Robert Collins CSE486, Penn State. Robert Collins CSE486, Penn State. Image Point Y. O.Camps, PSU. Robert Collins CSE486, Penn State.

Size: px
Start display at page:

Download "Robert Collins CSE486, Penn State. Robert Collins CSE486, Penn State. Image Point Y. O.Camps, PSU. Robert Collins CSE486, Penn State."

Transcription

1 Stereo Vision Inerring depth rom images taken at the same time b two or more s. Lecture 08: Introduction to Stereo Reading: T&V Section 7.1 Scene Point Image Point p = (,,) O Basic Perspective Projection Scene Point Perspective Projection Eqns P = (,,) Basic Perspective Projection Perspective Projection Eqns P = (,,) Image Point p = (,,) Scene Point p = (,,) O p = (,,) O O.Camps, PSU P = (,,) k k k k Image Point Wh Stereo Vision? Perspective Projection Eqns P = (,,) O.Camps, PSU Basic Perspective Projection O O.Camps, PSU Fundamental Ambiguit: An point on the ra OP has image p O.Camps, PSU 1

2 Wh Stereo Vision? Wh Stereo Vision? P ~63mm p OL OR our two ees orm a stereo sstem The right and let ees see the world rom slightl shited vantage points. A second can resolve the ambiguit, enabling measurement o depth via triangulation. Ke Concepts or Toda Do-it-oursel Paralla Demo Paralla Anaglphs Random Dot Stereograms Mathematics o Simple Stereo Show: Points at dierent depths displace dierentl Nearb points displace more than ar ones A Hitchhiker s Guide to Paralla Paralla = apparent motion o scene eatures dierent distances General Idea o Stereo Iner distance to scene points b measuring paralla. INFER Ver distant mountain peak Ver small displacement Ver small displacement Far Midrange More distant tree Smaller displacement Smaller displacement Large displacement Large displacement Nearb guardrail Close 2

3 Anaglphs Anaglphs are a wa o encoding paralla in a single picture. Two slightl dierent perspectives o the same subject are superimposed on each other in contrasting colors, producing a three-dimensional eect when viewed through two correspondingl colored ilters Put red ilter over let ee 3

4 How Anaglphs Work Making an Anaglph Take a grescale stereo pair. Cop the let image to the red channel o a new image (the anaglph image) Close right ee, then close let. What do ou observe? Red ilter selectivel passes red color, and similarl or can ilter and can color. Stereo Pschophsics Cop the right image to the green and blue channels o the anaglph image (note: green+blue = can) Now when ou view with red-can glasses, the let ee sees onl the let image, and the right ee sees onl the right image. The brain uses to orm 3D. Higher-level Depth Cues How does stereo depth perception work? In particular, at what level in the visual sstem does it occur at? An earl debate: do we iner depth rom higher-level inormation like perspective and contours, or does it occur at a much lower level? "The basis o this three-dimensional perception was hotl debated between Wheatstone and ellow phsicist Sir David Brewster. (Though it ma seem odd or phsicists to concern themselves with the phsiolog o optics, this was elt to be a natural etension o the stud o the phsics o optics.) Brewster opined that perspective was the source o the apprehension o an object's shape. Wheatstone insisted that the images in the each ee had identiiable landmarks that were combined to assign depth to the landmarks. -- Ralph M. Siegel Cho ices: The Science o Bela Jules Perspective (vanishing points) 4

5 Higher-level Depth Cues Similar sied objects appear smaller at a distance (this is also related to perspective) Stereo Pschophsics Obviousl perspective and contours are important, (particularl or monocular depth perception), but are the necessar or binocular stereo depth perception? Higher-level Depth Cues Occluded contours (perceptual completion) Jules Random-Dot Eperiment Generate a random dot pattern using a computer Bela Jules answered this question in 1960 with his eperiments with random dot stereograms. In 1960, Bela's eperiment with what eventuall became known as Jules random dot stereograms unambiguousl demonstrated that stereoscopic depth could be computed in the absence o an identiiable objects, in the absence o an perspective, in the absence o an cues available to either ee alone. -- Ralph M. Siegel Cho ices: The Science o Bela Jules Jules Random-Dot Eperiment Clip out a square region and shit it to the let e.g. im = roicolor(rand(300,300), 0.5, 1); B deinition, this is just noise, so there are obviousl no monocular depth cues here. Jules Random-Dot Eperiment Clip out a square region and shit it to the let Fill in the hole let behind with more random dots. 5

6 Jules Random-Dot Eperiment Original dot image Dot image with shited square Now view as a stereo pair. Jules used a special viewer, but we will displa as an anaglph (get our glasses!) Make our Own %make an image with random dots im = roicolor(rand(300,300),.5,1); %second image starts as a cop o that im2 = im; %shit a square o piels to the right im2(100:200,110:210) = im(100:200,100:200); %ill in the "hole" with more random dots im2(100:200,100:110) = roicolor(rand(101,11),.5,1); %encode image2 in red channel o a color image ana = 255*im2; %encode image1 in blue and green channels ana(:,:,2) = 255*im; ana(:,:,3) = 255*im; %take a look (remember to wear our red/can glasses!) image(uint8(ana)) Stereograms Another method o encoding paralla in a single image. Subtle shits o repeated teture encode disparit o depths in a scene (a technique made amous under the Magic Ee brand name). Unlike anaglphs, ou don t need special glasses to see these, just some practice ocusing our ees behind the page. Tr this: what happens when ou shit the square to the let instead o to the right? Stereograms Give our ees a break beore we move on

7 A Simple Stereo Sstem A Simple Stereo Sstem Top Down View ( plane) let (0,0,0) P=(,,) T right (T,0,0) Let? l Right r Right is simpl shited b T units along the ais. Otherwise, the s are identical (same orientation / ocal lengths) T Translated b a distance T along ais (T is also called the stereo baseline ) Camps, PSU A Simple Stereo Sstem T right (T,0,0) Image coords o point (,,) in Let Camera: -T let (0,0,0) (,,) T What are image coords o that same point in the Right Camera? right (T,0,0) Insight: translating to the right b T is equivalent to leaving the stationar and translating the world to the let b T. Camps, PSU (-T,, ) (,,) let (0,0,0) A Simple Stereo Sstem Camps, PSU A Simple Stereo Sstem (-T,, ) Let -T let (0,0,0) (,,) T Stereo Disparit Right right (T,0,0) Stereo Disparit depth baseline disparit Important equation! Camps, PSU 7

8 Stereo Disparit Let Stereo Disparit / Paralla Tie in with Intro: or our purposes Disparit = Paralla Right Disparit/Paralla inversel proportional to depth Note: Depth and stereo disparit are inversel proportional this is wh near objects appear to move more than ar awa ones when the translates sidewas depth disparit Important equation! 8

Robert Collins CSE486, Penn State Lecture 08: Introduction to Stereo

Robert Collins CSE486, Penn State Lecture 08: Introduction to Stereo Lecture 08: Introduction to Stereo Reading: T&V Section 7.1 Stereo Vision Inferring depth from images taken at the same time by two or more cameras. Basic Perspective Projection Scene Point Perspective

More information

Projections. Brian Curless CSE 457 Spring Reading. Shrinking the pinhole. The pinhole camera. Required:

Projections. Brian Curless CSE 457 Spring Reading. Shrinking the pinhole. The pinhole camera. Required: Reading Required: Projections Brian Curless CSE 457 Spring 2013 Angel, 5.1-5.6 Further reading: Fole, et al, Chapter 5.6 and Chapter 6 David F. Rogers and J. Alan Adams, Mathematical Elements for Computer

More information

Visual motion. Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys

Visual motion. Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys Visual motion Man slides adapted from S. Seitz, R. Szeliski, M. Pollefes Motion and perceptual organization Sometimes, motion is the onl cue Motion and perceptual organization Sometimes, motion is the

More information

<www.excelunusual.com>

<www.excelunusual.com> Excel anaglph stereoscop #3 3D-D perspective conversion formulas b George Lungu - While the previous section introduced the reader to the general principles of anaglph stereoscop, this section explains

More information

CS 2770: Intro to Computer Vision. Multiple Views. Prof. Adriana Kovashka University of Pittsburgh March 14, 2017

CS 2770: Intro to Computer Vision. Multiple Views. Prof. Adriana Kovashka University of Pittsburgh March 14, 2017 CS 277: Intro to Computer Vision Multiple Views Prof. Adriana Kovashka Universit of Pittsburgh March 4, 27 Plan for toda Affine and projective image transformations Homographies and image mosaics Stereo

More information

Computer Vision Lecture 20

Computer Vision Lecture 20 Computer Vision Lecture 2 Motion and Optical Flow Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de 28.1.216 Man slides adapted from K. Grauman, S. Seitz, R. Szeliski,

More information

Perception, Part 2 Gleitman et al. (2011), Chapter 5

Perception, Part 2 Gleitman et al. (2011), Chapter 5 Perception, Part 2 Gleitman et al. (2011), Chapter 5 Mike D Zmura Department of Cognitive Sciences, UCI Psych 9A / Psy Beh 11A February 27, 2014 T. M. D'Zmura 1 Visual Reconstruction of a Three-Dimensional

More information

Epipolar Constraint. Epipolar Lines. Epipolar Geometry. Another look (with math).

Epipolar Constraint. Epipolar Lines. Epipolar Geometry. Another look (with math). Epipolar Constraint Epipolar Lines Potential 3d points Red point - fied => Blue point lies on a line There are 3 degrees of freedom in the position of a point in space; there are four DOF for image points

More information

Basic distinctions. Definitions. Epstein (1965) familiar size experiment. Distance, depth, and 3D shape cues. Distance, depth, and 3D shape cues

Basic distinctions. Definitions. Epstein (1965) familiar size experiment. Distance, depth, and 3D shape cues. Distance, depth, and 3D shape cues Distance, depth, and 3D shape cues Pictorial depth cues: familiar size, relative size, brightness, occlusion, shading and shadows, aerial/ atmospheric perspective, linear perspective, height within image,

More information

Important concepts in binocular depth vision: Corresponding and non-corresponding points. Depth Perception 1. Depth Perception Part II

Important concepts in binocular depth vision: Corresponding and non-corresponding points. Depth Perception 1. Depth Perception Part II Depth Perception Part II Depth Perception 1 Binocular Cues to Depth Depth Information Oculomotor Visual Accomodation Convergence Binocular Monocular Static Cues Motion Parallax Perspective Size Interposition

More information

Mahdi Amiri. May Sharif University of Technology

Mahdi Amiri. May Sharif University of Technology Course Presentation Multimedia Systems 3D Technologies Mahdi Amiri May 2014 Sharif University of Technology Binocular Vision (Two Eyes) Advantages A spare eye in case one is damaged. A wider field of view

More information

lecture 10 - depth from blur, binocular stereo

lecture 10 - depth from blur, binocular stereo This lecture carries forward some of the topics from early in the course, namely defocus blur and binocular disparity. The main emphasis here will be on the information these cues carry about depth, rather

More information

MAPI Computer Vision. Multiple View Geometry

MAPI Computer Vision. Multiple View Geometry MAPI Computer Vision Multiple View Geometry Geometry o Multiple Views 2- and 3- view geometry p p Kpˆ [ K R t]p Geometry o Multiple Views 2- and 3- view geometry Epipolar Geometry The epipolar geometry

More information

MAN-522: COMPUTER VISION SET-2 Projections and Camera Calibration

MAN-522: COMPUTER VISION SET-2 Projections and Camera Calibration MAN-522: COMPUTER VISION SET-2 Projections and Camera Calibration Image formation How are objects in the world captured in an image? Phsical parameters of image formation Geometric Tpe of projection Camera

More information

Think-Pair-Share. What visual or physiological cues help us to perceive 3D shape and depth?

Think-Pair-Share. What visual or physiological cues help us to perceive 3D shape and depth? Think-Pair-Share What visual or physiological cues help us to perceive 3D shape and depth? [Figure from Prados & Faugeras 2006] Shading Focus/defocus Images from same point of view, different camera parameters

More information

Three-Dimensional Coordinates

Three-Dimensional Coordinates CHAPTER Three-Dimensional Coordinates Three-dimensional movies superimpose two slightl different images, letting viewers with polaried eeglasses perceive depth (the third dimension) on a two-dimensional

More information

Transformations of Functions. Shifting Graphs. Similarly, you can obtain the graph of. g x x 2 2 f x 2. Vertical and Horizontal Shifts

Transformations of Functions. Shifting Graphs. Similarly, you can obtain the graph of. g x x 2 2 f x 2. Vertical and Horizontal Shifts 0_007.qd /7/05 : AM Page 7 7 Chapter Functions and Their Graphs.7 Transormations o Functions What ou should learn Use vertical and horizontal shits to sketch graphs o unctions. Use relections to sketch

More information

Depth. Common Classification Tasks. Example: AlexNet. Another Example: Inception. Another Example: Inception. Depth

Depth. Common Classification Tasks. Example: AlexNet. Another Example: Inception. Another Example: Inception. Depth Common Classification Tasks Recognition of individual objects/faces Analyze object-specific features (e.g., key points) Train with images from different viewing angles Recognition of object classes Analyze

More information

EE 264: Image Processing and Reconstruction. Image Motion Estimation II. EE 264: Image Processing and Reconstruction. Outline

EE 264: Image Processing and Reconstruction. Image Motion Estimation II. EE 264: Image Processing and Reconstruction. Outline Peman Milanar Image Motion Estimation II Peman Milanar Outline. Introduction to Motion. Wh Estimate Motion? 3. Global s. Local Motion 4. Block Motion Estimation 5. Optical Flow Estimation Basics 6. Optical

More information

Binocular cues to depth PSY 310 Greg Francis. Lecture 21. Depth perception

Binocular cues to depth PSY 310 Greg Francis. Lecture 21. Depth perception Binocular cues to depth PSY 310 Greg Francis Lecture 21 How to find the hidden word. Depth perception You can see depth in static images with just one eye (monocular) Pictorial cues However, motion and

More information

Miniature faking. In close-up photo, the depth of field is limited.

Miniature faking. In close-up photo, the depth of field is limited. Miniature faking In close-up photo, the depth of field is limited. http://en.wikipedia.org/wiki/file:jodhpur_tilt_shift.jpg Miniature faking Miniature faking http://en.wikipedia.org/wiki/file:oregon_state_beavers_tilt-shift_miniature_greg_keene.jpg

More information

There are many cues in monocular vision which suggests that vision in stereo starts very early from two similar 2D images. Lets see a few...

There are many cues in monocular vision which suggests that vision in stereo starts very early from two similar 2D images. Lets see a few... STEREO VISION The slides are from several sources through James Hays (Brown); Srinivasa Narasimhan (CMU); Silvio Savarese (U. of Michigan); Bill Freeman and Antonio Torralba (MIT), including their own

More information

Project 4 Results. Representation. Data. Learning. Zachary, Hung-I, Paul, Emanuel. SIFT and HoG are popular and successful.

Project 4 Results. Representation. Data. Learning. Zachary, Hung-I, Paul, Emanuel. SIFT and HoG are popular and successful. Project 4 Results Representation SIFT and HoG are popular and successful. Data Hugely varying results from hard mining. Learning Non-linear classifier usually better. Zachary, Hung-I, Paul, Emanuel Project

More information

Announcements. Tutorial this week Life of the polygon A1 theory questions

Announcements. Tutorial this week Life of the polygon A1 theory questions Announcements Assignment programming (due Frida) submission directories are ied use (submit -N Ab cscd88 a_solution.tgz) theor will be returned (Wednesda) Midterm Will cover all o the materials so ar including

More information

Image Formation. 2. Camera Geometry. Focal Length, Field Of View. Pinhole Camera Model. Computer Vision. Zoltan Kato

Image Formation. 2. Camera Geometry. Focal Length, Field Of View. Pinhole Camera Model. Computer Vision. Zoltan Kato Image Formation 2. amera Geometr omuter Vision oltan Kato htt://www.in.u-seged.hu/~kato seged.hu/~kato/ 3D Scene Surace Light (Energ) Source inhole Lens Imaging lane World Otics Sensor Signal amera: Sec

More information

Omni-directional Stereoscopic Fisheye Images for Immersive Hemispherical Dome Environments

Omni-directional Stereoscopic Fisheye Images for Immersive Hemispherical Dome Environments Omni-directional Stereoscopic Fishee Images for Immersive Hemispherical Dome Environments Paul Bourke WASP, Universit of Western Australia ABSTACT In the following I discuss and derive the optical requirements

More information

Multi-View Geometry (Ch7 New book. Ch 10/11 old book)

Multi-View Geometry (Ch7 New book. Ch 10/11 old book) Multi-View Geometry (Ch7 New book. Ch 10/11 old book) Guido Gerig CS-GY 6643, Spring 2016 gerig@nyu.edu Credits: M. Shah, UCF CAP5415, lecture 23 http://www.cs.ucf.edu/courses/cap6411/cap5415/, Trevor

More information

Realtime 3D Computer Graphics Virtual Reality

Realtime 3D Computer Graphics Virtual Reality Realtime 3D Computer Graphics Virtual Reality Human Visual Perception The human visual system 2 eyes Optic nerve: 1.5 million fibers per eye (each fiber is the axon from a neuron) 125 million rods (achromatic

More information

Viewing/Projections III. Week 4, Wed Jan 31

Viewing/Projections III. Week 4, Wed Jan 31 Universit of British Columbia CPSC 34 Computer Graphics Jan-Apr 27 Tamara Munner Viewing/Projections III Week 4, Wed Jan 3 http://www.ugrad.cs.ubc.ca/~cs34/vjan27 News etra TA coverage in lab to answer

More information

Determining Three-Dimensional Shape from. by biological and machine vision systems. Indeed, human stereopsis

Determining Three-Dimensional Shape from. by biological and machine vision systems. Indeed, human stereopsis Determining Three-Dimensional Shape from Orientation and Spatial Frequenc Disparities? David G. Jones 1 and Jitendra Malik 2 1 McGill Universit, Dept. of Electrical Engineering, Montreal, PQ, Canada H3A

More information

Image Metamorphosis By Affine Transformations

Image Metamorphosis By Affine Transformations Image Metamorphosis B Affine Transformations Tim Mers and Peter Spiegel December 16, 2005 Abstract Among the man was to manipulate an image is a technique known as morphing. Image morphing is a special

More information

Fractals and the Collage Theorem

Fractals and the Collage Theorem Universit o Nebraska - Lincoln DigitalCommons@Universit o Nebraska - Lincoln MAT Eam Epositor Papers Math in the Middle Institute Partnership 7-2006 Fractals and the Collage Theorem Sandra S. Snder Universit

More information

Stereo: Disparity and Matching

Stereo: Disparity and Matching CS 4495 Computer Vision Aaron Bobick School of Interactive Computing Administrivia PS2 is out. But I was late. So we pushed the due date to Wed Sept 24 th, 11:55pm. There is still *no* grace period. To

More information

DEPTH PERCEPTION. Learning Objectives: 7/31/2018. Intro & Overview of DEPTH PERCEPTION** Speaker: Michael Patrick Coleman, COT, ABOC, & former CPOT

DEPTH PERCEPTION. Learning Objectives: 7/31/2018. Intro & Overview of DEPTH PERCEPTION** Speaker: Michael Patrick Coleman, COT, ABOC, & former CPOT DEPTH PERCEPTION Speaker: Michael Patrick Coleman, COT, ABOC, & former CPOT Learning Objectives: Attendees will be able to 1. Explain what the primary cue to depth perception is (vs. monocular cues) 2.

More information

3D Viewing and Projec5on. Taking Pictures with a Real Camera. Steps: Graphics does the same thing for rendering an image for 3D geometric objects

3D Viewing and Projec5on. Taking Pictures with a Real Camera. Steps: Graphics does the same thing for rendering an image for 3D geometric objects 3D Vieing and Projec5on Taking Pictures ith a Real Camera Steps: Iden5 interes5ng objects Rotate and translate the camera to desired viepoint Adjust camera seings such as ocal length Choose desired resolu5on

More information

Stereo CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz

Stereo CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz Stereo CSE 576 Ali Farhadi Several slides from Larry Zitnick and Steve Seitz Why do we perceive depth? What do humans use as depth cues? Motion Convergence When watching an object close to us, our eyes

More information

Announcements. Stereo

Announcements. Stereo Announcements Stereo Homework 2 is due today, 11:59 PM Homework 3 will be assigned today Reading: Chapter 7: Stereopsis CSE 152 Lecture 8 Binocular Stereopsis: Mars Given two images of a scene where relative

More information

OBSTACLE LOCALIZATION IN 3D SCENES FROM STEREOSCOPIC SEQUENCES

OBSTACLE LOCALIZATION IN 3D SCENES FROM STEREOSCOPIC SEQUENCES OBSTACLE LOCALIZATION IN 3D SCENES FROM STEREOSCOPIC SEQUENCES Piotr Skulimowski and Paweł Strumiłło Institute of Electronics, Technical Universit of Łódź 211/215 Wólcańska, 90-924, Łódź, Poland phone:

More information

Proposal of a Touch Panel Like Operation Method For Presentation with a Projector Using Laser Pointer

Proposal of a Touch Panel Like Operation Method For Presentation with a Projector Using Laser Pointer Proposal of a Touch Panel Like Operation Method For Presentation with a Projector Using Laser Pointer Yua Kawahara a,* and Lifeng Zhang a a Kushu Institute of Technolog, 1-1 Sensui-cho Tobata-ku, Kitakushu

More information

Geometric Model of Camera

Geometric Model of Camera Geometric Model of Camera Dr. Gerhard Roth COMP 42A Winter 25 Version 2 Similar Triangles 2 Geometric Model of Camera Perspective projection P(X,Y,Z) p(,) f X Z f Y Z 3 Parallel lines aren t 4 Figure b

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision CS 1674: Intro to Computer Vision Epipolar Geometry and Stereo Vision Prof. Adriana Kovashka University of Pittsburgh October 5, 2016 Announcement Please send me three topics you want me to review next

More information

Viewing/Projection IV. Week 4, Fri Jan 29

Viewing/Projection IV. Week 4, Fri Jan 29 Universit of British Columbia CPSC 314 Computer Graphics Jan-Apr 2010 Tamara Munner Viewing/Projection IV Week 4, Fri Jan 29 http://www.ugrad.cs.ubc.ca/~cs314/vjan2010 News etra TA office hours in lab

More information

Chap 7, 2009 Spring Yeong Gil Shin

Chap 7, 2009 Spring Yeong Gil Shin Three-Dimensional i Viewingi Chap 7, 29 Spring Yeong Gil Shin Viewing i Pipeline H d fi i d? How to define a window? How to project onto the window? Rendering "Create a picture (in a snthetic camera) Specification

More information

3D Photography: Epipolar geometry

3D Photography: Epipolar geometry 3D Photograph: Epipolar geometr Kalin Kolev, Marc Pollefes Spring 203 http://cvg.ethz.ch/teaching/203spring/3dphoto/ Schedule (tentative) Feb 8 Feb 25 Mar 4 Mar Mar 8 Mar 25 Apr Apr 8 Apr 5 Apr 22 Apr

More information

Computer Graphics. Geometric Transformations

Computer Graphics. Geometric Transformations Contents coordinate sstems scalar values, points, vectors, matrices right-handed and left-handed coordinate sstems mathematical foundations transformations mathematical descriptions of geometric changes,

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometr and Camera Calibration 3D Coordinate Sstems Right-handed vs. left-handed 2D Coordinate Sstems ais up vs. ais down Origin at center vs. corner Will often write (u, v) for image coordinates v

More information

Computer Graphics. Geometric Transformations

Computer Graphics. Geometric Transformations Computer Graphics Geometric Transformations Contents coordinate sstems scalar values, points, vectors, matrices right-handed and left-handed coordinate sstems mathematical foundations transformations mathematical

More information

Computer Vision Lecture 18

Computer Vision Lecture 18 Course Outline Computer Vision Lecture 8 Motion and Optical Flow.0.009 Bastian Leibe RWTH Aachen http://www.umic.rwth-aachen.de/multimedia leibe@umic.rwth-aachen.de Man slides adapted from K. Grauman,

More information

Computer Graphics. Jeng-Sheng Yeh 葉正聖 Ming Chuan University (modified from Bing-Yu Chen s slides)

Computer Graphics. Jeng-Sheng Yeh 葉正聖 Ming Chuan University (modified from Bing-Yu Chen s slides) Computer Graphics Jeng-Sheng Yeh 葉正聖 Ming Chuan Universit (modified from Bing-Yu Chen s slides) Viewing in 3D 3D Viewing Process Specification of an Arbitrar 3D View Orthographic Parallel Projection Perspective

More information

Last Time. Correct Transparent Shadow. Does Ray Tracing Simulate Physics? Does Ray Tracing Simulate Physics? Refraction and the Lifeguard Problem

Last Time. Correct Transparent Shadow. Does Ray Tracing Simulate Physics? Does Ray Tracing Simulate Physics? Refraction and the Lifeguard Problem Graphics Pipeline: Projective Last Time Shadows cast ra to light stop after first intersection Reflection & Refraction compute direction of recursive ra Recursive Ra Tracing maimum number of bounces OR

More information

Processing Framework Proposed by Marr. Image

Processing Framework Proposed by Marr. Image Processing Framework Proposed by Marr Recognition 3D structure; motion characteristics; surface properties Shape From stereo Motion flow Shape From motion Color estimation Shape From contour Shape From

More information

Announcements. Stereo

Announcements. Stereo Announcements Stereo Homework 1 is due today, 11:59 PM Homework 2 will be assigned on Thursday Reading: Chapter 7: Stereopsis CSE 252A Lecture 8 Binocular Stereopsis: Mars Given two images of a scene where

More information

Motivation. What we ve seen so far. Demo (Projection Tutorial) Outline. Projections. Foundations of Computer Graphics

Motivation. What we ve seen so far. Demo (Projection Tutorial) Outline. Projections. Foundations of Computer Graphics Foundations of Computer Graphics Online Lecture 5: Viewing Orthographic Projection Ravi Ramamoorthi Motivation We have seen transforms (between coord sstems) But all that is in 3D We still need to make

More information

Stereo: the graph cut method

Stereo: the graph cut method Stereo: the graph cut method Last lecture we looked at a simple version of the Marr-Poggio algorithm for solving the binocular correspondence problem along epipolar lines in rectified images. The main

More information

Determining the 2d transformation that brings one image into alignment (registers it) with another. And

Determining the 2d transformation that brings one image into alignment (registers it) with another. And Last two lectures: Representing an image as a weighted combination of other images. Toda: A different kind of coordinate sstem change. Solving the biggest problem in using eigenfaces? Toda Recognition

More information

Disparity Fusion Using Depth and Stereo Cameras for Accurate Stereo Correspondence

Disparity Fusion Using Depth and Stereo Cameras for Accurate Stereo Correspondence Disparit Fusion Using Depth and Stereo Cameras for Accurate Stereo Correspondence Woo-Seok Jang and Yo-Sung Ho Gwangju Institute of Science and Technolog GIST 123 Cheomdan-gwagiro Buk-gu Gwangju 500-712

More information

Perspective Projection Transformation

Perspective Projection Transformation Perspective Projection Transformation Where does a point of a scene appear in an image?? p p Transformation in 3 steps:. scene coordinates => camera coordinates. projection of camera coordinates into image

More information

Introduction to Homogeneous Transformations & Robot Kinematics

Introduction to Homogeneous Transformations & Robot Kinematics Introduction to Homogeneous Transformations & Robot Kinematics Jennifer Ka Rowan Universit Computer Science Department. Drawing Dimensional Frames in 2 Dimensions We will be working in -D coordinates,

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Stereo Vision 2 Inferring 3D from 2D Model based pose estimation single (calibrated) camera > Can

More information

Parallelization. Memory coherency helps when distributing rays to various threads/processors

Parallelization. Memory coherency helps when distributing rays to various threads/processors / Ra Tracing OpenGL projects triangles onto the image plane and rasteries them to determine which piels the cover Scanline rendering is a per triangle operation Ra Tracing instead works as a per piel operation

More information

Stereovision. Binocular disparity

Stereovision. Binocular disparity Stereovision Binocular disparity Retinal correspondence Uncrossed disparity Horoptor Crossed disparity Horoptor, crossed and uncrossed disparity Wheatsteone stereoscope (c. 1838) Red-green anaglyph How

More information

COMP 558 lecture 22 Dec. 1, 2010

COMP 558 lecture 22 Dec. 1, 2010 Binocular correspondence problem Last class we discussed how to remap the pixels of two images so that corresponding points are in the same row. This is done by computing the fundamental matrix, defining

More information

Depth from two cameras: stereopsis

Depth from two cameras: stereopsis Depth from two cameras: stereopsis Epipolar Geometry Canonical Configuration Correspondence Matching School of Computer Science & Statistics Trinity College Dublin Dublin 2 Ireland www.scss.tcd.ie Lecture

More information

COMP Computer Graphics and Image Processing. a6: Projections. In part 2 of our study of Viewing, we ll look at. COMP27112 Toby Howard

COMP Computer Graphics and Image Processing. a6: Projections. In part 2 of our study of Viewing, we ll look at. COMP27112 Toby Howard Computer Graphics and Image Processing a6: Projections Tob.Howard@manchester.ac.uk Introduction In part 2 of our stud of Viewing, we ll look at The theor of geometrical planar projections Classes of projections

More information

The 3-D Graphics Rendering Pipeline

The 3-D Graphics Rendering Pipeline The 3-D Graphics Rendering Pipeline Modeling Trival Rejection Illumination Viewing Clipping Projection Almost ever discussion of 3-D graphics begins here Seldom are an two versions drawn the same wa Seldom

More information

Pixels, Numbers, and Programs

Pixels, Numbers, and Programs Pixels, Numbers, and Programs Stereograms Steven L. Tanimoto Pixels, Numbers, and Programs; S. Tanimoto Stereograms 1 Outline Motivation Types of stereograms Autostereogram construction Pixels, Numbers,

More information

3D Reconstruction of a Human Face with Monocular Camera Based on Head Movement

3D Reconstruction of a Human Face with Monocular Camera Based on Head Movement 3D Reconstruction of a Human Face with Monocular Camera Based on Head Movement Ben Yip and Jesse S. Jin School of Information Technologies The Universit of Sdne Sdne, NSW 26, Australia {benip; jesse}@it.usd.edu.au

More information

Three-Dimensional Image Security System Combines the Use of Smart Mapping Algorithm and Fibonacci Transformation Technique

Three-Dimensional Image Security System Combines the Use of Smart Mapping Algorithm and Fibonacci Transformation Technique Three-Dimensional Image Securit Sstem Combines the Use of Smart Mapping Algorithm and Fibonacci Transformation Technique Xiao-Wei Li 1, Sung-Jin Cho 2, In-Kwon Lee 3 and Seok-Tae Kim * 4 1,4 Department

More information

Unit 5 Lesson 2 Investigation 1

Unit 5 Lesson 2 Investigation 1 Name: Investigation 1 Modeling Rigid Transformations CPMP-Tools Computer graphics enable designers to model two- and three-dimensional figures and to also easil manipulate those figures. For eample, interior

More information

Monocular Visual Odometry

Monocular Visual Odometry Elective in Robotics coordinator: Prof. Giuseppe Oriolo Monocular Visual Odometry (slides prepared by Luca Ricci) Monocular vs. Stereo: eamples from Nature Predator Predators eyes face forward. The field

More information

CS 351: Perspective Viewing

CS 351: Perspective Viewing CS 351: Perspective Viewing Instructor: Joel Castellanos e-mail: joel@unm.edu Web: http://cs.unm.edu/~joel/ 2/16/2017 Perspective Projection 2 1 Frustum In computer graphics, the viewing frustum is the

More information

CS 563 Advanced Topics in Computer Graphics Stereoscopy. by Sam Song

CS 563 Advanced Topics in Computer Graphics Stereoscopy. by Sam Song CS 563 Advanced Topics in Computer Graphics Stereoscopy by Sam Song Stereoscopy Introduction Parallax Camera Displaying and Viewing Results Stereoscopy What is it? seeing in three dimensions creates the

More information

To Do. Demo (Projection Tutorial) Motivation. What we ve seen so far. Outline. Foundations of Computer Graphics (Fall 2012) CS 184, Lecture 5: Viewing

To Do. Demo (Projection Tutorial) Motivation. What we ve seen so far. Outline. Foundations of Computer Graphics (Fall 2012) CS 184, Lecture 5: Viewing Foundations of Computer Graphics (Fall 0) CS 84, Lecture 5: Viewing http://inst.eecs.berkele.edu/~cs84 To Do Questions/concerns about assignment? Remember it is due Sep. Ask me or TAs re problems Motivation

More information

Depth from two cameras: stereopsis

Depth from two cameras: stereopsis Depth from two cameras: stereopsis Epipolar Geometry Canonical Configuration Correspondence Matching School of Computer Science & Statistics Trinity College Dublin Dublin 2 Ireland www.scss.tcd.ie Lecture

More information

Announcements. Motion. Motion. Continuous Motion. Background Subtraction

Announcements. Motion. Motion. Continuous Motion. Background Subtraction Annoncements Motion CSE 5A Lectre 13 Homework is de toda, 11:59 PM Reading: Section 10.6.1: Optical Flow and Motion Section 10.6.: Flow Models Introdctor echniqes or 3-D Compter Vision, rcco and Verri

More information

Stereo. Shadows: Occlusions: 3D (Depth) from 2D. Depth Cues. Viewing Stereo Stereograms Autostereograms Depth from Stereo

Stereo. Shadows: Occlusions: 3D (Depth) from 2D. Depth Cues. Viewing Stereo Stereograms Autostereograms Depth from Stereo Stereo Viewing Stereo Stereograms Autostereograms Depth from Stereo 3D (Depth) from 2D 3D information is lost by projection. How do we recover 3D information? Image 3D Model Depth Cues Shadows: Occlusions:

More information

p =(x,y,d) y (0,0) d z Projection plane, z=d

p =(x,y,d) y (0,0) d z Projection plane, z=d Projections ffl Mapping from d dimensional space to d 1 dimensional subspace ffl Range of an projection P : R! R called a projection plane ffl P maps lines to points ffl The image of an point p under P

More information

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo Computer Graphics Bing-Yu Chen National Taiwan Universit The Universit of Toko Viewing in 3D 3D Viewing Process Classical Viewing and Projections 3D Snthetic Camera Model Parallel Projection Perspective

More information

7. f(x) = 1 2 x f(x) = x f(x) = 4 x at x = 10, 8, 6, 4, 2, 0, 2, and 4.

7. f(x) = 1 2 x f(x) = x f(x) = 4 x at x = 10, 8, 6, 4, 2, 0, 2, and 4. Section 2.2 The Graph of a Function 109 2.2 Eercises Perform each of the following tasks for the functions defined b the equations in Eercises 1-8. i. Set up a table of points that satisf the given equation.

More information

Automatic 2D-to-3D Video Conversion Techniques for 3DTV

Automatic 2D-to-3D Video Conversion Techniques for 3DTV Automatic 2D-to-3D Video Conversion Techniques for 3DTV Dr. Lai-Man Po Email: eelmpo@cityu.edu.hk Department of Electronic Engineering City University of Hong Kong Date: 13 April 2010 Content Why 2D-to-3D

More information

12.4 The Ellipse. Standard Form of an Ellipse Centered at (0, 0) (0, b) (0, -b) center

12.4 The Ellipse. Standard Form of an Ellipse Centered at (0, 0) (0, b) (0, -b) center . The Ellipse The net one of our conic sections we would like to discuss is the ellipse. We will start b looking at the ellipse centered at the origin and then move it awa from the origin. Standard Form

More information

Introduction to Homogeneous Transformations & Robot Kinematics

Introduction to Homogeneous Transformations & Robot Kinematics Introduction to Homogeneous Transformations & Robot Kinematics Jennifer Ka, Rowan Universit Computer Science Department Januar 25. Drawing Dimensional Frames in 2 Dimensions We will be working in -D coordinates,

More information

Grid and Mesh Generation. Introduction to its Concepts and Methods

Grid and Mesh Generation. Introduction to its Concepts and Methods Grid and Mesh Generation Introduction to its Concepts and Methods Elements in a CFD software sstem Introduction What is a grid? The arrangement of the discrete points throughout the flow field is simpl

More information

EECS 556 Image Processing W 09

EECS 556 Image Processing W 09 EECS 556 Image Processing W 09 Motion estimation Global vs. Local Motion Block Motion Estimation Optical Flow Estimation (normal equation) Man slides of this lecture are courtes of prof Milanfar (UCSC)

More information

To Do. Motivation. Demo (Projection Tutorial) What we ve seen so far. Computer Graphics. Summary: The Whole Viewing Pipeline

To Do. Motivation. Demo (Projection Tutorial) What we ve seen so far. Computer Graphics. Summary: The Whole Viewing Pipeline Computer Graphics CSE 67 [Win 9], Lecture 5: Viewing Ravi Ramamoorthi http://viscomp.ucsd.edu/classes/cse67/wi9 To Do Questions/concerns about assignment? Remember it is due tomorrow! (Jan 6). Ask me or

More information

science. In this course we investigate problems both algebraically and graphically.

science. In this course we investigate problems both algebraically and graphically. Section. Graphs. Graphs Much of algebra is concerned with solving equations. Man algebraic techniques have been developed to provide insights into various sorts of equations and those techniques are essential

More information

Graphs and Functions

Graphs and Functions CHAPTER Graphs and Functions. Graphing Equations. Introduction to Functions. Graphing Linear Functions. The Slope of a Line. Equations of Lines Integrated Review Linear Equations in Two Variables.6 Graphing

More information

Viewing and Projection

Viewing and Projection Viewing and Projection Sheelagh Carpendale Camera metaphor. choose camera position 2. set up and organie objects 3. choose a lens 4. take the picture View Volumes what gets into the scene perspective view

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics 13.01.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar in the summer semester

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Announcements Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics Seminar in the summer semester Current Topics in Computer Vision and Machine Learning Block seminar, presentations in 1 st week

More information

Find the Relationship: An Exercise in Graphical Analysis

Find the Relationship: An Exercise in Graphical Analysis Find the Relationship: An Eercise in Graphical Analsis In several laborator investigations ou do this ear, a primar purpose will be to find the mathematical relationship between two variables. For eample,

More information

Neighbourhood Operations

Neighbourhood Operations Neighbourhood Operations Neighbourhood operations simply operate on a larger neighbourhood o piels than point operations Origin Neighbourhoods are mostly a rectangle around a central piel Any size rectangle

More information

Announcements. Equation of Perspective Projection. Image Formation and Cameras

Announcements. Equation of Perspective Projection. Image Formation and Cameras Announcements Image ormation and Cameras Introduction to Computer Vision CSE 52 Lecture 4 Read Trucco & Verri: pp. 22-4 Irfanview: http://www.irfanview.com/ is a good Windows utilit for manipulating images.

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Stereo Vision 2 Inferring 3D from 2D Model based pose estimation single (calibrated) camera Stereo

More information

Stereo Matching! Christian Unger 1,2, Nassir Navab 1!! Computer Aided Medical Procedures (CAMP), Technische Universität München, Germany!!

Stereo Matching! Christian Unger 1,2, Nassir Navab 1!! Computer Aided Medical Procedures (CAMP), Technische Universität München, Germany!! Stereo Matching Christian Unger 12 Nassir Navab 1 1 Computer Aided Medical Procedures CAMP) Technische Universität München German 2 BMW Group München German Hardware Architectures. Microprocessors Pros:

More information

3D Video services. Marco Cagnazzo

3D Video services. Marco Cagnazzo 3D Video services Marco Cagnazzo Part III: Advanced services Overview 3D Video systems History Acquisition Transmission (coding) Rendering Future services Super Hi Vision systems High speed cameras High

More information

EELE 482 Lab #3. Lab #3. Diffraction. 1. Pre-Lab Activity Introduction Diffraction Grating Measure the Width of Your Hair 5

EELE 482 Lab #3. Lab #3. Diffraction. 1. Pre-Lab Activity Introduction Diffraction Grating Measure the Width of Your Hair 5 Lab #3 Diffraction Contents: 1. Pre-Lab Activit 2 2. Introduction 2 3. Diffraction Grating 4 4. Measure the Width of Your Hair 5 5. Focusing with a lens 6 6. Fresnel Lens 7 Diffraction Page 1 (last changed

More information

Linear Algebra and Image Processing: Additional Theory regarding Computer Graphics and Image Processing not covered by David C.

Linear Algebra and Image Processing: Additional Theory regarding Computer Graphics and Image Processing not covered by David C. Linear Algebra and Image Processing: Additional Theor regarding Computer Graphics and Image Processing not covered b David C. La Dr. D.P. Huijsmans LIACS, Leiden Universit Februar 202 Differences in conventions

More information

Lecture 4: Viewing. Topics:

Lecture 4: Viewing. Topics: Lecture 4: Viewing Topics: 1. Classical viewing 2. Positioning the camera 3. Perspective and orthogonal projections 4. Perspective and orthogonal projections in OpenGL 5. Perspective and orthogonal projection

More information

3x 4y 2. 3y 4. Math 65 Weekly Activity 1 (50 points) Name: Simplify the following expressions. Make sure to use the = symbol appropriately.

3x 4y 2. 3y 4. Math 65 Weekly Activity 1 (50 points) Name: Simplify the following expressions. Make sure to use the = symbol appropriately. Math 65 Weekl Activit 1 (50 points) Name: Simplif the following epressions. Make sure to use the = smbol appropriatel. Due (1) (a) - 4 (b) ( - ) 4 () 8 + 5 6 () 1 5 5 Evaluate the epressions when = - and

More information