Topic: Facial Keypoints Detection

Size: px
Start display at page:

Download "Topic: Facial Keypoints Detection"

Transcription

1 Project Proposal Chongzhao Mao Topic: Facial Keypoints Detection 1. Introduction The objective of this task[1] is to predict key points positions on face images. This can be used as a building block in several applications, such as: tracking faces in images and videos, analyzing facial expressions, detecting dysmorphic facial signs for medical diagnosis, biometrics / face recognition. Detecting facial key points is a very challenging problem. Facial features vary greatly from one individual to another, and even for a single individual, there is a large amount of variation due to 3D pose, size, position, viewing angle, and illumination conditions. Computer vision research has come a long way in addressing these difficulties, but there remain many opportunities for improvement. The data set for this competition was graciously provided by Dr. Yoshua Bengio of the University of Montreal. The tutorial was developed by James Petterson. 2. Data The input image is given in the last field of the data files, and consists of a list of pixels (ordered by row), as integers in (0,255). The images are 96x96 pixels. The data[2] given are three parts: 1

2 1) training.csv. This is the file of list of 7049 images, where each row contains the (x,y) coordinates for the 15 key points. The image data is in row-ordered list of pixels. 2) test.csv This is the file of list of 1783 test images. Each row contains image ID and image data as row-ordered list of pixels. 3) SampleSubmission This is the file of the list of key points to predict. Each row in the file contains a row ID, image ID, feature name, and location. 3. Features(Keypoints) Each predicted keypoint is specified by an (x,y) real-valued pair in the space of pixel indices. There are 15 keypoints, which represent the following elements of the face: left_eye_center, right_eye_center, left_eye_inner_corner, left_eye_outer_corner, right_eye_inner_corner, right_eye_outer_corner, left_eyebrow_inner_end, left_eyebrow_outer_end, right_eyebrow_inner_end, right_eyebrow_outer_end, nose_tip, mouth_left_corner, mouth_right_corner, mouth_center_top_lip, mouth_center_bottom_lip. Left and right here refers to the point of view of the subject.in some examples, some of the target keypoint positions are missing (encoded as missing entries in the csv, i.e., with nothing between two commas). 4. Evaluation & Baseline The evaluation is based on Root Mean Squared Error(RMSE). While I can test the result on Kaggle website with score and rank. 2

3 There is given baseline on Kaggle, which is written in R with a score.[3] 5. Topic Choosing Reason 1)This is a educational-purpose data set. The format for data set is clear. 2)The data set is uploaded on Kaggle in 2013, while the competition will end on Dec 31, So for the data, it is pretty new, not like some data sets around 2000 or before. On the other hand, the competition has last for several years, so there are many resources for me to learn. 3)I have a strong interest in computer vision. The data set is pretty open minded. People can use different ways with image analysis and computer vision for preprocessing the image data, and this is a good start for me to apply deep learning algorithm on computer vision. 4)The competition on Kaggle can provide a easy way to test the prediction result, giving me a score based on RMSE and a rank over all entries for competition to let myself better knowing the performance of the algorithm. 6. Tools The project will use Torch7[4], which is an open source framework. Torch is a scientific computing framework with wide support for machine learning algorithms that puts GPUs first. The reason for choosing Torch is that it was used created by Facebook AI Research Group and Google DeepMind, which is stable and robust. I wanted to use Theano and Caffe, while Theano was invented in lab that there are so much bug that I have to deal with bug issues all the time and right now there are something not even solved by people. For Caffe, it requires the GPU and installation of CUDA, but my macbook does not have a GPU. If you do not use GPU, the framework will be a nightmare, it was optimized specifically for GPU use. 3

4 In the end, I chose the Torch. Its language Lua is easy to learn and it is a mature framework with so much resources and libraries to learn with. 7. Milestone 1)Progress Report: For progress report, I will finish learning Lua, getting familiar with the Torch library of deep leaning, preprocess the image data, and start choosing the deep learning algorithm. 2)Final Report By the final report, I will finish the code implementation, network training, prediction, adjustment and improvements. 8. Available Papers & Reports 1) Yue Wang and Yang Song, Stanford University, CS229 Machine Learning, class project report. Title: Facial Keypoints Detection Link: %20Song,Facial%20Keypoints%20Detection.pdf 2) Abheet Aggarwal. Indian Institute of Technology Kanpur, CS365 Artificial Intelligence, class project report. Title: Facial Keypoint Detection Link: 3) Mikko Haavisto. Lappeenranta University of Technology, Bachelor Thesis. 4

5 Title: Deep Generative Models For Facial Keypoints Detection Link: Deep_Generative_Models_for_Facial_Keypoints_Detection.pdf?sequence=2 References: [1] [2] [3] [4] 5

Facial Keypoint Detection

Facial Keypoint Detection Facial Keypoint Detection CS365 Artificial Intelligence Abheet Aggarwal 12012 Ajay Sharma 12055 Abstract Recognizing faces is a very challenging problem in the field of image processing. The techniques

More information

Facial Key Points Detection using Deep Convolutional Neural Network - NaimishNet

Facial Key Points Detection using Deep Convolutional Neural Network - NaimishNet 1 Facial Key Points Detection using Deep Convolutional Neural Network - NaimishNet Naimish Agarwal, IIIT-Allahabad (irm2013013@iiita.ac.in) Artus Krohn-Grimberghe, University of Paderborn (artus@aisbi.de)

More information

Deep Learning Basic Lecture - Complex Systems & Artificial Intelligence 2017/18 (VO) Asan Agibetov, PhD.

Deep Learning Basic Lecture - Complex Systems & Artificial Intelligence 2017/18 (VO) Asan Agibetov, PhD. Deep Learning 861.061 Basic Lecture - Complex Systems & Artificial Intelligence 2017/18 (VO) Asan Agibetov, PhD asan.agibetov@meduniwien.ac.at Medical University of Vienna Center for Medical Statistics,

More information

Lecture 17: Neural Networks and Deep Learning. Instructor: Saravanan Thirumuruganathan

Lecture 17: Neural Networks and Deep Learning. Instructor: Saravanan Thirumuruganathan Lecture 17: Neural Networks and Deep Learning Instructor: Saravanan Thirumuruganathan Outline Perceptron Neural Networks Deep Learning Convolutional Neural Networks Recurrent Neural Networks Auto Encoders

More information

DEEP NEURAL NETWORKS AND GPUS. Julie Bernauer

DEEP NEURAL NETWORKS AND GPUS. Julie Bernauer DEEP NEURAL NETWORKS AND GPUS Julie Bernauer GPU Computing GPU Computing Run Computations on GPUs x86 CUDA Framework to Program NVIDIA GPUs A simple sum of two vectors (arrays) in C void vector_add(int

More information

LSTM and its variants for visual recognition. Xiaodan Liang Sun Yat-sen University

LSTM and its variants for visual recognition. Xiaodan Liang Sun Yat-sen University LSTM and its variants for visual recognition Xiaodan Liang xdliang328@gmail.com Sun Yat-sen University Outline Context Modelling with CNN LSTM and its Variants LSTM Architecture Variants Application in

More information

Deep Learning. Volker Tresp Summer 2015

Deep Learning. Volker Tresp Summer 2015 Deep Learning Volker Tresp Summer 2015 1 Neural Network Winter and Revival While Machine Learning was flourishing, there was a Neural Network winter (late 1990 s until late 2000 s) Around 2010 there

More information

What s inside: What is deep learning Why is deep learning taking off now? Multiple applications How to implement a system.

What s inside: What is deep learning Why is deep learning taking off now? Multiple applications How to implement a system. Point Grey White Paper Series What s inside: What is deep learning Why is deep learning taking off now? Multiple applications How to implement a system More and more, machine vision systems are expected

More information

Lab 4: Google Forms. Armand Poblete ( 2016)

Lab 4: Google Forms. Armand Poblete ( 2016) Lab 4: Google Forms () CONTENTS 1 Background... 1 2 In-Lab Work... 1 2.1 files you need... 1 2.2 Setting up... 1 2.3 Slide Formatting... Error! Bookmark not defined. 2.3.1 Change the theme... Error! Bookmark

More information

NeuroSolutions Infinity

NeuroSolutions Infinity Copyright 2014 by NeuroDimension, Inc.. All rights are reserved. Table of contents Welcome to... 4 Quick Start Guides... 4 Launching... 6 Choosing Your Database Server... 8 Creating a New Project... 10

More information

Image Processing Pipeline for Facial Expression Recognition under Variable Lighting

Image Processing Pipeline for Facial Expression Recognition under Variable Lighting Image Processing Pipeline for Facial Expression Recognition under Variable Lighting Ralph Ma, Amr Mohamed ralphma@stanford.edu, amr1@stanford.edu Abstract Much research has been done in the field of automated

More information

! References: ! Computer eyesight gets a lot more accurate, NY Times. ! Stanford CS 231n. ! Christopher Olah s blog. ! Take ECS 174!

! References: ! Computer eyesight gets a lot more accurate, NY Times. ! Stanford CS 231n. ! Christopher Olah s blog. ! Take ECS 174! Exams ECS 189 WEB PROGRAMMING! If you are satisfied with your scores on the two midterms, you can skip the final! As soon as your Photobooth and midterm are graded, I can give you your course grade (so

More information

NVIDIA GPU CLOUD DEEP LEARNING FRAMEWORKS

NVIDIA GPU CLOUD DEEP LEARNING FRAMEWORKS TECHNICAL OVERVIEW NVIDIA GPU CLOUD DEEP LEARNING FRAMEWORKS A Guide to the Optimized Framework Containers on NVIDIA GPU Cloud Introduction Artificial intelligence is helping to solve some of the most

More information

Rotation Invariant Finger Vein Recognition *

Rotation Invariant Finger Vein Recognition * Rotation Invariant Finger Vein Recognition * Shaohua Pang, Yilong Yin **, Gongping Yang, and Yanan Li School of Computer Science and Technology, Shandong University, Jinan, China pangshaohua11271987@126.com,

More information

Head Frontal-View Identification Using Extended LLE

Head Frontal-View Identification Using Extended LLE Head Frontal-View Identification Using Extended LLE Chao Wang Center for Spoken Language Understanding, Oregon Health and Science University Abstract Automatic head frontal-view identification is challenging

More information

Advances in Face Recognition Research

Advances in Face Recognition Research The face recognition company Advances in Face Recognition Research Presentation for the 2 nd End User Group Meeting Juergen Richter Cognitec Systems GmbH For legal reasons some pictures shown on the presentation

More information

Introduction to Computer Vision. Srikumar Ramalingam School of Computing University of Utah

Introduction to Computer Vision. Srikumar Ramalingam School of Computing University of Utah Introduction to Computer Vision Srikumar Ramalingam School of Computing University of Utah srikumar@cs.utah.edu Course Website http://www.eng.utah.edu/~cs6320/ What is computer vision? Light source 3D

More information

RNN LSTM and Deep Learning Libraries

RNN LSTM and Deep Learning Libraries RNN LSTM and Deep Learning Libraries UDRC Summer School Muhammad Awais m.a.rana@surrey.ac.uk Outline Recurrent Neural Network Application of RNN LSTM Caffe Torch Theano TensorFlow Flexibility of Recurrent

More information

Deep Learning. Volker Tresp Summer 2017

Deep Learning. Volker Tresp Summer 2017 Deep Learning Volker Tresp Summer 2017 1 Neural Network Winter and Revival While Machine Learning was flourishing, there was a Neural Network winter (late 1990 s until late 2000 s) Around 2010 there

More information

Outlier detection using autoencoders

Outlier detection using autoencoders Outlier detection using autoencoders August 19, 2016 Author: Olga Lyudchik Supervisors: Dr. Jean-Roch Vlimant Dr. Maurizio Pierini CERN Non Member State Summer Student Report 2016 Abstract Outlier detection

More information

Deep Learning for Visual Computing Prof. Debdoot Sheet Department of Electrical Engineering Indian Institute of Technology, Kharagpur

Deep Learning for Visual Computing Prof. Debdoot Sheet Department of Electrical Engineering Indian Institute of Technology, Kharagpur Deep Learning for Visual Computing Prof. Debdoot Sheet Department of Electrical Engineering Indian Institute of Technology, Kharagpur Lecture - 05 Classification with Perceptron Model So, welcome to today

More information

Comparing Dropout Nets to Sum-Product Networks for Predicting Molecular Activity

Comparing Dropout Nets to Sum-Product Networks for Predicting Molecular Activity 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

Practical Applications of Machine Learning for Image and Video in the Cloud

Practical Applications of Machine Learning for Image and Video in the Cloud Practical Applications of Machine Learning for Image and Video in the Cloud Shawn Przybilla, AWS Solutions Architect M&E @shawnprzybilla 2/27/18 There were 3.7 Billion internet users in 2017 1.2 Trillion

More information

A Contactless Palmprint Recognition Algorithm for Mobile Phones

A Contactless Palmprint Recognition Algorithm for Mobile Phones A Contactless Palmprint Recognition Algorithm for Mobile Phones Shoichiro Aoyama, Koichi Ito and Takafumi Aoki Graduate School of Information Sciences, Tohoku University 6 6 05, Aramaki Aza Aoba, Sendai-shi

More information

Figure 1. Example sample for fabric mask. In the second column, the mask is worn on the face. The picture is taken from [5].

Figure 1. Example sample for fabric mask. In the second column, the mask is worn on the face. The picture is taken from [5]. ON THE VULNERABILITY OF FACE RECOGNITION SYSTEMS TO SPOOFING MASK ATTACKS Neslihan Kose, Jean-Luc Dugelay Multimedia Department, EURECOM, Sophia-Antipolis, France {neslihan.kose, jean-luc.dugelay}@eurecom.fr

More information

Machine Learning in WAN Research

Machine Learning in WAN Research Machine Learning in WAN Research Mariam Kiran mkiran@es.net Energy Sciences Network (ESnet) Lawrence Berkeley National Lab Oct 2017 Presented at Internet2 TechEx 2017 Outline ML in general ML in network

More information

TIED FACTOR ANALYSIS FOR FACE RECOGNITION ACROSS LARGE POSE DIFFERENCES

TIED FACTOR ANALYSIS FOR FACE RECOGNITION ACROSS LARGE POSE DIFFERENCES TIED FACTOR ANALYSIS FOR FACE RECOGNITION ACROSS LARGE POSE DIFFERENCES SIMON J.D. PRINCE, JAMES H. ELDER, JONATHAN WARRELL, FATIMA M. FELISBERTI IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,

More information

Machine Learning in WAN Research

Machine Learning in WAN Research Machine Learning in WAN Research Mariam Kiran mkiran@es.net Energy Sciences Network (ESnet) Lawrence Berkeley National Lab Oct 2017 Presented at Internet2 TechEx 2017 Outline ML in general ML in network

More information

Robust Face Recognition Based on Convolutional Neural Network

Robust Face Recognition Based on Convolutional Neural Network 2017 2nd International Conference on Manufacturing Science and Information Engineering (ICMSIE 2017) ISBN: 978-1-60595-516-2 Robust Face Recognition Based on Convolutional Neural Network Ying Xu, Hui Ma,

More information

A Survey on Feature Extraction Techniques for Palmprint Identification

A Survey on Feature Extraction Techniques for Palmprint Identification International Journal Of Computational Engineering Research (ijceronline.com) Vol. 03 Issue. 12 A Survey on Feature Extraction Techniques for Palmprint Identification Sincy John 1, Kumudha Raimond 2 1

More information

CS664 Lecture #21: SIFT, object recognition, dynamic programming

CS664 Lecture #21: SIFT, object recognition, dynamic programming CS664 Lecture #21: SIFT, object recognition, dynamic programming Some material taken from: Sebastian Thrun, Stanford http://cs223b.stanford.edu/ Yuri Boykov, Western Ontario David Lowe, UBC http://www.cs.ubc.ca/~lowe/keypoints/

More information

Boosting Sex Identification Performance

Boosting Sex Identification Performance Boosting Sex Identification Performance Shumeet Baluja, 2 Henry Rowley shumeet@google.com har@google.com Google, Inc. 2 Carnegie Mellon University, Computer Science Department Abstract This paper presents

More information

Introduction to Deep Learning for Facial Understanding Part III: Regional CNNs

Introduction to Deep Learning for Facial Understanding Part III: Regional CNNs Introduction to Deep Learning for Facial Understanding Part III: Regional CNNs Raymond Ptucha, Rochester Institute of Technology, USA Tutorial-9 May 19, 218 www.nvidia.com/dli R. Ptucha 18 1 Fair Use Agreement

More information

DEEP LEARNING WITH GPUS Maxim Milakov, Senior HPC DevTech Engineer, NVIDIA

DEEP LEARNING WITH GPUS Maxim Milakov, Senior HPC DevTech Engineer, NVIDIA DEEP LEARNING WITH GPUS Maxim Milakov, Senior HPC DevTech Engineer, NVIDIA TOPICS COVERED Convolutional Networks Deep Learning Use Cases GPUs cudnn 2 MACHINE LEARNING! Training! Train the model from supervised

More information

The Analysis of Faces in Brains and Machines

The Analysis of Faces in Brains and Machines CS 332 Visual Processing in Computer and Biological Vision Systems The Analysis of Faces in Brains and Machines Paula Johnson Elizabeth Warren HMAX model Why is face analysis important? Remember/recognize

More information

FORensic Marks Search - KIRAS Project

FORensic Marks Search - KIRAS Project FORensic Marks Search - KIRAS Project Manuel Keglevic - TU Wien, Computer Vision Lab Manuel Roblek - CogVis Software und Consulting GmbH mkeglevic@caa.tuwien.ac.at FORMS? FORMS objectives (semi-)automatic

More information

Face Detection CUDA Accelerating

Face Detection CUDA Accelerating Face Detection CUDA Accelerating Jaromír Krpec Department of Computer Science VŠB Technical University Ostrava Ostrava, Czech Republic krpec.jaromir@seznam.cz Martin Němec Department of Computer Science

More information

Machine Learning Software ROOT/TMVA

Machine Learning Software ROOT/TMVA Machine Learning Software ROOT/TMVA LIP Data Science School / 12-14 March 2018 ROOT ROOT is a software toolkit which provides building blocks for: Data processing Data analysis Data visualisation Data

More information

arxiv: v1 [cs.cv] 1 Jan 2019

arxiv: v1 [cs.cv] 1 Jan 2019 Mapping Areas using Computer Vision Algorithms and Drones Bashar Alhafni Saulo Fernando Guedes Lays Cavalcante Ribeiro Juhyun Park Jeongkyu Lee University of Bridgeport. Bridgeport, CT, 06606. United States

More information

Outline 7/2/201011/6/

Outline 7/2/201011/6/ Outline Pattern recognition in computer vision Background on the development of SIFT SIFT algorithm and some of its variations Computational considerations (SURF) Potential improvement Summary 01 2 Pattern

More information

Model-based Enhancement of Lighting Conditions in Image Sequences

Model-based Enhancement of Lighting Conditions in Image Sequences Model-based Enhancement of Lighting Conditions in Image Sequences Peter Eisert and Bernd Girod Information Systems Laboratory Stanford University {eisert,bgirod}@stanford.edu http://www.stanford.edu/ eisert

More information

Real-time Object Detection CS 229 Course Project

Real-time Object Detection CS 229 Course Project Real-time Object Detection CS 229 Course Project Zibo Gong 1, Tianchang He 1, and Ziyi Yang 1 1 Department of Electrical Engineering, Stanford University December 17, 2016 Abstract Objection detection

More information

Time Analysis of Pulse-based Face Anti-Spoofing in Visible and NIR

Time Analysis of Pulse-based Face Anti-Spoofing in Visible and NIR Time Analysis of Pulse-based Face Anti-Spoofing in Visible and NIR Javier Hernandez-Ortega, Julian Fierrez, Aythami Morales, and Pedro Tome Biometrics and Data Pattern Analytics BiDA Lab Universidad Autónoma

More information

Deep Learning for Computer Vision with MATLAB By Jon Cherrie

Deep Learning for Computer Vision with MATLAB By Jon Cherrie Deep Learning for Computer Vision with MATLAB By Jon Cherrie 2015 The MathWorks, Inc. 1 Deep learning is getting a lot of attention "Dahl and his colleagues won $22,000 with a deeplearning system. 'We

More information

KinectFusion: Real-Time Dense Surface Mapping and Tracking

KinectFusion: Real-Time Dense Surface Mapping and Tracking KinectFusion: Real-Time Dense Surface Mapping and Tracking Gabriele Bleser Thanks to Richard Newcombe for providing the ISMAR slides Overview General: scientific papers (structure, category) KinectFusion:

More information

Dynamic Routing Between Capsules

Dynamic Routing Between Capsules Report Explainable Machine Learning Dynamic Routing Between Capsules Author: Michael Dorkenwald Supervisor: Dr. Ullrich Köthe 28. Juni 2018 Inhaltsverzeichnis 1 Introduction 2 2 Motivation 2 3 CapusleNet

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 6 - Section - Spring 7 Lecture Jan-Willem van de Meent (credit: Andrew Ng, Alex Smola, Yehuda Koren, Stanford CS6) Project Project Deadlines Feb: Form teams of - people 7 Feb:

More information

Where s Waldo? A Deep Learning approach to Template Matching

Where s Waldo? A Deep Learning approach to Template Matching Where s Waldo? A Deep Learning approach to Template Matching Thomas Hossler Department of Geological Sciences Stanford University thossler@stanford.edu Abstract We propose a new approach to Template Matching

More information

Wikipedia - Mysid

Wikipedia - Mysid Wikipedia - Mysid Erik Brynjolfsson, MIT Filtering Edges Corners Feature points Also called interest points, key points, etc. Often described as local features. Szeliski 4.1 Slides from Rick Szeliski,

More information

SHIV SHAKTI International Journal in Multidisciplinary and Academic Research (SSIJMAR) Vol. 7, No. 2, April 2018 (ISSN )

SHIV SHAKTI International Journal in Multidisciplinary and Academic Research (SSIJMAR) Vol. 7, No. 2, April 2018 (ISSN ) SHIV SHAKTI International Journal in Multidisciplinary and Academic Research (SSIJMAR) Vol. 7, No. 2, April 2018 (ISSN 2278 5973) Facial Recognition Using Deep Learning Rajeshwar M, Sanjit Singh Chouhan,

More information

Real-time convolutional networks for sonar image classification in low-power embedded systems

Real-time convolutional networks for sonar image classification in low-power embedded systems Real-time convolutional networks for sonar image classification in low-power embedded systems Matias Valdenegro-Toro Ocean Systems Laboratory - School of Engineering & Physical Sciences Heriot-Watt University,

More information

CS 229 Final Report: Artistic Style Transfer for Face Portraits

CS 229 Final Report: Artistic Style Transfer for Face Portraits CS 229 Final Report: Artistic Style Transfer for Face Portraits Daniel Hsu, Marcus Pan, Chen Zhu {dwhsu, mpanj, chen0908}@stanford.edu Dec 16, 2016 1 Introduction The goal of our project is to learn the

More information

CS 231A Computer Vision (Fall 2012) Problem Set 3

CS 231A Computer Vision (Fall 2012) Problem Set 3 CS 231A Computer Vision (Fall 2012) Problem Set 3 Due: Nov. 13 th, 2012 (2:15pm) 1 Probabilistic Recursion for Tracking (20 points) In this problem you will derive a method for tracking a point of interest

More information

MULTIMODAL BIOMETRICS RECOGNITION FROM FACIAL VIDEO VIA DEEP LEARNING

MULTIMODAL BIOMETRICS RECOGNITION FROM FACIAL VIDEO VIA DEEP LEARNING MULTIMODAL BIOMETRICS RECOGNITION FROM FACIAL VIDEO VIA DEEP LEARNING Sayan Maity, Mohamed Abdel-Mottaleb, and Shihab S. As University of Miami; 1251 Memorial Drive; Coral Gables; Florida 33146-0620 s.maity1@umail.miami.edu,

More information

Detection of Stress Using Image Processing and Machine Learning Techniques

Detection of Stress Using Image Processing and Machine Learning Techniques Detection of Stress Using Image Processing and Machine Learning Techniques Nisha Raichur #1, Nidhi Lonakadi *2, Priyanka Mural #3 Department of Information Science and Engineering, BVBCET, Hubli, India

More information

Genetic Fourier Descriptor for the Detection of Rotational Symmetry

Genetic Fourier Descriptor for the Detection of Rotational Symmetry 1 Genetic Fourier Descriptor for the Detection of Rotational Symmetry Raymond K. K. Yip Department of Information and Applied Technology, Hong Kong Institute of Education 10 Lo Ping Road, Tai Po, New Territories,

More information

Gender Classification Technique Based on Facial Features using Neural Network

Gender Classification Technique Based on Facial Features using Neural Network Gender Classification Technique Based on Facial Features using Neural Network Anushri Jaswante Dr. Asif Ullah Khan Dr. Bhupesh Gour Computer Science & Engineering, Rajiv Gandhi Proudyogiki Vishwavidyalaya,

More information

311 Predictions on Kaggle Austin Lee. Project Description

311 Predictions on Kaggle Austin Lee. Project Description 311 Predictions on Kaggle Austin Lee Project Description This project is an entry into the SeeClickFix contest on Kaggle. SeeClickFix is a system for reporting local civic issues on Open311. Each issue

More information

Realtime Object Detection and Segmentation for HD Mapping

Realtime Object Detection and Segmentation for HD Mapping Realtime Object Detection and Segmentation for HD Mapping William Raveane Lead AI Engineer Bahram Yoosefizonooz Technical Director NavInfo Europe Advanced Research Lab Presented at GTC Europe 2018 AI in

More information

Fish Species Likelihood Prediction. Kumari Deepshikha (1611MC03) Sequeira Ryan Thomas (1611CS13)

Fish Species Likelihood Prediction. Kumari Deepshikha (1611MC03) Sequeira Ryan Thomas (1611CS13) Fish Species Likelihood Prediction Kumari Deepshikha (1611MC03) Sequeira Ryan Thomas (1611CS13) Content 1. Problem Statement 2. Literature Survey 3. Data Sources 4. Faster R-CNN training 5. CNN training

More information

Additive Manufacturing Defect Detection using Neural Networks

Additive Manufacturing Defect Detection using Neural Networks Additive Manufacturing Defect Detection using Neural Networks James Ferguson Department of Electrical Engineering and Computer Science University of Tennessee Knoxville Knoxville, Tennessee 37996 Jfergu35@vols.utk.edu

More information

Deep Learning with Torch

Deep Learning with Torch Deep Learning with Torch The good, the bad, the ugly since 2002 Jimmy Ba jimmy@psi.utoronto.ca What is Torch? Year 2012 Google Answer: Torch7 provides a Matlab-like environment for state-of-the-art machine

More information

AWS DeepLens Workshop: Building a Computer Vision App

AWS DeepLens Workshop: Building a Computer Vision App AWS DeepLens Workshop: Building a Computer Vision App Jyothi Nookula - Senior Product Manager, Amazon Web Services May 23 rd 2018 AWS DeepLens is not a video camera I t s t h e w o r l d s f i r s t d

More information

Facial Expression Classification with Random Filters Feature Extraction

Facial Expression Classification with Random Filters Feature Extraction Facial Expression Classification with Random Filters Feature Extraction Mengye Ren Facial Monkey mren@cs.toronto.edu Zhi Hao Luo It s Me lzh@cs.toronto.edu I. ABSTRACT In our work, we attempted to tackle

More information

A performance comparison of Deep Learning frameworks on KNL

A performance comparison of Deep Learning frameworks on KNL A performance comparison of Deep Learning frameworks on KNL R. Zanella, G. Fiameni, M. Rorro Middleware, Data Management - SCAI - CINECA IXPUG Bologna, March 5, 2018 Table of Contents 1. Problem description

More information

DEEP LEARNING AND DIGITS DEEP LEARNING GPU TRAINING SYSTEM

DEEP LEARNING AND DIGITS DEEP LEARNING GPU TRAINING SYSTEM DEEP LEARNING AND DIGITS DEEP LEARNING GPU TRAINING SYSTEM AGENDA 1 Introduction to Deep Learning 2 What is DIGITS 3 How to use DIGITS Practical DEEP LEARNING Examples Image Classification, Object Detection,

More information

Nearest Neighbor Classifiers

Nearest Neighbor Classifiers Nearest Neighbor Classifiers CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 The Nearest Neighbor Classifier Let X be the space

More information

You will be prompted to log in (with your SFU id and password) and then redirected to the correct page:

You will be prompted to log in (with your SFU id and password) and then redirected to the correct page: Your SFU Blog SFU Blogs use the Wordpress blogging system. It s easy to set up and maintain your blog pages using Wordpress, and if you run into difficulties, there s extensive online help at http://codex.wordpress.org/main_page.

More information

AUTOMATIC VISUAL CONCEPT DETECTION IN VIDEOS

AUTOMATIC VISUAL CONCEPT DETECTION IN VIDEOS AUTOMATIC VISUAL CONCEPT DETECTION IN VIDEOS Nilam B. Lonkar 1, Dinesh B. Hanchate 2 Student of Computer Engineering, Pune University VPKBIET, Baramati, India Computer Engineering, Pune University VPKBIET,

More information

VEHICLE MAKE AND MODEL RECOGNITION BY KEYPOINT MATCHING OF PSEUDO FRONTAL VIEW

VEHICLE MAKE AND MODEL RECOGNITION BY KEYPOINT MATCHING OF PSEUDO FRONTAL VIEW VEHICLE MAKE AND MODEL RECOGNITION BY KEYPOINT MATCHING OF PSEUDO FRONTAL VIEW Yukiko Shinozuka, Ruiko Miyano, Takuya Minagawa and Hideo Saito Department of Information and Computer Science, Keio University

More information

Mining of Massive Datasets

Mining of Massive Datasets Mining of Massive Datasets Krzysztof Dembczyński Intelligent Decision Support Systems Laboratory (IDSS) Poznań University of Technology, Poland Software Development Technologies Master studies, second

More information

Lecture 15. For-Loops

Lecture 15. For-Loops Lecture 15 For-Loops Announcements for This Lecture Today s Material Section 2.3.8 (first use of loops in the text) All of Chapter 7 Two topics covered today Elementary graphics For-loops Both used on

More information

Deep Learning mit PowerAI - Ein Überblick

Deep Learning mit PowerAI - Ein Überblick Stephen Lutz Deep Learning mit PowerAI - Open Group Master Certified IT Specialist Technical Sales IBM Cognitive Infrastructure IBM Germany Ein Überblick Stephen.Lutz@de.ibm.com What s that? and what s

More information

Object Recognition II

Object Recognition II Object Recognition II Linda Shapiro EE/CSE 576 with CNN slides from Ross Girshick 1 Outline Object detection the task, evaluation, datasets Convolutional Neural Networks (CNNs) overview and history Region-based

More information

ARE you? CS229 Final Project. Jim Hefner & Roddy Lindsay

ARE you? CS229 Final Project. Jim Hefner & Roddy Lindsay ARE you? CS229 Final Project Jim Hefner & Roddy Lindsay 1. Introduction We use machine learning algorithms to predict attractiveness ratings for photos. There is a wealth of psychological evidence indicating

More information

Research at Google: With a Case of YouTube-8M. Joonseok Lee, Google Research

Research at Google: With a Case of YouTube-8M. Joonseok Lee, Google Research Research at Google: With a Case of YouTube-8M Joonseok Lee, Google Research Google Research We tackle the most challenging problems in Computer Science and related fields. Being bold and taking risks allows

More information

Computer Science Faculty, Bandar Lampung University, Bandar Lampung, Indonesia

Computer Science Faculty, Bandar Lampung University, Bandar Lampung, Indonesia Application Object Detection Using Histogram of Oriented Gradient For Artificial Intelegence System Module of Nao Robot (Control System Laboratory (LSKK) Bandung Institute of Technology) A K Saputra 1.,

More information

Deep Learning Frameworks with Spark and GPUs

Deep Learning Frameworks with Spark and GPUs Deep Learning Frameworks with Spark and GPUs Abstract Spark is a powerful, scalable, real-time data analytics engine that is fast becoming the de facto hub for data science and big data. However, in parallel,

More information

Human Pose Estimation with Deep Learning. Wei Yang

Human Pose Estimation with Deep Learning. Wei Yang Human Pose Estimation with Deep Learning Wei Yang Applications Understand Activities Family Robots American Heist (2014) - The Bank Robbery Scene 2 What do we need to know to recognize a crime scene? 3

More information

CS 4510/9010 Applied Machine Learning. Deep Learning. Paula Matuszek Fall copyright Paula Matuszek 2016

CS 4510/9010 Applied Machine Learning. Deep Learning. Paula Matuszek Fall copyright Paula Matuszek 2016 CS 4510/9010 Applied Machine Learning 1 Deep Learning Paula Matuszek Fall 2016 Beyond Simple Neural Nets 2 In the last few ideas we have seen some surprisingly rapid progress in some areas of AI Image

More information

Improving Face Recognition by Exploring Local Features with Visual Attention

Improving Face Recognition by Exploring Local Features with Visual Attention Improving Face Recognition by Exploring Local Features with Visual Attention Yichun Shi and Anil K. Jain Michigan State University Difficulties of Face Recognition Large variations in unconstrained face

More information

Haresh D. Chande #, Zankhana H. Shah *

Haresh D. Chande #, Zankhana H. Shah * Illumination Invariant Face Recognition System Haresh D. Chande #, Zankhana H. Shah * # Computer Engineering Department, Birla Vishvakarma Mahavidyalaya, Gujarat Technological University, India * Information

More information

CS485/685 Computer Vision Spring 2012 Dr. George Bebis Programming Assignment 2 Due Date: 3/27/2012

CS485/685 Computer Vision Spring 2012 Dr. George Bebis Programming Assignment 2 Due Date: 3/27/2012 CS8/68 Computer Vision Spring 0 Dr. George Bebis Programming Assignment Due Date: /7/0 In this assignment, you will implement an algorithm or normalizing ace image using SVD. Face normalization is a required

More information

By following this instruction you ll be able to create something like the picture below that you can access from anywhere.

By following this instruction you ll be able to create something like the picture below that you can access from anywhere. 1 st of all, I d like to thank 50-50 for the smart solution by using the Google Chats to locally show data stored on ISY by using the @ to create a local file and Teken for creating the SEG instructions

More information

A Representative Sample Selection Approach for SRC

A Representative Sample Selection Approach for SRC DEIM Forum 2011 E9-1 AliceChen, NTT, 239-0847 1-1 School of Computing Science, Simon Fraser University 8888 University Drive, Burnaby BC, V5A 1S6 Canada E-mail: {alice.chen,eda.takeharu,katafuchi.norifumi,kataoka.ryoji}@lab.ntt.co.jp

More information

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Si Chen The George Washington University sichen@gwmail.gwu.edu Meera Hahn Emory University mhahn7@emory.edu Mentor: Afshin

More information

CS 223B Computer Vision Problem Set 3

CS 223B Computer Vision Problem Set 3 CS 223B Computer Vision Problem Set 3 Due: Feb. 22 nd, 2011 1 Probabilistic Recursion for Tracking In this problem you will derive a method for tracking a point of interest through a sequence of images.

More information

Face recognition algorithms: performance evaluation

Face recognition algorithms: performance evaluation Face recognition algorithms: performance evaluation Project Report Marco Del Coco - Pierluigi Carcagnì Institute of Applied Sciences and Intelligent systems c/o Dhitech scarl Campus Universitario via Monteroni

More information

Graphics, Vision, HCI. K.P. Chan Wenping Wang Li-Yi Wei Kenneth Wong Yizhou Yu

Graphics, Vision, HCI. K.P. Chan Wenping Wang Li-Yi Wei Kenneth Wong Yizhou Yu Graphics, Vision, HCI K.P. Chan Wenping Wang Li-Yi Wei Kenneth Wong Yizhou Yu Li-Yi Wei Background Stanford (95-01), NVIDIA (01-05), MSR (05-11) Research Nominal: Graphics, HCI, parallelism Actual: Computing

More information

Computer Vision Algorithm Acceleration Using GPGPU and the Tegra Processor's Unified Memory

Computer Vision Algorithm Acceleration Using GPGPU and the Tegra Processor's Unified Memory Engineering, Operations & Technology Boeing Research & Technology Computer Vision Algorithm Acceleration Using GPGPU and the Tegra Processor's Unified Memory Aaron Mosher Boeing Research & Technology Avionics

More information

Autoencoder. Representation learning (related to dictionary learning) Both the input and the output are x

Autoencoder. Representation learning (related to dictionary learning) Both the input and the output are x Deep Learning 4 Autoencoder, Attention (spatial transformer), Multi-modal learning, Neural Turing Machine, Memory Networks, Generative Adversarial Net Jian Li IIIS, Tsinghua Autoencoder Autoencoder Unsupervised

More information

Requesting changes to the grades, please write to me in an with descriptions. Move my office hours to the morning. 11am - 12:30pm Thursdays

Requesting changes to the grades, please write to me in an  with descriptions. Move my office hours to the morning. 11am - 12:30pm Thursdays Lab1 graded. Requesting changes to the grades, please write to me in an email with descriptions. Move my office hours to the morning. 11am - 12:30pm Thursdays Internet-scale texture synthesis With slides

More information

Additive Manufacturing Defect Detection using Neural Networks. James Ferguson May 16, 2016

Additive Manufacturing Defect Detection using Neural Networks. James Ferguson May 16, 2016 Additive Manufacturing Defect Detection using Neural Networks James Ferguson May 16, 2016 Outline Introduction Background Edge Detection Methods Results Porosity Detection Methods Results Conclusion /

More information

Learning to Match. Jun Xu, Zhengdong Lu, Tianqi Chen, Hang Li

Learning to Match. Jun Xu, Zhengdong Lu, Tianqi Chen, Hang Li Learning to Match Jun Xu, Zhengdong Lu, Tianqi Chen, Hang Li 1. Introduction The main tasks in many applications can be formalized as matching between heterogeneous objects, including search, recommendation,

More information

Face Recognition using SURF Features and SVM Classifier

Face Recognition using SURF Features and SVM Classifier International Journal of Electronics Engineering Research. ISSN 0975-6450 Volume 8, Number 1 (016) pp. 1-8 Research India Publications http://www.ripublication.com Face Recognition using SURF Features

More information

FaceNet. Florian Schroff, Dmitry Kalenichenko, James Philbin Google Inc. Presentation by Ignacio Aranguren and Rahul Rana

FaceNet. Florian Schroff, Dmitry Kalenichenko, James Philbin Google Inc. Presentation by Ignacio Aranguren and Rahul Rana FaceNet Florian Schroff, Dmitry Kalenichenko, James Philbin Google Inc. Presentation by Ignacio Aranguren and Rahul Rana Introduction FaceNet learns a mapping from face images to a compact Euclidean Space

More information

Neural Network Neurons

Neural Network Neurons Neural Networks Neural Network Neurons 1 Receives n inputs (plus a bias term) Multiplies each input by its weight Applies activation function to the sum of results Outputs result Activation Functions Given

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 60 - Section - Fall 06 Lecture Jan-Willem van de Meent (credit: Andrew Ng, Alex Smola, Yehuda Koren, Stanford CS6) Recommender Systems The Long Tail (from: https://www.wired.com/00/0/tail/)

More information

COLOR FIDELITY OF CHROMATIC DISTRIBUTIONS BY TRIAD ILLUMINANT COMPARISON. Marcel P. Lucassen, Theo Gevers, Arjan Gijsenij

COLOR FIDELITY OF CHROMATIC DISTRIBUTIONS BY TRIAD ILLUMINANT COMPARISON. Marcel P. Lucassen, Theo Gevers, Arjan Gijsenij COLOR FIDELITY OF CHROMATIC DISTRIBUTIONS BY TRIAD ILLUMINANT COMPARISON Marcel P. Lucassen, Theo Gevers, Arjan Gijsenij Intelligent Systems Lab Amsterdam, University of Amsterdam ABSTRACT Performance

More information

ICRA 2016 Tutorial on SLAM. Graph-Based SLAM and Sparsity. Cyrill Stachniss

ICRA 2016 Tutorial on SLAM. Graph-Based SLAM and Sparsity. Cyrill Stachniss ICRA 2016 Tutorial on SLAM Graph-Based SLAM and Sparsity Cyrill Stachniss 1 Graph-Based SLAM?? 2 Graph-Based SLAM?? SLAM = simultaneous localization and mapping 3 Graph-Based SLAM?? SLAM = simultaneous

More information