MSC Software Aeroelastic Tools. Mike Coleman and Fausto Gill di Vincenzo

Size: px
Start display at page:

Download "MSC Software Aeroelastic Tools. Mike Coleman and Fausto Gill di Vincenzo"

Transcription

1 MSC Software Aeroelastic Tools Mike Coleman and Fausto Gill di Vincenzo

2 MSC Software Confidential 2

3 MSC Software Confidential 3

4 MSC Software Confidential 4

5 MSC Software Confidential 5

6 MSC Flightloads An open architecture environment for aeroelastic loads A venue for critical loads computation and management A GUI for MSC.Nastran aeroelasticity A convenience tool for model development and creation External Aero PATRAN MSC.NASTRAN sp_wing Markers CAD Access Structure Model Aero Model Results Visualization Structural Analysis Aeroelasticity Design Optimization MSC Software Confidential 6 6 MSC.FlightLoads &

7 6DOF Spline Technology Technology developed specifically for Structure to Structure (6 DOF) load mapping and for Aero to Structure coupling. Forces and Moments are CONSERVED using spline methodology Target FE structure can be any dimension (1D beam model, 2D shell model or 3D solid model) MSC Software Confidential 7

8 HSA Toolkit Overview Complete environment to integrate CFD data in Nastran (Static Aeroelasticity SOL144) and transfer load/displacements between dissimilar meshes Plug-in to Patran and Flight Loads MSC Software Confidential 8

9 Aeroelasticity Toolkit Import 3D aerodynamic mesh and CFD pressure load as: BDF Nastran file Tecplot file CSV file Transform CFD pressure automatically into aero forces Transfer aero forces to structure (Spline6/7) and solve the structure (SOL144) Get and export aerodynamic mesh deformation MSC Software Confidential 9

10 HSA Toolkit & 6DOF Spline MSC Software Confidential 10

11 MSC Software Confidential 11

12 MSC Software Confidential 12

13 MSC Nastran SOL400 Advanced nonlinear solution process Combines capabilities of multiple solution sequences and software components into a common solution Glue Contact 3D contact (Mechanical and Thermal) Advanced elements Advanced materials Large rotation RBEs Analysis Chaining Rotor Dynamics Boundary condition changes Nonlinear transient thermal load Temperature dependent composites Steady State Heat Transfer Transient Heat Transfer Structural-Thermal Coupling OpenFSI Nonlinear Response Optimization Etc. Topology Optimization with Contact Touching Contact Thermo-Structural Analysis with Thermo/Structural Contact Bodies MSC Software Confidential 13

14 MSC Software Confidential 14

15 MSC Software Confidential 15

16 Forces Displacement Velocity MSC Nastran OpenFSI Service OpenFSI SCA service provides a mechanism to exchange data between fluid and structure MSC Nastran Sol 400 undergoes the structural analysis taking for INPUT the forces and gives as OUTPUT the displacements/velocities Structure is coupled with the aerodynamics by the designation of a WETTED SURFACE Co-simulation with major commercial CFD or Inhouse codes by means of the OpenFSI service Acusolve.OpenFSI MpCCI.OpenFSI Fluent OpenFOAM Star-CCM++ StarCD Flowmaster FineHexa/Turbo ZONA UVLM.OpenFSI OpenFSI Structure MD Nastran Sol 400 Aerodynamics Unsteady Vortex Lattice Method CFDcode.OpenFSI Forces Displacements Velocity OpenFSI Forces Displacements Velocity MSC Software Confidential 16

17 Nonlinear Aeroelastic Analysis Wing Flutter (LCO) HA145E benchmark Time domain solution MSC Nastran Nonlinear transient OpenFSI CFD transient Test flutter at M=.45, f=120hz* *Ref: MSC Aeroelasticity Analysis User s Guide, Sec 8.6 MSC Software Confidential 17

18 Sol 400 OpenFSI - Application Nonlinear response of a supersonic wing Supersonic generic lifting surface (M>1.1) Non linear springs defined in terms of couple as a function of rotation (axis) Damping effect External dynamic excitations «turbulent boundary layer» Aerodynamic Forces exchange Displacement & Velocity exchange CFD FEM CFD FEM 3/15/2016 MSC Software Confidential 3/15/

19 Sol 400 OpenFSI - Application Flutter Instability at M = 2.0 Supersonic generic lifting surface (M = 2.0) Linear spring Damping effect No external dynamic excitations «turbulent boundary layer» 3/15/2016 MSC Software Confidential 3/15/

20 Sol 400 OpenFSI - Application Limit Cycle Oscillation Phenomena at M = 2.0 Supersonic generic lifting surface (M = 2.0) Non linear springs defined in terms of couple as a function of rotation (axis) Damping effect External dynamic excitations «turbulent boundary layer» Nastran CFD FEM Tip response 3/15/2016 MSC Software Confidential 3/15/

21 Thanks to Prof. Joseph MORLIER and Fazila MOHD ZAWAWI for allowing us to share the model! MSC Software Confidential 21

22 MSC Software Confidential 22

23 MSC Software Confidential 23

24 MSC Software Confidential 24

25 MSC Software Confidential 25

26 UVLM Capabilities Geometric nonlinearity at subsonic flows Time domain Aeroelastic simulation Free wake formation Lift due to vortex roll up at high angle of attack Aeroelastic response due to 1-D/2-D discrete gust and pilot input command Cp distribution from Tunnel test or CFD Stall modeling by strip method Airfoil definition NACA series or user defined Aerodynamic body modeling Aerodynamic blade component MSC Software Confidential 26

27 Transient Longitudinal Manoeuvre Analysis Aeroelastic response to a Pilot Input Command on the Elevator Pitch down and Pitch up maneuvers Flight reference condition M = 0.1 Sea Level Flight cruise velocity 25 m/s Longitudinal flight Nodes which lie on the XZ symmetry plane are constrained to move in that plane No balance along with X direction No TRIM algorithm available in UVLM Aerodynamic code Starting flight parameters for transient analysis Angle of attack and Elevator deflection evaluated by linear TRIM analysis Sol 144 α = 2.73 δ E = -2.5 MSC Software Confidential 27

28 Transient Longitudinal Manoeuvre Analysis UVLM Aerodynamic Model Lifting Surfaces Wings 10x20 boxes Stabilizer 5X10 boxes Elevator 5X10 boxes Airfoil Geometry NACA 2412 Static aerodynamic effects due to the CAMBER of the airfoil VORTICES shed into the wake from trailing edges of wings and elevator VORTICES shed into the wake from the wings, elevator and stabilizer tips It is possible to model the aerodynamic body as well - Not considered in this analysis MSC Software Confidential 28

29 Transient Longitudinal Manoeuvre Analysis Flight reference condition α = 2.73 δ E = -2.5 δ E V = 25m/s M = 0.1 Vertical displacement of the UAV center of mass Overall vertical aerodynamic load vs UAV weight Maneuver path - Front view Maneuver path - Side view Altitude lost about 1.34 m Structural and Aerodynamic solution stored RESTART Analysis MSC Software Confidential 29

30 Transient Longitudinal Manoeuvre Analysis Structural and Aerodynamic data recovered from the previous FSI simulation (δ E = -2.5 ) Aeroelastic Response to a Pilot Input Command on the Elevator Vertical displacement of the UAV center of mass Time history of the pilot input command - Elevator I II III I III II Maneuver path - Side view I t = 5:6 s δ E = 2.3 II t = 6:7 s δ E = -2.8 III t = 7:7.4 s δ E = 1.72 Maneuver path - Front view Pitch down Pitch up It is possible to evaluate the aeroelastic response delay to a control surface input TRIM algorithm with Control System Comparison with Hybrid Trim Analysis Sol144 MSC Software Confidential 30

31 Transient Longitudinal Trim Analysis Dynamic Longitudinal TRIM Analysis Flight reference condition M = 0.1 Sea Level Flight cruise velocity 25 m/s α TRIM δ E TRIM (Hybrid Trim with CFD) Longitudinal flight Nodes which lie on the XZ symmetry plane are constrained to move in that plane Nastran TRIM Algorithm developed in python Control System on the Elevator Translational Balance within X direction Translational Balance within Z direction Rotational Balance along Y axis Fz = 0 My = 0 Fx = 0 Dynamic of Flight equations to be satisfied MSC Software Confidential 31

32 Control System Algorithm α = α TRIM(Sol144) δ E = δ E TRIM(Sol144) δ E α = 4.29 deg δ E = -3.9 deg a x OpenFSI Sol400 UVLM.OpenFSI SOL 400 UVLM My, Fz, Fx = 0? No α TRIM(Sol400) δ E TRIM(Sol400) MSC Software Confidential 32

33 Aerodynamic Load [N] Aerodynamic Load [N] Transient Longitudinal Trim Analysis Aerodynamic load components - Reference coord system Load Balance z L FzWing Fx Fz a x Fz x α Wind FxWing W δ E Overall Aerodynamic Load - Fz Overall Aerodynamic Load - Fx Weight Fz Fx Time [s] Time [s] MSC Software Confidential 33

34 Displacement [m] Rotation [Degree] Transient Longitudinal Trim Analysis CG - Z displacement CG - Rotation along y Tz Ry Time [s] Time [s] Structural deformation at Trimmed condition AOA Elev Hybrid Trim AOA = 4.29 deg MSC Software Confidential 34

35 Transient Gust Response Analysis Dynamic Longitudinal Gust Response Flight reference condition M = 0.1 Sea Level Flight cruise velocity 25 m/s Dynamic Trimmed Condition Longitudinal flight Nodes which lie on the XZ symmetry plane are constrained to move in that plane Nastran TRIM Algorithm developed in python Control System on the Elevator Translational Balance within X direction Translational Balance within Z direction Rotational Balance along Y axis Fz = 0 My = 0 Fx = 0 Trim flight condition after Gust perturbation MSC Software Confidential 35

36 Transient Gust Response Analysis Results Overview Structure Aerodynamics MSC Software Confidential 36

37 Acceleration [g] Transient Gust Response Analysis Normal Load Factor Normal Load Factor Normal Load Factor Time [s] Ude = 7,62 m/s T GUST = s Structure considered to be linear Sol146 and Sol400 are in good accordance It could be possible to take into account for nonlinearities MSC Software Confidential 37

38 Displacement [m] Transient Gust Response Analysis After the Gust the Aircraft get again the Trimmed Flight condition thanks to the Control System Without Control With Control CG - Z Displacement Gust Excitation Trimmed Flight Trimmed Flight Time [s] It could be possible to act on Airelons to reduces load on Wings Gust Alleviation MSC Software Confidential 38

39 Nonlinear Aeroelastic Analysis MSC Nastran Structural Model UVLM Aerodynamic Model Geometry Span of m Constant chord of 2.44 m 10 degrees dihedral angle at ends Two pods at 2/3 of from the mid-span Kg Central pod weighs 254 Kg. Overall weight of about Kg FEM Shells for the wing Solid for pods Aerodynamic 12 panels chordwise 30 panels spanwise Vortices shed from trailing edge and wing tip All six DOFs of the mid-span central section constrained to be zero. Gravity is not considered MSC Software Confidential 39

40 Nonlinear Aeroelastic Analysis Flight condition Vertical displacement of Wing Tip M = 0.1 Sea Level Flight cruise velocity 12.5 m/s a = 16 Max vertical deflection of about 18 m No dynamic instability found Wake propagation - Ortho view Structural deformation - Front view MSC Software Confidential 40

41 Thank You and Any Questions?

Aeroelasticity in MSC.Nastran

Aeroelasticity in MSC.Nastran Aeroelasticity in MSC.Nastran Hybrid Static Aeroelasticity new capabilities - CFD data management Presented By: Fausto Gill Di Vincenzo 04-06-2012 Hybrid Static Aeroelastic Solution with CFD data MSC.Nastran

More information

THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS

THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS March 18-20, 2013 THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS Authors: M.R. Chiarelli, M. Ciabattari, M. Cagnoni, G. Lombardi Speaker:

More information

High-Lift Aerodynamics: STAR-CCM+ Applied to AIAA HiLiftWS1 D. Snyder

High-Lift Aerodynamics: STAR-CCM+ Applied to AIAA HiLiftWS1 D. Snyder High-Lift Aerodynamics: STAR-CCM+ Applied to AIAA HiLiftWS1 D. Snyder Aerospace Application Areas Aerodynamics Subsonic through Hypersonic Aeroacoustics Store release & weapons bay analysis High lift devices

More information

Your Home for Advanced Aerodynamic/ Aeroelastic/Aeroservoelastic/Computer Aided Engineering Software Products and Services

Your Home for Advanced Aerodynamic/ Aeroelastic/Aeroservoelastic/Computer Aided Engineering Software Products and Services Your Home for Advanced Aerodynamic/ Aeroelastic/Aeroservoelastic/Computer Aided Engineering Software Products and Services About ZONA ZONA Technology, Inc. (ZONA) is a privately held company that was founded

More information

AERODYNAMIC DESIGN OF FLYING WING WITH EMPHASIS ON HIGH WING LOADING

AERODYNAMIC DESIGN OF FLYING WING WITH EMPHASIS ON HIGH WING LOADING AERODYNAMIC DESIGN OF FLYING WING WITH EMPHASIS ON HIGH WING LOADING M. Figat Warsaw University of Technology Keywords: Aerodynamic design, CFD Abstract This paper presents an aerodynamic design process

More information

CFD Analysis of conceptual Aircraft body

CFD Analysis of conceptual Aircraft body CFD Analysis of conceptual Aircraft body Manikantissar 1, Dr.Ankur geete 2 1 M. Tech scholar in Mechanical Engineering, SD Bansal college of technology, Indore, M.P, India 2 Associate professor in Mechanical

More information

Introduction to ANSYS CFX

Introduction to ANSYS CFX Workshop 03 Fluid flow around the NACA0012 Airfoil 16.0 Release Introduction to ANSYS CFX 2015 ANSYS, Inc. March 13, 2015 1 Release 16.0 Workshop Description: The flow simulated is an external aerodynamics

More information

Integrated Computational and Experimental Studies of Flapping-wing Micro Air Vehicle Aerodynamics

Integrated Computational and Experimental Studies of Flapping-wing Micro Air Vehicle Aerodynamics Integrated Computational and Experimental Studies of Flapping-wing Micro Air Vehicle Aerodynamics Kevin Knowles, Peter Wilkins, Salman Ansari, Rafal Zbikowski Department of Aerospace, Power and Sensors

More information

Research Article A Computational Investigation of Unsteady Aerodynamics of Insect-Inspired Fixed Wing Micro Aerial Vehicle s 2D Airfoil

Research Article A Computational Investigation of Unsteady Aerodynamics of Insect-Inspired Fixed Wing Micro Aerial Vehicle s 2D Airfoil Advances in Aerospace Engineering, Article ID 5449, 7 pages http://dx.doi.org/1.1155/214/5449 Research Article A Computational Investigation of Unsteady Aerodynamics of Insect-Inspired Fixed Wing Micro

More information

Missile External Aerodynamics Using Star-CCM+ Star European Conference 03/22-23/2011

Missile External Aerodynamics Using Star-CCM+ Star European Conference 03/22-23/2011 Missile External Aerodynamics Using Star-CCM+ Star European Conference 03/22-23/2011 StarCCM_StarEurope_2011 4/6/11 1 Overview 2 Role of CFD in Aerodynamic Analyses Classical aerodynamics / Semi-Empirical

More information

An advanced RBF Morph application: coupled CFD-CSM Aeroelastic Analysis of a Full Aircraft Model and Comparison to Experimental Data

An advanced RBF Morph application: coupled CFD-CSM Aeroelastic Analysis of a Full Aircraft Model and Comparison to Experimental Data An advanced RBF Morph application: coupled CFD-CSM Aeroelastic Analysis of a Full Aircraft Model and Comparison to Experimental Data Dr. Marco Evangelos Biancolini Tor Vergata University, Rome, Italy Dr.

More information

Aerodynamic Analysis of Forward Swept Wing Using Prandtl-D Wing Concept

Aerodynamic Analysis of Forward Swept Wing Using Prandtl-D Wing Concept Aerodynamic Analysis of Forward Swept Wing Using Prandtl-D Wing Concept Srinath R 1, Sahana D S 2 1 Assistant Professor, Mangalore Institute of Technology and Engineering, Moodabidri-574225, India 2 Assistant

More information

UNSTEADY RANS BASED IMPULSE RESPONSE STUDIES OF AGARD WING FOR AEROELASTIC AND FLUTTER ANALYSIS

UNSTEADY RANS BASED IMPULSE RESPONSE STUDIES OF AGARD WING FOR AEROELASTIC AND FLUTTER ANALYSIS Symposium on Applied Aerodynamics and Design of Aerospace Vehicles (SAROD 2) November 68, 2, Bangalore, India UNSTEADY RANS BASED IMPULSE RESPONSE STUDIES OF AGARD WING FOR AEROELASTIC AND FLUTTER ANALYSIS

More information

Accurate and Efficient Turbomachinery Simulation. Chad Custer, PhD Turbomachinery Technical Specialist

Accurate and Efficient Turbomachinery Simulation. Chad Custer, PhD Turbomachinery Technical Specialist Accurate and Efficient Turbomachinery Simulation Chad Custer, PhD Turbomachinery Technical Specialist Outline Turbomachinery simulation advantages Axial fan optimization Description of design objectives

More information

Estimation of Flow Field & Drag for Aerofoil Wing

Estimation of Flow Field & Drag for Aerofoil Wing Estimation of Flow Field & Drag for Aerofoil Wing Mahantesh. HM 1, Prof. Anand. SN 2 P.G. Student, Dept. of Mechanical Engineering, East Point College of Engineering, Bangalore, Karnataka, India 1 Associate

More information

863. Development of a finite element model of the sailplane fuselage

863. Development of a finite element model of the sailplane fuselage 863. Development of a finite element model of the sailplane fuselage M. Andrikaitis 1, A. Fedaravičius 2 Kaunas University of Technology, Kęstučio 27, 44312 Kaunas, Lithuania E-mail: 1 marius.andrikaitis@gmail.com,

More information

Fluid-Structure Interaction in STAR-CCM+ Alan Mueller CD-adapco

Fluid-Structure Interaction in STAR-CCM+ Alan Mueller CD-adapco Fluid-Structure Interaction in STAR-CCM+ Alan Mueller CD-adapco What is FSI? Air Interaction with a Flexible Structure What is FSI? Water/Air Interaction with a Structure Courtesy CFD Marine Courtesy Germanischer

More information

Recent & Upcoming Features in STAR-CCM+ for Aerospace Applications Deryl Snyder, Ph.D.

Recent & Upcoming Features in STAR-CCM+ for Aerospace Applications Deryl Snyder, Ph.D. Recent & Upcoming Features in STAR-CCM+ for Aerospace Applications Deryl Snyder, Ph.D. Outline Introduction Aerospace Applications Summary New Capabilities for Aerospace Continuity Convergence Accelerator

More information

Numerical Investigation of Transonic Shock Oscillations on Stationary Aerofoils

Numerical Investigation of Transonic Shock Oscillations on Stationary Aerofoils Numerical Investigation of Transonic Shock Oscillations on Stationary Aerofoils A. Soda, T. Knopp, K. Weinman German Aerospace Center DLR, Göttingen/Germany Symposium on Hybrid RANS-LES Methods Stockholm/Sweden,

More information

Numerical Methods in Aerodynamics. Fluid Structure Interaction. Lecture 4: Fluid Structure Interaction

Numerical Methods in Aerodynamics. Fluid Structure Interaction. Lecture 4: Fluid Structure Interaction Fluid Structure Interaction Niels N. Sørensen Professor MSO, Ph.D. Department of Civil Engineering, Alborg University & Wind Energy Department, Risø National Laboratory Technical University of Denmark

More information

Validation of an Unstructured Overset Mesh Method for CFD Analysis of Store Separation D. Snyder presented by R. Fitzsimmons

Validation of an Unstructured Overset Mesh Method for CFD Analysis of Store Separation D. Snyder presented by R. Fitzsimmons Validation of an Unstructured Overset Mesh Method for CFD Analysis of Store Separation D. Snyder presented by R. Fitzsimmons Stores Separation Introduction Flight Test Expensive, high-risk, sometimes catastrophic

More information

TAU User Meeting, Göttingen,

TAU User Meeting, Göttingen, TAU User Meeting, Göttingen, 22.9.2005 Fluid-Structure-Coupling Using the TAU Code: Developments and Applications at the DLR Institute of Aeroelasticity Wolf Krüger DLR Institute of Aeroelasticity Fluid-Structure-Coupling

More information

TAU mesh deformation. Thomas Gerhold

TAU mesh deformation. Thomas Gerhold TAU mesh deformation Thomas Gerhold The parallel mesh deformation of the DLR TAU-Code Introduction Mesh deformation method & Parallelization Results & Applications Conclusion & Outlook Introduction CFD

More information

Introduction to CFX. Workshop 2. Transonic Flow Over a NACA 0012 Airfoil. WS2-1. ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved.

Introduction to CFX. Workshop 2. Transonic Flow Over a NACA 0012 Airfoil. WS2-1. ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved. Workshop 2 Transonic Flow Over a NACA 0012 Airfoil. Introduction to CFX WS2-1 Goals The purpose of this tutorial is to introduce the user to modelling flow in high speed external aerodynamic applications.

More information

INVESTIGATION ON STRUCTURAL ASPECTS OF UNMANNED COMBAT AIR VEHICLE FOR AEROELASTIC ANALYSIS P N Vinay *, P V Srihari *, A Mahadesh Kumar

INVESTIGATION ON STRUCTURAL ASPECTS OF UNMANNED COMBAT AIR VEHICLE FOR AEROELASTIC ANALYSIS P N Vinay *, P V Srihari *, A Mahadesh Kumar Research Article INVESTIGATION ON STRUCTURAL ASPECTS OF UNMANNED COMBAT AIR VEHICLE FOR AEROELASTIC ANALYSIS P N Vinay *, P V Srihari *, A Mahadesh Kumar Address for Correspondence * Dept. of Mechanical

More information

Turbomachinery Applications with STAR-CCM+ Turbomachinery Sector Manager

Turbomachinery Applications with STAR-CCM+ Turbomachinery Sector Manager Turbomachinery Applications with STAR-CCM+ Fred Mendonça Fred Mendonça Turbomachinery Sector Manager An Integrated Solution The applications of the software seem to be infinite. The user-friendly A single

More information

SPC 307 Aerodynamics. Lecture 1. February 10, 2018

SPC 307 Aerodynamics. Lecture 1. February 10, 2018 SPC 307 Aerodynamics Lecture 1 February 10, 2018 Sep. 18, 2016 1 Course Materials drahmednagib.com 2 COURSE OUTLINE Introduction to Aerodynamics Review on the Fundamentals of Fluid Mechanics Euler and

More information

Optimate CFD Evaluation Optimate Glider Optimization Case

Optimate CFD Evaluation Optimate Glider Optimization Case Optimate CFD Evaluation Optimate Glider Optimization Case Authors: Nathan Richardson LMMFC CFD Lead 1 Purpose For design optimization, the gold standard would be to put in requirements and have algorithm

More information

An advanced RBF Morph application: coupled CFD-CSM Aeroelastic Analysis of a Full Aircraft Model and Comparison to Experimental Data

An advanced RBF Morph application: coupled CFD-CSM Aeroelastic Analysis of a Full Aircraft Model and Comparison to Experimental Data An advanced RBF Morph application: coupled CFD-CSM Aeroelastic Analysis of a Full Aircraft Model and Comparison to Experimental Data Ubaldo Cella 1 Piaggio Aero Industries, Naples, Italy Marco Evangelos

More information

CFD ANALYSIS OF AN RC AIRCRAFT WING

CFD ANALYSIS OF AN RC AIRCRAFT WING CFD ANALYSIS OF AN RC AIRCRAFT WING Volume-, Issue-9, Sept.-1 1 SHREYAS KRISHNAMURTHY, SURAJ JAYASHANKAR, 3 SHARATH V RAO, ROCHEN KRISHNA T S, SHANKARGOUD NYAMANNAVAR 1,,3,, Department of Mechanical Engineering,

More information

Analysis and control of wind turbine generators

Analysis and control of wind turbine generators Analysis and control of wind turbine generators Eolica Expo 2004 Roma,, September 30 October 2, 2004 Carlo L. Bottasso, Lorenzo Trainelli, Alessandro Croce, Walter Sirchi, Barbara Savini Dipartimento di

More information

INFLUENCES INVESTIGATION OF NUMERICAL PARAMETERS AND MESHING ON THE AEROELASTIC RESPONSE

INFLUENCES INVESTIGATION OF NUMERICAL PARAMETERS AND MESHING ON THE AEROELASTIC RESPONSE 6 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES INFLUENCES INVESTIGATION OF NUMERICAL PARAMETERS AND MESHING ON THE AEROELASTIC RESPONSE T. F. G. Costa, E. M. Belo School of Engineering of Sao

More information

CFD studies of a 10 MW turbine equipped with trailing edge flaps

CFD studies of a 10 MW turbine equipped with trailing edge flaps CFD studies of a 10 MW turbine equipped with trailing edge flaps 10th EAWE PhD Seminar on Wind Energy in Europe 28-31 October 2014, Orléans, France Dipl.-Ing. Eva Jost e.jost@iag.uni-stuttgart.de Overview

More information

CAD-BASED WORKFLOWS. VSP Workshop 2017

CAD-BASED WORKFLOWS. VSP Workshop 2017 CAD-BASED WORKFLOWS VSP Workshop 2017 RESEARCH IN FLIGHT COMPANY Established 2012 Primary functions are the development, marketing and support of FlightStream and the development of aerodynamic solutions

More information

Experimental study of UTM-LST generic half model transport aircraft

Experimental study of UTM-LST generic half model transport aircraft IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Experimental study of UTM-LST generic half model transport aircraft To cite this article: M I Ujang et al 2016 IOP Conf. Ser.:

More information

Fluid structure interaction analysis: vortex shedding induced vibrations

Fluid structure interaction analysis: vortex shedding induced vibrations Fluid structure interaction analysis: vortex shedding induced vibrations N. Di Domenico, M. E. * University of Rome «Tor Vergata», Department of Enterprise Engineering «Mario Lucertini» A. Wade, T. Berg,

More information

Progress and Future Prospect of CFD in Aerospace

Progress and Future Prospect of CFD in Aerospace Progress and Future Prospect of CFD in Aerospace - Observation from 30 years research - Kozo Fujii Institute of Space and Astronautical Science (ISAS) Japan Aerospace Exploration Agency (JAXA) Japan JAXA:

More information

Aircraft Stability and Performance 2nd Year, Aerospace Engineering. Dr. M. Turner

Aircraft Stability and Performance 2nd Year, Aerospace Engineering. Dr. M. Turner Aircraft Stability and Performance 2nd Year, Aerospace Engineering Dr. M. Turner Basic Info Timetable 15.00-16.00 Monday ENG LT1 16.00-17.00 Monday ENG LT1 Typical structure of lectures Part 1 Theory Part

More information

Developing Tools for Assessing Bend-twist Coupled Foils

Developing Tools for Assessing Bend-twist Coupled Foils Developing Tools for Assessing Bend-twist Coupled Foils Laura Marimon Giovannetti, Joseph Banks, Stephen R. Turnock, Stephen W. Boyd, University of Southampton, Southampton/UK, L.Marimon-Giovannetti@soton.ac.uk

More information

AIR FORCE INSTITUTE OF TECHNOLOGY

AIR FORCE INSTITUTE OF TECHNOLOGY AEROELASTIC ANALYSIS OF A JOINED-WING SENSORCRAFT THESIS Jennifer J. Sitz, Lieutenant, USAF AFIT/GAE/ENY/04-J12 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson

More information

458 JAXA Special Publication JAXA-SP E alleviation 8, 10). Rodriguez et al. conducted aeroelastic analysis of a wing of Generic Transport Model

458 JAXA Special Publication JAXA-SP E alleviation 8, 10). Rodriguez et al. conducted aeroelastic analysis of a wing of Generic Transport Model First International Symposium on Flutter and its Application, 2016 457 NUMERICAL STUDY ON ADAPTIVE WING STRUCTURE USING LEADING AND TRAILING EDGE FLAPS FOR REDUCTION OF BENDING MOMENT Kanata FUJII +1,

More information

Advanced Multi-Body Modeling of Rotor Blades Validation and Application

Advanced Multi-Body Modeling of Rotor Blades Validation and Application Advanced Multi-Body Modeling of Rotor s Validation and Application For efficient wind turbine energy production, larger rotors are required for which slender blades with increased flexibility are often

More information

MULTI-DEGREE-OF-FREEDOM DYNAMIC WIND- TUNNEL TESTING OF A DELTA WING USING A ROBOTIC MANIPULATOR

MULTI-DEGREE-OF-FREEDOM DYNAMIC WIND- TUNNEL TESTING OF A DELTA WING USING A ROBOTIC MANIPULATOR 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES MULTI-DEGREE-OF-FREEDOM DYNAMIC WIND- TUNNEL TESTING OF A DELTA WING USING A ROBOTIC MANIPULATOR Keisuke ASAI*, Atsushi KONNO*, Xin JIANG*, Daiju

More information

How to Enter and Analyze a Wing

How to Enter and Analyze a Wing How to Enter and Analyze a Wing Entering the Wing The Stallion 3-D built-in geometry creation tool can be used to model wings and bodies of revolution. In this example, a simple rectangular wing is modeled

More information

39th AIAA Aerospace Sciences Meeting and Exhibit January 8 11, 2001/Reno, NV

39th AIAA Aerospace Sciences Meeting and Exhibit January 8 11, 2001/Reno, NV AIAA 1 717 Static Aero-elastic Computation with a Coupled CFD and CSD Method J. Cai, F. Liu Department of Mechanical and Aerospace Engineering University of California, Irvine, CA 92697-3975 H.M. Tsai,

More information

AerodynamicCharacteristicsofaReal3DFlowaroundaFiniteWing

AerodynamicCharacteristicsofaReal3DFlowaroundaFiniteWing Global Journal of Researches in Engineering: D Chemical Engineering Volume 14 Issue 1 Version 1.0 Year 2014 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc.

More information

Aerodynamic Design of a Tailless Aeroplan J. Friedl

Aerodynamic Design of a Tailless Aeroplan J. Friedl Acta Polytechnica Vol. 4 No. 4 5/2 Aerodynamic Design of a Tailless Aeroplan J. Friedl The paper presents an aerodynamic analysis of a one-seat ultralight (UL) tailless aeroplane named L2k, with a very

More information

Marine Hydrodynamics Solver in OpenFOAM

Marine Hydrodynamics Solver in OpenFOAM Marine Hydrodynamics Solver in OpenFOAM p. 1/14 Marine Hydrodynamics Solver in OpenFOAM Hrvoje Jasak and Henrik Rusche h.jasak@wikki.co.uk, h.rusche@wikki.co.uk Wikki, United Kingdom and Germany 4 December

More information

Keywords: CFD, aerofoil, URANS modeling, flapping, reciprocating movement

Keywords: CFD, aerofoil, URANS modeling, flapping, reciprocating movement L.I. Garipova *, A.N. Kusyumov *, G. Barakos ** * Kazan National Research Technical University n.a. A.N.Tupolev, ** School of Engineering - The University of Liverpool Keywords: CFD, aerofoil, URANS modeling,

More information

Development of a CFD Capability for Full Helicopter Engineering Analysis

Development of a CFD Capability for Full Helicopter Engineering Analysis Development of a CFD Capability for Full Helicopter Engineering Analysis George Barakos Department of Engineering University of Liverpool 5/6 April 2006 Loughborough University Collective effort of more

More information

The Science of Making Torque from Wind

The Science of Making Torque from Wind The Science of Making Torque from Wind Oldenburg October 9-11, 2012 Recent advances in aeroelasticity of wind turbines Spyros Voutsinas NTUA, School of Mechanical Engineering Outline 1. Aeroelasticity:

More information

Application of STAR-CCM+ to Helicopter Rotors in Hover

Application of STAR-CCM+ to Helicopter Rotors in Hover Application of STAR-CCM+ to Helicopter Rotors in Hover Lakshmi N. Sankar and Chong Zhou School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA Ritu Marpu Eschol CD-Adapco, Inc.,

More information

Using MSC.Nastran for Explicit FEM Simulations

Using MSC.Nastran for Explicit FEM Simulations 3. LS-DYNA Anwenderforum, Bamberg 2004 CAE / IT III Using MSC.Nastran for Explicit FEM Simulations Patrick Doelfs, Dr. Ingo Neubauer MSC.Software GmbH, D-81829 München, Patrick.Doelfs@mscsoftware.com Abstract:

More information

ANSYS Fluid Structure Interaction for Thermal Management and Aeroelasticity

ANSYS Fluid Structure Interaction for Thermal Management and Aeroelasticity ANSYS Fluid Structure Interaction for Thermal Management and Aeroelasticity Phil Stopford Duxford Air Museum 11th May 2011 2011 2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Fluid Structure

More information

Numerical Simulations of Fluid-Structure Interaction Problems using MpCCI

Numerical Simulations of Fluid-Structure Interaction Problems using MpCCI Numerical Simulations of Fluid-Structure Interaction Problems using MpCCI François Thirifay and Philippe Geuzaine CENAERO, Avenue Jean Mermoz 30, B-6041 Gosselies, Belgium Abstract. This paper reports

More information

An efficient method for predicting zero-lift or boundary-layer drag including aeroelastic effects for the design environment

An efficient method for predicting zero-lift or boundary-layer drag including aeroelastic effects for the design environment The Aeronautical Journal November 2015 Volume 119 No 1221 1451 An efficient method for predicting zero-lift or boundary-layer drag including aeroelastic effects for the design environment J. A. Camberos

More information

Transition Flow and Aeroacoustic Analysis of NACA0018 Satish Kumar B, Fred Mendonç a, Ghuiyeon Kim, Hogeon Kim

Transition Flow and Aeroacoustic Analysis of NACA0018 Satish Kumar B, Fred Mendonç a, Ghuiyeon Kim, Hogeon Kim Transition Flow and Aeroacoustic Analysis of NACA0018 Satish Kumar B, Fred Mendonç a, Ghuiyeon Kim, Hogeon Kim Transition Flow and Aeroacoustic Analysis of NACA0018 Satish Kumar B, Fred Mendonç a, Ghuiyeon

More information

Optimisation of the Sekwa Blended-Wing-Body Research UAV

Optimisation of the Sekwa Blended-Wing-Body Research UAV Optimisation of the Sekwa Blended-Wing-Body Research UAV B.A. Broughton and R. Heise Council for Scientific and Industrial Research Pretoria, South Africa ABSTRACT A variable stability, blended-wing-body

More information

Advanced Computation in the design and development of aircraft engines. Serge Eury SNECMA

Advanced Computation in the design and development of aircraft engines. Serge Eury SNECMA Advanced Computation in the design and development of aircraft engines 1 Serge Eury SNECMA Advanced Computation in the design and development of aircraft engines Introduction Some examples Conclusions

More information

Yaw-Roll Coupled Oscillations of a Slender Delta Wing

Yaw-Roll Coupled Oscillations of a Slender Delta Wing Yaw-Roll Coupled Oscillations of a Slender Delta Wing John C. Worley * Auburn University Aerospace Engineering, Auburn, Alabama, 3683 Reported are the results of experiments conducted on a slender delta

More information

FLUTTER ANALYSIS OF F-16 AIRCRAFT UTILIZING TEST MODAL DATA

FLUTTER ANALYSIS OF F-16 AIRCRAFT UTILIZING TEST MODAL DATA 25 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES FLUTTER ANALYSIS OF F-16 AIRCRAFT UTILIZING TEST MODAL DATA Kwan-Hwa Byun*, Seung-Moon Jun** *Agency for Defense Development (ADD), **ADD Keywords:

More information

Modeling three-dimensional dynamic stall

Modeling three-dimensional dynamic stall Appl. Math. Mech. -Engl. Ed., 32(4), 393 400 (2011) DOI 10.1007/s10483-011-1424-6 c Shanghai University and Springer-Verlag Berlin Heidelberg 2011 Applied Mathematics and Mechanics (English Edition) Modeling

More information

Theory, Computation and Experiment on Criticality and Stability of Vortices Separating from Edges

Theory, Computation and Experiment on Criticality and Stability of Vortices Separating from Edges Theory, Computation and Experiment on Criticality and Stability of Vortices Separating from Edges Ashok Gopalarathnam Department of Mechanical and Aerospace Engineering North Carolina State University

More information

Turbocharger Design & Analysis Solutions. Bill Holmes Brad Hutchinson Detroit, October 2012

Turbocharger Design & Analysis Solutions. Bill Holmes Brad Hutchinson Detroit, October 2012 Turbocharger Design & Analysis Solutions Bill Holmes Brad Hutchinson Detroit, October 2012 Agenda ANSYS overview ANSYS TurboSystem Blade row solutions The ANSYS Transformation methods An example: turbocharger

More information

VERIFICATION OF CAMPBELL DIAGRAMS USING ANSYS - LINFLOW AND FUNDAMENTALS OF AEROELASTIC ANALYSES

VERIFICATION OF CAMPBELL DIAGRAMS USING ANSYS - LINFLOW AND FUNDAMENTALS OF AEROELASTIC ANALYSES VERIFICATION OF CAMPBELL DIAGRAMS USING ANSYS - LINFLOW AND FUNDAMENTALS OF AEROELASTIC ANALYSES Olcay ÇİÇEKDAĞ - Aeronautics Eng, MSc., FİGES A.Ş. CONTENTS 1) AIM 2) STRUCTURAL VIBRATION ANALYSES 2.1)

More information

GRID PATTERN EFFECTS ON AERODYNAMIC CHARACTERISTICS OF GRID FINS

GRID PATTERN EFFECTS ON AERODYNAMIC CHARACTERISTICS OF GRID FINS 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES GRID PATTERN EFFECTS ON AERODYNAMIC CHARACTERISTICS OF GRID FINS Fumiya Hiroshima, Kaoru Tatsumi* *Mitsubishi Electric Corporation, Kamakura Works,

More information

MSC/NASTRAN FLUTTER ANALYSES OF T-TAILS INCLUDING HORIZONTAL STABILIZER STATIC LIFT EFFECTS AND T-TAIL TRANSONIC DIP

MSC/NASTRAN FLUTTER ANALYSES OF T-TAILS INCLUDING HORIZONTAL STABILIZER STATIC LIFT EFFECTS AND T-TAIL TRANSONIC DIP MSC/NASTRAN FLUTTER ANALYSES OF T-TAILS INCLUDING HORIZONTAL STABILIZER STATIC LIFT EFFECTS AND T-TAIL TRANSONIC DIP by Emil Suciu* Gulfstream Aerospace Corporation Savannah, Georgia U.S.A. Presented at

More information

Computational Fluid Dynamics Study for a Deep Stall Air Vehicle

Computational Fluid Dynamics Study for a Deep Stall Air Vehicle Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6410--11-9339 Computational Fluid Dynamics Study for a Deep Stall Air Vehicle Ravi Ramamurti Center for Reactive Flow and Dynamical Systems Laboratory

More information

Detached Eddy Simulation Analysis of a Transonic Rocket Booster for Steady & Unsteady Buffet Loads

Detached Eddy Simulation Analysis of a Transonic Rocket Booster for Steady & Unsteady Buffet Loads Detached Eddy Simulation Analysis of a Transonic Rocket Booster for Steady & Unsteady Buffet Loads Matt Knapp Chief Aerodynamicist TLG Aerospace, LLC Presentation Overview Introduction to TLG Aerospace

More information

Successful Applications of CFD within the Aircraft Certification Process TLG Aerospace. Unrestricted Siemens AG 2018

Successful Applications of CFD within the Aircraft Certification Process TLG Aerospace. Unrestricted Siemens AG 2018 Successful Applications of CFD within the Aircraft Certification Process TLG Aerospace Unrestricted Siemens AG 2018 About TLG Aerospace TLG is an engineering services company providing design, analysis,

More information

The Use of Computational Fluid Dynamics In the Aerospace Industry Past Present - Future

The Use of Computational Fluid Dynamics In the Aerospace Industry Past Present - Future The Use of Computational Fluid Dynamics In the Aerospace Industry Past Present - Future Douglas N. Ball Aerospace Consultant 1 The Early Days Not much CFD in these old birds! Great airplanes none the less.

More information

Adjoint-Based Sensitivity Analysis for Computational Fluid Dynamics

Adjoint-Based Sensitivity Analysis for Computational Fluid Dynamics Adjoint-Based Sensitivity Analysis for Computational Fluid Dynamics Dimitri J. Mavriplis Max Castagne Professor Department of Mechanical Engineering University of Wyoming Laramie, WY USA Motivation Computational

More information

DYNAMICS OF A VORTEX RING AROUND A MAIN ROTOR HELICOPTER

DYNAMICS OF A VORTEX RING AROUND A MAIN ROTOR HELICOPTER DYNAMICS OF A VORTEX RING AROUND A MAIN ROTOR HELICOPTER Katarzyna Surmacz Instytut Lotnictwa Keywords: VORTEX RING STATE, HELICOPTER DESCENT, NUMERICAL ANALYSIS, FLOW VISUALIZATION Abstract The main goal

More information

Development Of Computational Tools For Analysis And Evaluation Of Autonomous Parafoil Systems

Development Of Computational Tools For Analysis And Evaluation Of Autonomous Parafoil Systems Development Of Computational Tools For Analysis And Evaluation Of Autonomous Parafoil Systems Esteban Gonzalez Garcia, Carlos G. Sacco, Aula CIMNE IUA Enrique Ortega, Roberto Flores, CIMNE Barcelona 2do

More information

NUMERICAL EVALUATION OF THE CONTRIBUTION OF THE STICK MODEL-INDUCED ELASTIC STREAMWISE CAMBER DEFORMATION TO THE FLUTTER SPEED OF A SWEPT WING

NUMERICAL EVALUATION OF THE CONTRIBUTION OF THE STICK MODEL-INDUCED ELASTIC STREAMWISE CAMBER DEFORMATION TO THE FLUTTER SPEED OF A SWEPT WING NUMERICAL EVALUATION OF THE CONTRIBUTION OF THE STICK MODEL-INDUCED ELASTIC STREAMWISE CAMBER DEFORMATION TO THE FLUTTER SPEED OF A SWEPT WING Paper No. 2004-23, Presented at the MSC.Software Virtual Product

More information

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering Debojyoti Ghosh Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering To study the Dynamic Stalling of rotor blade cross-sections Unsteady Aerodynamics: Time varying

More information

NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING

NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING Review of the Air Force Academy No.3 (35)/2017 NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING Cvetelina VELKOVA Department of Technical Mechanics, Naval Academy Nikola Vaptsarov,Varna, Bulgaria (cvetelina.velkova1985@gmail.com)

More information

What s New in AAA? Design Analysis Research. Version 3.3. February 2011

What s New in AAA? Design Analysis Research. Version 3.3. February 2011 Design Analysis Research What s New in AAA? Version 3.3 February 2011 AAA 3.3 contains various enhancements and revisions to version 3.2 as well as bug fixes. This version has 287,000 lines of code and

More information

COURSE: Aeroelasticity

COURSE: Aeroelasticity SESSION WEEK COURSE: Aeroelasticity DEGREE: Aerospace Engineering YEAR: 4th TERM: 1st La asignatura tiene 29 sesiones que se distribuyen a lo largo de 14 semanas. Los laboratorios pueden situarse en cualquiera

More information

STUDY ABOUT THE STABILITY AND CONTROL OF A ROTOR AIRPLANE

STUDY ABOUT THE STABILITY AND CONTROL OF A ROTOR AIRPLANE STUDY ABOUT THE STABILITY AND CONTROL OF A ROTOR AIRPLANE Victor Stafy Aristeu Silveira Neto victorstafy@aero.ufu.br aristeus@ufu.br Fluid Mechanics Laboratory- MFlab, Federal University of Uberlândia-

More information

Multi-Disciplinary Optimization with Minamo

Multi-Disciplinary Optimization with Minamo EXCELLENCE IN SIMULATION TECHNOLOGIES Multi-Disciplinary Optimization with Minamo Ingrid Lepot Numerical Methods and Optimization Group, Cenaero CESAR Training Workshop, Mar 18, 2009 Surrogate Based Optimization

More information

Loads Analysis and Structural Optimization - A Parameterized and Integrated Process

Loads Analysis and Structural Optimization - A Parameterized and Integrated Process DLR.de Chart 1 Loads Analysis and Structural Optimization - A Parameterized and Integrated Process Thomas Klimmek (AE), Thiemo Kier (SR), Andreas Schuster (FA), Tobias Bach (FA), and Dieter Kohlgrüber

More information

Validation of a numerical simulation tool for aircraft formation flight.

Validation of a numerical simulation tool for aircraft formation flight. Validation of a numerical simulation tool for aircraft formation flight. T. Melin Fluid and Mechatronic Systems, Department of Management and Engineering, the Institute of Technology, Linköping University,

More information

CFD ANALYSIS OF UAVs USING VORSTAB, FLUENT, AND ADVANCED AIRCRAFT ANALYSIS SOFTWARE. Benjamin Sweeten

CFD ANALYSIS OF UAVs USING VORSTAB, FLUENT, AND ADVANCED AIRCRAFT ANALYSIS SOFTWARE. Benjamin Sweeten CFD ANALYSIS OF UAVs USING VORSTAB, FLUENT, AND ADVANCED AIRCRAFT ANALYSIS SOFTWARE BY Benjamin Sweeten Submitted to the graduate degree program in Aerospace Engineering and the Graduate Faculty of the

More information

Estimating Vertical Drag on Helicopter Fuselage during Hovering

Estimating Vertical Drag on Helicopter Fuselage during Hovering Estimating Vertical Drag on Helicopter Fuselage during Hovering A. A. Wahab * and M.Hafiz Ismail ** Aeronautical & Automotive Dept., Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310

More information

Design and Optimization of SUAV Empennage

Design and Optimization of SUAV Empennage From the SelectedWorks of Innovative Research Publications IRP India Summer June 1, 2015 Design and Optimization of SUAV Empennage Innovative Research Publications, IRP India, Innovative Research Publications

More information

Aerodynamics of 3D Lifting Surfaces through Vortex Lattice Methods (3) Two implementations of the VLM

Aerodynamics of 3D Lifting Surfaces through Vortex Lattice Methods (3) Two implementations of the VLM Aerodynamics of 3D Lifting Surfaces through Vortex Lattice Methods (3) Two implementations of the VLM Basic Concepts Outline Boundary conditions on the mean surface Vortex Theorems, Biot-Savart Law The

More information

AERODYNAMIC DESIGN FOR WING-BODY BLENDED AND INLET

AERODYNAMIC DESIGN FOR WING-BODY BLENDED AND INLET 25 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES AERODYNAMIC DESIGN FOR WING-BODY BLENDED AND INLET Qingzhen YANG*,Yong ZHENG* & Thomas Streit** *Northwestern Polytechincal University, 772,Xi

More information

Computational Investigation of Inviscid Flow over a Wing With Multiple Winglets

Computational Investigation of Inviscid Flow over a Wing With Multiple Winglets Computational Investigation of Inviscid Flow over a Wing With Multiple Winglets P. Sethunathan Assistant Professor,Department of Aeronautical Engineering, Paavaai Group of Institutions, Namakkal, India.

More information

Composites for JEC Conference. Zach Abraham ANSYS, Inc.

Composites for JEC Conference. Zach Abraham ANSYS, Inc. Composites for JEC Conference Zach Abraham ANSYS, Inc. 1 Our Strategy Simulation-Driven Product Development Fluid Dynamics Structural Mechanics Explicit Dynamics Low-Frequency Electromagnetics High-Frequency

More information

A REVIEW OF SWEPT AND BLENDED WING BODY PERFORMANCE UTILIZING EXPERIMENTAL, FE AND AERODYNAMIC TECHNIQUES

A REVIEW OF SWEPT AND BLENDED WING BODY PERFORMANCE UTILIZING EXPERIMENTAL, FE AND AERODYNAMIC TECHNIQUES www.arpapress.com/volumes/vol8issue3/ijrras_8_3_13.pdf A REVIEW OF SWEPT AND BLENDED WING BODY PERFORMANCE UTILIZING EXPERIMENTAL, FE AND AERODYNAMIC TECHNIQUES 1 Hassan Muneel Syed, 2 M. Saqib Hameed

More information

OpenVSP: Parametric Geometry for Conceptual Aircraft Design. Rob McDonald, Ph.D. Associate Professor, Cal Poly

OpenVSP: Parametric Geometry for Conceptual Aircraft Design. Rob McDonald, Ph.D. Associate Professor, Cal Poly OpenVSP: Parametric Geometry for Conceptual Aircraft Design Rob McDonald, Ph.D. Associate Professor, Cal Poly 1 Vehicle Sketch Pad (VSP) Rapid parametric geometry for design NASA developed & trusted tool

More information

Parallelized Coupled Solver (PCS) Model Refinements & Extensions

Parallelized Coupled Solver (PCS) Model Refinements & Extensions Parallelized Coupled Solver (PCS) Model Refinements & Extensions Sven Schmitz GE Wind November 29 th, 2007 Greenville, SC University of California, Davis Schmitz GE Wind - PCS 1 Outline 2007 Parallelized

More information

Funded by the European Union INRIA. AEROGUST Workshop 27 th - 28 th April 2017, University of Liverpool. Presented by Andrea Ferrero and Angelo Iollo

Funded by the European Union INRIA. AEROGUST Workshop 27 th - 28 th April 2017, University of Liverpool. Presented by Andrea Ferrero and Angelo Iollo INRIA AEROGUST Workshop 27 th - 28 th April 2017, University of Liverpool Presented by Andrea Ferrero and Angelo Iollo Aero-elastic study of a wind turbine subjected to a gust Development of high-fidelity

More information

Preliminary investigation into two-way fluid structure interaction of heliostat wind loads Josh Wolmarans

Preliminary investigation into two-way fluid structure interaction of heliostat wind loads Josh Wolmarans Preliminary investigation into two-way fluid structure interaction of heliostat wind loads Josh Wolmarans Supervisor: Prof Ken Craig Clean Energy Research Group (CERG), Department of Mechanical and Aeronautical

More information

Computational Fluid Dynamics PRODUCT SHEET

Computational Fluid Dynamics PRODUCT SHEET TM 2014 Computational Fluid Dynamics PRODUCT SHEET 1 Breaking Limitations The Challenge of Traditional CFD In the traditional mesh-based approach, the reliability highly depends on the quality of the mesh,

More information

CFD++ APPLICATION ON WIND TUNNEL DATA ANALYSIS

CFD++ APPLICATION ON WIND TUNNEL DATA ANALYSIS CFD++ APPLICATION ON WIND TUNNEL DATA ANALYSIS Introduction Piaggio Aero Industries is actually studing a new mid size jet for civilian use. Many people and many disciplines are implicated but up to now

More information

Design and Analysis of Control Bay Used in Guided Missile

Design and Analysis of Control Bay Used in Guided Missile Design and Analysis of Control Bay Used in Guided Missile Ragam Prashanth 1, D.Muppala 2, Nirmith Mishra 3 1PG Student, Department of Aerospace, MLR Inst of Tech and Management, Hyderabad, Telangana, India

More information

Design Optimization of a Weather Radar Antenna using Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD)

Design Optimization of a Weather Radar Antenna using Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) Design Optimization of a Weather Radar Antenna using Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) Fernando Prevedello Regis Ataídes Nícolas Spogis Wagner Ortega Guedes Fabiano Armellini

More information

Shape Adaptive Airfoils for Turbomachinery applications: Simulation and Optimization

Shape Adaptive Airfoils for Turbomachinery applications: Simulation and Optimization 4 th European LS-DYNA Users Conference Optimization Shape Adaptive Airfoils for Turbomachinery applications: Simulation and Optimization Authors: Tobias Müller, Martin Lawerenz Research Assistant Professor

More information