ i r n sinθ = n sinθ

θ =θ i r n sinθ = n sinθ θ i = θ r n = 1 sinθ1 n2 sin θ 2 Index of Refraction Speed of light, c, in vacuum is 3x10 8 m/s Speed of light, v, in different medium can be v < c. index of refraction, n = c/v. frequency, f, does not

More information

Refraction and Lenses. Honors Physics

Refraction and Lenses. Honors Physics Refraction and Lenses Honors Physics Refraction Refraction is based on the idea that LIGHT is passing through one MEDIUM into another. The question is, WHAT HAPPENS? Suppose you are running on the beach

More information

Lecture Ray Model of Light. Physics Help Q&A: tutor.leiacademy.org

Lecture Ray Model of Light. Physics Help Q&A: tutor.leiacademy.org Lecture 1201 Ray Model of Light Physics Help Q&A: tutor.leiacademy.org Reflection of Light A ray of light, the incident ray, travels in a medium. When it encounters a boundary with a second medium, part

More information

Assignment 10 Solutions Due May 1, start of class. Physics 122, sections and 8101 Laura Lising

Assignment 10 Solutions Due May 1, start of class. Physics 122, sections and 8101 Laura Lising Physics 122, sections 502-4 and 8101 Laura Lising Assignment 10 Solutions Due May 1, start of class 1) Revisiting the last question from the problem set before. Suppose you have a flashlight or a laser

More information

16/05/2016. Book page 110 and 112 Syllabus 3.18, Snell s Law. cgrahamphysics.com 2016

16/05/2016. Book page 110 and 112 Syllabus 3.18, Snell s Law. cgrahamphysics.com 2016 16/05/2016 Snell s Law cgrahamphysics.com 2016 Book page 110 and 112 Syllabus 3.18, 3.19 Match the words to the objects absorbs transmits emits diffracts disperses refracts reflects Fibre optics Totally

More information

Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38

Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38 Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38 Brief History of the Nature of Light Up until 19 th century, light was modeled as a stream of particles. Newton was a proponent of

More information

Grade 7/8 Math Circles Fall October 9/10/11 Angles and Light

Grade 7/8 Math Circles Fall October 9/10/11 Angles and Light Facult of Mathematics Waterloo, Ontario N2L 3G1 Grade 7/8 Math Circles Fall 2018 - October 9/10/11 Angles and Light Centre for Education in Mathematics and Computing Toda we will be learning about angles.

More information

Optics INTRODUCTION DISCUSSION OF PRINCIPLES. Reflection by a Plane Mirror

Optics INTRODUCTION DISCUSSION OF PRINCIPLES. Reflection by a Plane Mirror Optics INTRODUCTION Geometric optics is one of the oldest branches of physics, dealing with the laws of reflection and refraction. Reflection takes place on the surface of an object, and refraction occurs

More information

Reflection and Refraction of Light

Reflection and Refraction of Light PC1222 Fundamentals of Physics II Reflection and Refraction of Light 1 Objectives Investigate for reflection of rays from a plane surface, the dependence of the angle of reflection on the angle of incidence.

More information

Wavefronts and Rays. When light or other electromagnetic waves interact with systems much larger than the wavelength, it s a good approximation to

Wavefronts and Rays. When light or other electromagnetic waves interact with systems much larger than the wavelength, it s a good approximation to Chapter 33: Optics Wavefronts and Rays When light or other electromagnetic waves interact with systems much larger than the wavelength, it s a good approximation to Neglect the wave nature of light. Consider

More information

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image.

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image. I. What is GEOMTERIC OPTICS GEOMETRIC OPTICS In geometric optics, LIGHT is treated as imaginary rays. How these rays interact with at the interface of different media, including lenses and mirrors, is

More information

LECTURE 13 REFRACTION. Instructor: Kazumi Tolich

LECTURE 13 REFRACTION. Instructor: Kazumi Tolich LECTURE 13 REFRACTION Instructor: Kazumi Tolich Lecture 13 2 Reading chapter 26.5 Index of refraction Snell s law Total internal reflection Total polarization Index of refraction 3 The speed of light in

More information

Algebra Based Physics

Algebra Based Physics Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Table of ontents Slide 3 / 66 lick on the topic to go to that section Reflection Spherical Mirror Refraction and

More information

Light and Lenses Notes

Light and Lenses Notes Light and Lenses Notes Refraction The change in speed and direction of a wave Due to change in medium Must cross boundary at an angle other than 90 o, otherwise no change in direction I R (unlike reflection)

More information

Introduction. Experiment A: Snell s Law. Physics 1CL REFLECTION AND REFRACTION OF LIGHT Summer Session II 2010

Introduction. Experiment A: Snell s Law. Physics 1CL REFLECTION AND REFRACTION OF LIGHT Summer Session II 2010 Introduction This laboratory is a quantitative investigation of the reflection and refraction of light off optical interfaces. An optical interface is a boundary between two transparent media of different

More information

SESSION 5: INVESTIGATING LIGHT. Key Concepts. X-planation. Physical Sciences Grade In this session we:

SESSION 5: INVESTIGATING LIGHT. Key Concepts. X-planation. Physical Sciences Grade In this session we: SESSION 5: INVESTIGATING LIGHT Key Concepts In this session we: Explain what light is, where light comes from and why it is important Identify what happens when light strikes the surface of different objects

More information

Refraction: Snell's Law. October 26, 2010

Refraction: Snell's Law. October 26, 2010 Refraction: Snell's Law October 26, 2010 When light passes from one medium into another, part of the incident light is reflected at the boundary The remainder passes into the new medium. Unless it is perpendicular,

More information

Lecture 24: TUE 20 APR 2010 Ch : E&M Waves

Lecture 24: TUE 20 APR 2010 Ch : E&M Waves Physics 2102 Jonathan Dowling Lecture 24: TUE 20 APR 2010 Ch.33.6 10: E&M Waves Radiation Pressure Waves not only carry energy but also momentum. The effect is very small (we don t ordinarily feel pressure

More information

Light travels in straight lines, this is referred to as... this means that light does not bend...

Light travels in straight lines, this is referred to as... this means that light does not bend... SNC 2DI - 10.2 Properties of Light and Reflection Light travels in straight lines, this is referred to as... this means that light does not bend... Reflection : Light travels in a straight line as long

More information

Reflection and Refraction

Reflection and Refraction rev 05/2018 Equipment List and Refraction Qty Items Part Numbers 1 Light Source, Basic Optics OS-8517 1 Ray Optics Set OS-8516 2 White paper, sheet 1 Metric ruler 1 Protractor Introduction The purpose

More information

Chapter 12 Notes: Optics

Chapter 12 Notes: Optics Chapter 12 Notes: Optics How can the paths traveled by light rays be rearranged in order to form images? In this chapter we will consider just one form of electromagnetic wave: visible light. We will be

More information

Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see

Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Light Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Facts About Light The speed of light, c, is constant in a vacuum. Light can be: REFLECTED ABSORBED REFRACTED

More information

PHY 112: Light, Color and Vision. Lecture 11. Prof. Clark McGrew Physics D 134. Review for Exam. Lecture 11 PHY 112 Lecture 1

PHY 112: Light, Color and Vision. Lecture 11. Prof. Clark McGrew Physics D 134. Review for Exam. Lecture 11 PHY 112 Lecture 1 PHY 112: Light, Color and Vision Lecture 11 Prof. Clark McGrew Physics D 134 Review for Exam Lecture 11 PHY 112 Lecture 1 From Last Time Lenses Ray tracing a Convex Lens Announcements The midterm is Thursday

More information

Chapter 35. The Nature of Light and the Laws of Geometric Optics

Chapter 35. The Nature of Light and the Laws of Geometric Optics Chapter 35 The Nature of Light and the Laws of Geometric Optics Introduction to Light Light is basic to almost all life on Earth. Light is a form of electromagnetic radiation. Light represents energy transfer

More information

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17 Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 17 Dispersion (23.5) The speed of light in a material depends on its wavelength White light is a mixture of wavelengths

More information

Grade 7/8 Math Circles Fall October 9/10/11 Angles and Light

Grade 7/8 Math Circles Fall October 9/10/11 Angles and Light Facult of Mathematics Waterloo, Ontario N2L 3G1 Grade 7/8 Math Circles Fall 2018 - October 9/10/11 Angles and Light Centre for Education in Mathematics and Computing Toda we will be learning about angles.

More information

Homework Set 3 Due Thursday, 07/14

Homework Set 3 Due Thursday, 07/14 Homework Set 3 Due Thursday, 07/14 Problem 1 A room contains two parallel wall mirrors, on opposite walls 5 meters apart. The mirrors are 8 meters long. Suppose that one person stands in a doorway, in

More information

FINDING THE INDEX OF REFRACTION - WebAssign

FINDING THE INDEX OF REFRACTION - WebAssign Name: Book: Period: Due Date: Lab Partners: FINDING THE INDEX OF REFRACTION - WebAssign Purpose: The theme in this lab is the interaction between light and matter. Matter and light seem very different

More information

Chapter 18 Ray Optics

Chapter 18 Ray Optics Chapter 18 Ray Optics Chapter Goal: To understand and apply the ray model of light. Slide 18-1 Chapter 18 Preview Looking Ahead Text p. 565 Slide 18-2 Wavefronts and Rays When visible light or other electromagnetic

More information

Today s Topic: Refraction / Snell s Law

Today s Topic: Refraction / Snell s Law Today s Topic: Refraction / Snell s Law Learning Goal: Students will be able to calculate the angle of reflection of a bent light wave. Take out your notes from yesterday as we learn about Snell s Law.

More information

Light & Optical Systems Reflection & Refraction. Notes

Light & Optical Systems Reflection & Refraction. Notes Light & Optical Systems Reflection & Refraction Notes What is light? Light is electromagnetic radiation Ultra-violet + visible + infra-red Behavior of Light Light behaves in 2 ways particles (photons)

More information

Rainbows. A. D. Andrew G. L. Cain S. S. Crum T. D. Morley. Introduction

Rainbows. A. D. Andrew G. L. Cain S. S. Crum T. D. Morley. Introduction Rainbows A. D. Andrew G. L. Cain S. S. Crum T. D. Morley Introduction Most of us are familiar with the sight of a rainbow after a rainstorm. The sun is at our back, and we see an arc with violet innermost,

More information

12:40-2:40 3:00-4:00 PM

12:40-2:40 3:00-4:00 PM Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) Help-room hours: 12:40-2:40

More information

Light and Electromagnetic Waves. Honors Physics

Light and Electromagnetic Waves. Honors Physics Light and Electromagnetic Waves Honors Physics Electromagnetic Waves EM waves are a result of accelerated charges and disturbances in electric and magnetic fields (Radio wave example here) As electrons

More information

The path of light is bent. Refraction and Lenses 4/26/2016. The angle of incidence equals the angle of reflection. Not so for refraction.

The path of light is bent. Refraction and Lenses 4/26/2016. The angle of incidence equals the angle of reflection. Not so for refraction. The path of light is bent. Refraction and Lenses These are not photographs, but rather computer generated graphics based on the artist s understanding of the index of refraction. The angle of incidence

More information

Geometrical optics: Refraction *

Geometrical optics: Refraction * OpenStax-CNX module: m40065 1 Geometrical optics: Refraction * Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0

More information

1. What is the law of reflection?

1. What is the law of reflection? Name: Skill Sheet 7.A The Law of Reflection The law of reflection works perfectly with light and the smooth surface of a mirror. However, you can apply this law to other situations. For example, how would

More information

Refraction and Its Applications

Refraction and Its Applications Refraction and Its Applications Background: Snell s Law describes how light is refracted as it passes between two mediums. This happens when light travels at different speeds in each medium. The way we

More information

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface Chapter 8 GEOMETRICAL OPTICS Introduction Reflection and refraction at boundaries. Reflection at a single surface Refraction at a single boundary Dispersion Summary INTRODUCTION It has been shown that

More information

Physics 1202: Lecture 17 Today s Agenda

Physics 1202: Lecture 17 Today s Agenda Physics 1202: Lecture 17 Today s Agenda Announcements: Team problems today Team 10, 11 & 12: this Thursday Homework #8: due Friday Midterm 2: Tuesday April 10 Office hours if needed (M-2:30-3:30 or TH

More information

Light. Reflection of light. Types of reflection

Light. Reflection of light. Types of reflection Light Reflection of light Reflection is when light bounces off an object. If the surface is smooth and shiny, like glass, water or polished metal, the light will reflect at the same angle as it hit the

More information

Reflection and Refraction. Chapter 29

Reflection and Refraction. Chapter 29 Reflection and Refraction Chapter 29 Reflection When a wave reaches a boundary between two media, some or all of the wave bounces back into the first medium. Reflection The angle of incidence is equal

More information

Physics 228 Spring 2016 Analytical Physics IIB Lecture 2: Snell s Law Total Internal Reflection Images from Mirrors

Physics 228 Spring 2016 Analytical Physics IIB  Lecture 2: Snell s Law Total Internal Reflection Images from Mirrors Physics 228 Spring 2016 Analytical Physics IIB www.physics.rutgers.edu/ugrad/228 Lecture 2: Snell s Law Total Internal Reflection Images from Mirrors Recitations start this week, with quiz. Also: Labs

More information

Geometrical Optics INTRODUCTION. Wave Fronts and Rays

Geometrical Optics INTRODUCTION. Wave Fronts and Rays Geometrical Optics INTRODUCTION In this experiment, the optical characteristics of mirrors, lenses, and prisms will be studied based on using the following physics definitions and relationships plus simple

More information

Name Section Date. Experiment Reflection and Refraction

Name Section Date. Experiment Reflection and Refraction Name Section Date Introduction: Experiment Reflection and Refraction The travel of light is often represented in geometric optics by a light ray, a line that is drawn to represent the straight-line movement

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics The Reflection of Light: Mirrors: Mirrors produce images because the light that strikes them is reflected, rather than absorbed. Reflected light does much more than produce

More information

Refraction and Dispersion

Refraction and Dispersion Refraction and Dispersion 1 Objectives 1. To understand refraction in optical systems, and 2. To understand dispersion in optical systems. 2 Introduction From Einstein s Special Theory of Relativity, we

More information

Lec. 6: Ch. 2 - Geometrical Optics

Lec. 6: Ch. 2 - Geometrical Optics Lec. 6: Ch. 2 - Geometrical Optics We are here 1. Shadows 2. Reflection 3. Refraction 4. Dispersion Guest lecture Tuesday, February 2, by Dr. Greg Werner. 1 Review Equal angle rule Similar triangles are

More information

Lesson Plan Outline for Rainbow Science

Lesson Plan Outline for Rainbow Science Lesson Plan Outline for Rainbow Science Lesson Title: Rainbow Science Target Grades: Middle and High School Time Required: 120 minutes Background Information for Teachers and Students Rainbows are fascinating

More information

Nicholas J. Giordano. Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.   Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 24 Geometrical Optics Marilyn Akins, PhD Broome Community College Optics The study of light is called optics Some highlights in the history

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but

More information

How can the body make sound bend?

How can the body make sound bend? HPP Activity 54v2 How can the body make sound bend? Exploration To this point, you ve seen or heard waves bounce off of and pass through interfaces. But what happens if a sound wave strikes an interface

More information

New topic: Diffraction only one slit, but wide. From Last time. Huygen s principle. Overlapping diffraction patterns. Diffraction from other objects

New topic: Diffraction only one slit, but wide. From Last time. Huygen s principle. Overlapping diffraction patterns. Diffraction from other objects New topic: Diffraction only one slit, but wide From Last time Two-source interference: Interference-like pattern from a single slit. For a slit: a θ central width ~ 2 Diffraction grating Week3HW on Mastering

More information

Refraction of Light Finding the Index of Refraction and the Critical Angle

Refraction of Light Finding the Index of Refraction and the Critical Angle Finding the Index of Refraction and the Critical Angle OBJECTIVE Students will verify the law of refraction for light passing from water into air. Measurements of the angle of incidence and the angle of

More information

Part 1: Plane Mirrors!

Part 1: Plane Mirrors! Algodoo Optics Part 1: Plane Mirrors This activity will model, using Algodoo, the mirror lab experiment from class. With a physical model, students are asked to look into the mirror from two different

More information

MET 4410 Remote Sensing: Radar and Satellite Meteorology MET 5412 Remote Sensing in Meteorology. Lecture 9: Reflection and Refraction (Petty Ch4)

MET 4410 Remote Sensing: Radar and Satellite Meteorology MET 5412 Remote Sensing in Meteorology. Lecture 9: Reflection and Refraction (Petty Ch4) MET 4410 Remote Sensing: Radar and Satellite Meteorology MET 5412 Remote Sensing in Meteorology Lecture 9: Reflection and Refraction (Petty Ch4) When to use the laws of reflection and refraction? EM waves

More information

4. A light-year is the distance light travels in one year. How far does light travel in one year? 9.46 x m

4. A light-year is the distance light travels in one year. How far does light travel in one year? 9.46 x m hapter 6 Light, Mirrors, and Lenses Practice Problems Name: Section 1: Speed, Distance, and Time (v = d/t) 1. In communicating with an automatic space station, radio signals travelling at the speed of

More information

L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION PHYSICS - GRADE: VIII REFRACTION OF LIGHT

L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION PHYSICS - GRADE: VIII REFRACTION OF LIGHT L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION - 2016-17 PHYSICS - GRADE: VIII REFRACTION OF LIGHT REFRACTION When light travels from one transparent medium to another transparent medium, it bends from

More information

The path of light is bent. Refraction and Lenses 5/3/2018. The angle of incidence equals the angle of reflection. Not so for refraction.

The path of light is bent. Refraction and Lenses 5/3/2018. The angle of incidence equals the angle of reflection. Not so for refraction. The path of light is bent. Refraction and Lenses Unit 11 These are not photographs, but rather computer generated graphics based on the artist s understanding of the index of refraction. The angle of incidence

More information

No Brain Too Small PHYSICS

No Brain Too Small PHYSICS Level Physics: Waves Total Internal Reflection - Answers The Mess that is NCEA Assessment Schedules. Level Physics: AS 970 replaced AS 9054. In 9054, from 004 to 0, there was an Evidence column with the

More information

Image Formation by Refraction

Image Formation by Refraction Image Formation by Refraction If you see a fish that appears to be swimming close to the front window of the aquarium, but then look through the side of the aquarium, you ll find that the fish is actually

More information

first name (print) last name (print) brock id (ab17cd) (lab date)

first name (print) last name (print) brock id (ab17cd) (lab date) (ta initials) first name (print) last name (print) brock id (ab17cd) (lab date) Experiment 4 Refraction of light Prelab preparation Print a copy of this experiment to bring to your scheduled lab session.

More information

: Imaging Systems Laboratory II. Laboratory 2: Snell s Law, Dispersion and the Prism March 19 & 21, n 1 n 2

: Imaging Systems Laboratory II. Laboratory 2: Snell s Law, Dispersion and the Prism March 19 & 21, n 1 n 2 05-3: Imaging Systems Laboratory II Laboratory : Snell s Law, Dispersion and the Prism March 9 &, 00 Abstract. This laboratory exercise will demonstrate two basic properties of the way light interacts

More information

Refraction and Polarization of Light

Refraction and Polarization of Light Chapter 9 Refraction and Polarization of Light Name: Lab Partner: Section: 9.1 Purpose The purpose of this experiment is to demonstrate several consequences of the fact that materials have di erent indexes

More information

Physics 4C Chabot College Scott Hildreth

Physics 4C Chabot College Scott Hildreth Physics 4C Chabot College Scott Hildreth Snell s Law with Microwave Optics Experiment Goals: Experimentally verify Snell s Law holds for microwaves. Lab Safety Note! Although the microwaves in this experiment

More information