WELL STRUCTURED ROBOT POSITIONING CONTROL STRATEGY FOR POSITION BASED VISUAL SERVOING

Size: px
Start display at page:

Download "WELL STRUCTURED ROBOT POSITIONING CONTROL STRATEGY FOR POSITION BASED VISUAL SERVOING"

Transcription

1 Proceedings of the 001 IEEE International Conference on Robotics & Automation Seoul Korea May WELL STRUCTURED ROBOT POSITIONING CONTROL STRATEGY FOR POSITION BASED VISUAL SERVOING M. Bachiller* A.Adán** V. Feliu*** C. Cerrada**** * Facultad de Ciencias UNED. SPAIN (marga@dia.uned.es) ** Escuela Técnica Superior de Ingeniería Informática Universidad de Castilla La Mancha. SPAIN (aadan@infcr.uclm.es) *** Escuela Técnica Superior de Ingenieros Industriales Universidad de Castilla La Mancha. SPAIN (vfeliu@indcr.uclm.es) **** Escuela Técnica Superior de Ingenieros Industriales UNED. SPAIN (ccerrada@ieec.uned.es) Abstract In this paper we study a D visual servoing system composed by a robot manipulator a CCD camera mounted on the end effector of the robot and a specific hardware. The use of computer vision as feedback transducer strongly affects the closed loop dynamics of the overall system so that a visual controller is required for achieving fast response and high control accuracy. Due to the long time delay to generate the control signal it is necessary to carefully select the visual controller. The objective of this work is to present a well structured design of efficient controllers to keep a desired relative D position between the object and the camera. Besides an experimental setup has been built and used to evaluate the performance of the position based dynamic look and move system. Several results relative to different type of controller are presented. These results demonstrate the possibility of getting competitive results in real time performance with respect to more closed solutions shown in other works while maintaining the advantage of easily system adaptability. 1. INTRODUCTION Intelligent robots require sensor based control to perform complex operations and to react to changes in the environment. The information about the own system and its environment can be obtained from a great variety of sensors. Vision is probably the sensor that provides the most and richest sensing information but the processing of such that information becomes the most complicated. Nevertheless computer vision has improved a lot in the last years and it is being frequently used on robotics systems although with serious limitations in real time applications due to the time necessary for image processing. The use of computer vision as feedback transducer strongly affects the closed loop dynamics of the overall system. Latency is the most significant dynamic characteristic of vision transducers and it has many sources including transport delay of pixels from the camera to vision system image processing algorithms control algorithms software and communications with the robot. This delay can cause instability in visual closed loop systems. To achieve fast response and high control accuracy the design of a specific visual feedback controller is required. Visual servoing is the result of merging several techniques in different fields including image processing kinematics dynamics control theory and real time computing. An excellent overview of the main issues in visual servoing is given in []. Visual servoing architectures for controlling manipulators using an eye in hand configuration can be classified in two fundamental categories: dynamic look and move structures and visual servo structures. When the control architecture is hierarchical and uses the vision system to calculate the set of inputs to the joint level controller making use of inner joint feedback loops to stabilise the robot it is referred to as a dynamic look and move structure. In contrast visual servo structure eliminates the robot controller replacing it with a visual controller in such a way that it is used to compute directly the joints inputs being the only loop used to stabilise the mechanism. Concerning to the controlled variable visual servoing systems with eye in hand configuration are classified in two groups: image based control systems and position based control systems. In an image based control system the error variable is computed in the Dimage space. This approach eventually reduce the computational delay eliminate the necessity of image interpretation and eliminate errors due to sensor modelling and camera calibration. However the controller design is very complex. On the other hand in a position based control system the error variable is computed in the D Cartesian space. The main advantage of the last approach is that position of the camera trajectory is controlled directly in the Cartesian space /01/$ IEEE 541

2 In this work we built a visual servoing system over a modular conception. This means that the overall system is composed of a set of independent modules that are put together configuring an open system. In this kind of systems any module can be replaced for other one with the same functionality and the visual controller computation procedure will not change. The goal of any visual servoing system is the same independently of how it is constructed: to control the robot s end effector pose relative to the target object pose. But the main advantage of this new consideration is that if a module have to be changed for any reason it will be necessary neither to replace the others nor to redesign the full platform but just to compute a new controller. In that sense our approach deals with the problem of controller design from a more generic point of view. This generality has not been found in previous researches. On the contrary most part of the works on visual servoing reveals particular solutions applied to their specific platforms. The main differences between them appear in the type of control strategy used. There has been a significant amount of research activity on image based control methods [ ] whereas there have been only a few researchers working on position based control methods [ ]. This tendency can be justified because image based systems usually reduce computation delays (costly time consuming processes of image interpretation are not necessary) and because they also eliminate errors due to sensor modelling and camera calibration processes. In contrast the controller is quite embedded in the overall system and its design strongly depends on the robot and the vision systems chosen. Anyway real time performance use to be better in image based controllers than in position based controllers. But from the point of view of building open systems it seems more adequate to consider position based controllers and dynamic look and move structures. There are several reasons to think so: Position based methods allow a direct and more natural specification of the desired trajectories for the end effector in Cartesian coordinates. Many robots have interface for accepting Cartesian velocity or incremental position commands. In that sense they can be replaceable one for each other and all of them can be considered as black boxes. Conceptually dynamic look and move structure is more open than visual servo because vision system is separated from the controller and from the robot itself. The controller design can take advantage of a wellstructured problem like robot control. The use of more advanced control techniques is also propitiated because the problem can be focussed as a pure control problem. In this article we design a position based dynamic look and move system built with an industrial manipulator and an offtheshelf camera mounted on its end effector. One purpose is to demonstrate the possibility of getting competitive results in real time performance with respect to more closed solutions shown in other works and other control configurations while maintaining the advantage of easily system adaptability. The remaining of this paper is structured as follows. Firstly in section we deduce the model of the complete visual servoing system. In section the design of several controllers is described. In the next section we evaluate these controllers. This section includes simulations and real experiments to compare the response of each controller and its performance. Finally the discussion on control performance is presented in the section 5.. VISUAL SERVOING SYSTEM MODEL A visual servoing system can be considered as the integration of at least the following set of components: robotic subsystem vision subsystem control subsystem and communications. A scheme of such those components and their respective links are depicted in figure 1. Clock PC : VISION AND CONTROL SUBSYSTEM Moving object model Vision Subsystem Estimator Controller Control Subsystem ROBOTIC SUBSYSTEM Robot Controller camera Figure 1: Architecture of the robotic visual servoing system The way this system works can be explained as follows. The vision subsystem is able to determine at a given sampling rate an error position vector in Cartesian coordinates currently proportional to the sensed difference between the D target position and the D robot s end effector position. This information is sent to the control computer at the same rate through the communication link. Then the control subsystem generates the control signal to drive correctly to the robot in order to cancel the error position. Finally this signal is transmitted to the robotic subsystem through the communication link. Notice that the overall system is a multirate system in nature: the sampling interval of the manipulator is T r while the vision subsystem sampling period is T v being T v larger than T r. To simplify the study from the control point of view the vision period can be adjusted to be n times the robot period being n an integer value i.e.: T v = n.t r (1.1) T v T r 54

3 From notation concerns we will use z to represent the z transform of a system sampled with a period T v and ẑ to the ztransform of a system sampled with a period T r..1. Subsystems Modelling Figure 1 of the previous section shows the architecture of a system like the considered. As it has been explained there four modules or subsystems integrate the full system. In order to get a valid model for each one several considerations must be done in advance. The control subsystem is the objective of the design and consequently it will be considered in the next section. With respect to the communication links they can be considered from the dynamical point of view as small delays that can be integrated in the vision or in the robot time periods. Therefore no dynamical modelling is required for them and it is only necessary to have accurate dynamic models of the plant to be controlled (the robotic subsystem) and the sensor used (the vision subsystem). Vision Subsystem Model The vision subsystem provides in each sampling instant a set of values in the D space as a triplet of Cartesian coordinates p = ( x y z) representing the position increment that the robot has to do to reach the target object. When the overall system is working with T v period the vision subsystem can be considered as a pure delay so its transfer functions matrix is: V(z) = diag (z 1 z 1 z 1 ) (1.) The figure shows the representative block of the vision subsystem where p d is the desired object position p obj is the actual object position and p r is the actual robot position. It also considers a noise signal r s produced for example by a bad illumination or during the digitizing process. manipulator with its actuators and their current feedback loops can be considered as a Cartesian servo device. In principle the robotic subsystem can be modelled as an integrator: its output is the actual robot position that is equal to the previous one plus the incremental position input signal. It can be seen experimentally that this is not exactly the real behaviour but it presents a small delay in performing the movement corresponding to the input signal. Due to this the transfer function that is proposed for each Cartesian coordinate is a second order system so the transfer functions matrix of the robotic subsystem is given by: (1.) n n x y nz G( ) = diag ( 1)( β x ) ( 1)( β y ) ( 1)( β z ) The figure shows the representative block of the robotic subsystem. The sampling time is T r and e is a noise signal that represents small errors due to data acquisition and that will be used in the identification process. That noise is modelled as a sequence of independent and identically distributed random variables with zero mean. p G( z ^ ) T r Figure : Representative block of the robot system.. System s block diagram construction If we join all subsystems in accordance with the position based dynamic look and move structures we obtain the system s block diagram. It is shown in figure 4. Robotic subsystem e noise( z ^ ) p r e r s r s Noise ( z ^ ) p obj pr V (z) T v p d Vision subsystem p p obj V(z) T v p d Vision Subsystem p R(z) Control Subsystem G( z ^ ) T r Robotic Subsystem p r Figure : Representative block of the vision subsystem Robotic Subsystem Model When the manipulator works through a specific command line to change its trajectory in real time it can be experimentally seen that the robot behaves as a decoupled multivariable system. It can be considered as composed by 6 independent loops (three of them concerning to the Cartesian position and the three others concerning to the orientation). In this work we are only taking into account the three loops relative to the Cartesian position. Thus the Figure 4: System s block diagram Using the equation (1.1) and doing some manipulations the global block diagram converts into the one shown in the figure 5 where T ( ) is given by: T ( z) diag n n n = (1.4) 54

4 Figure 5: Converted system's block diagram In order to design the controller we need to have the transfer function matrix of the robotic subsystem sampled with period T v. However we know the transfer function matrix of the robotic subsystem sampled with period T r. The identification of this matrix is normally divided into two parts: (1)Estimation of the continuous transfer function matrix from the discrete transfer function matrix sampled with period T r. ()Calculation of the discrete transfer function matrix sampling the continuous transfer function matrix with period T v. Applying this technique to G () we obtain G(z). Then the block diagram of figure 5 can be changed to the simplified block diagram shown in figure 6. pobj p obj V(z) R( z ) T( z ^) Gv( z ^) rs r s pd p d. Identification V ( z ) R ( z ) G ( z ) Figure 6: Simplified block diagram noise Once a model has been selected to represent a subsystem the unknown parameters identification is required. In general an identification experiment is performed by exciting the system (using some sort of input signal such as a step a sinusoid or a random signal) and observing its input and output over a time interval. These signals are normally recorded in a computer for information processing. Immediately after some statistically based method is used to estimate the unknown parameters of the model such as the coefficients in the difference equation. The model obtained is then tested to see whether it is an appropriate representation of the system. If this is not the case some more complex model must be considered its parameters estimated and the new model validated. The used vision subsystem is formed by a camera a PC where the image processing hardware is installed. In the previous sections we have modelled this subsystem as a pure delay so there are not unknown parameters. The used robotic subsystem is a 6 DOF industrial manipulator Staübli RX90 with a specific command line to modify its trajectory in real time or ALTER line. This command line allows to introduce new values each 16 milliseconds it is noise pr p r to say in our platform T r = 16 milliseconds. In this case we consider that the model of the robotic subsystem can be defined by a linear second order system. To identify the unknown parameters we use an autoregressive moving average with exogeneous model (ARMAX). The obtained transfer function matrix is given by: G( ) = diag ( 1)( 0.810) ( 1)( 0.194) ( 1)( 0.95) (1.5) Finally to design the control subsystem is necessary in first place to estimate the continuous transfer functions matrix (the used method is described in [11]) and in second place to sample it with period T v. Considering n=10 and substituting into equation (1.1) yields to the following G (z) matrix: 8.567z z z G( z) = diag z( z 1) z( z 1) z( z 1) (1.6). CONTROL SUBSYSTEM DESIGN The control objective is to move the robot with the camera mounted on its end effector in such a way that the projection of a static object appears in the desired location of the image. The more interesting solution is to achieve a response with no oscillations during the movement when the input is a step while trying that the settling time be small. Provided that the step can be of big magnitude it will be interesting to check the cartesian acceleration value in order to avoid the saturation of some motors. The first controller has been designed via root locus. These controllers have the slowest performance but they produce the smallest values of the Cartesian acceleration reference. A proportional controller is enough to control the robotic system. The gain is chosen so that all the poles be real poles. The obtained controller is given by: R v ( z) = diag ( ) (1.7) The second controller essayed has been designed by applying pole placement methodology [1 9]. The closed loop poles for each cartesian coordinate are at p 1 = p =0.066 and p = The settling interval is less than the value obtained with the proportional controller. We also propose to use optimal control to design the visual controller. The objective of this method is to calculate the closed loop transfer function matrix which minimise the integral squared error between the output of the robotic subsystem and a desired output (p rd ). Of course the controller depends on the desired output. In order to get a smooth output and the less settling time we consider that the transfer functions matrix relative to the designed output is given by: a a x y a z (1.8) p ( z) = rd ( z 1)( z a x ) ( z 1)( z a y ) ( z 1)( z az ) 544

5 where the values of parameters (a x a y a z ) are chosen to obtain the best behaviour of the output concerning to speed and cancellation of oscillations. In the simulations we have used a value of 0. for all of them. The obtained controller is: z 0.045z R ( z) = diag( z z z z z 0.047z z ) z z 0.516z z z z (1.9) Other design possibility is to use a deadbeat system which produces the least settling interval. The transfer function matrix of these controllers: R z) = diag z z z z z z ( 4. SIMULATIONS AND EXPERIMENTS z z z (1.10) The next objective is to evaluate the different control strategies in order to select the more efficient controller. In this work we have used MATLAB simulation software to carry out this evaluation. In first place this section summarizes the results obtained from simulations of all the designed feedback controllers. In second place it presents the results obtained in the experimental platform. 4.1 Simulation results In order to compare the different controllers it is necessary to define a series of criteria that allow evaluating the behaviour of the robot system output. In this work we have chosen to consider the magnitude of settling interval (n s ) and the maximum value of the Cartesian acceleration reference (r a ) that the robot are going to undergo in order to achieve the required position increase. Figure 7 presents the robot output obtained in each case considering a noise signal r s with a standard deviation equal to 0.1 mm. and table 1 shows the values relative to the coordinate X of each controller for an input step equal to 10 mm. X (mm) Intervals Figure 7: Robot system outputs o o Proportional Pole placement Optimal control Deadbeat From the point of view of the settling interval the deadbeat controller is the best control strategy. However if we consider also the Cartesian acceleration reference value the optimal controller is the best control method. Using this controller steady state error becomes zero in 6 samples besides getting the smallest values of the acceleration. n s r a (mm/sec ) Classic controller Poles Placement Optimal controller Dead Beat Table 1 4. Experiments A set of experiment has been performed to validate the results obtained in simulations in order to demonstrate the capability of the control methods designed in this work. So we have developed a visual feedback control system consisting of a Staübli RX90 manipulator a PC (Pentium 1 Hz) a camera and MATROX image processing hardware. The vision computer is connected to the robotic subsystem through RS series line working to 1900 baud and calculates the position increment each 160 ms. However it would be possible to reduce the value of vision period using a more powerful image processing hardware The manipulator s trajectory is controlled via the Unimate controller s Alter line and requires path control updates once every 16 ms. A photograph of the experimental platform is shown in the figure 8. Figure 8: Experimental setup We have demonstrated in the simulations that the dead beat controller produces the fastest response. Figure 9 shows the robot system output obtained in the experimental platform for a step of 10 mm along x axis. The setting interval is 0.64 s. This controller improves the results presented by [1] where the setting interval was 0.85 s. Nevertheless when we also consider the cartesian acceleration reference value the optimal controller is the best control strategy. This regulator achieves to pose the robotic manipulator respect to the target in 6 samples (0.96 sec.) besides it produces small values of the acceleration reference avoiding the saturation of some joint motor. This method improves the results presented by Vargas et al. [8] where the settling interval was.5 sec. 545

6 Figure 10 shows the robot system output for an input step equal to 45 mm. X(mm) Figure 9: Step response with a deadbeat controller X(mm) Intervals Intervals Figure 10: Step response with an optimal controller 5. CONCLUSIONS In this article we have designed a position based dynamic look and move system for a 6 DOF industrial manipulator and a camera mounted on the end effector. The robot works using the ALTER facility. When operating in ALTER mode the robot is commanded in cartesian coordinates; thus it is not necessary to solve the inverse kinematics problem and no direct control on the servomotors is available. In first place it was necessary to obtain a model of the robotic system. This model was validated in some experimental test comparing its response to the real response of the robotic system. Several controllers have been designed studying the behaviour of the output of robotic system The next step was to examine the different control strategies from simulations to select the most efficient controller. These controllers have been evaluated in the experimental platform to validate the results obtained in the simulations. Its most important characteristic is that they are simple so they can be implemented in real time. The results that we present in this paper demonstrate the effectiveness of the designed position based dynamic look and move system to pose the robot with respect to a static object. Besides as the vision subsystem and the robot subsystem are independent it is easy to change some of them without having to modify the rest of the system. Thus the overall system is open to accept specific improvements relative to the vision system. 6. REFERENCES [1] P. I. Corke Visual control of robot manipulators A review in Visual Servoing K. Hashimoto Ed. Singapore: World Scientific 199 pp11. [] S. Hutchinson G. D. Hager and P. I. Corke A Tutorial on Visual Servo Control in IEEE Transactions on Robotics and Automation Vol 1 no 5 pp [] F. Chaumette P. Rives and B. Espiau Positioning of a robot with respect to an object tracking it and estimating its velocity by visual servoing Proc IEEE Int. Conf. on Robotics and Automation 1991 pp [4] C. E. Smith S. A. Brandt and N. P. Papanikolopoulos EyeInHand Robotic Task In Uncalibrated Environments. IEEE Transactions on Robotics and Automation Vol 1 pp [5] P. K. Khosla N. P. Papanikolopoulos and T. Kanade Visual tracking of a moving target by a camera mounted on a robot: A combination of control and vision IEEE Trans. Robot. Automat. vol 9 pp [6] W. Wilson C. C. Williams and G. S. Bell Relative endeffector control using cartesian position based visual servoing IEEE Transactions on Robotics and Automation vol 1 nº 5 pp [7] P. K. Allen A. Timcenko B. Yoshimi and P. Michelman Automated tracking and grasping of a moving object with a robotic handeye system. IEEE Transactions on Robotics and Automation vol. 9 nº pp [8] M. Vargas F. R. Rubio and A. R. Malpesa Poseestimation and control in a D visual servoing system. 14 th Triennial World Congress. IFAC pp [9] K. Hashimoto T. Ebine and H. Kimura Visual servoing with hand eye manipulator optimal control approach. IEEE Transactions on Robotics and Automation pp [10] a. J. Koivo and N. Houshangi Real time vision feedback for servoing robotic manipulator with self tuning controller. IEEE Transactions on Systems Man Cybernetics vol 1 n 1 pp [11] V. Feliu A Transformation Algorithm for Estimating System Laplace Transform from Sampled Data. IEEE Transactions on Systems Man and Cybernetics pp [1] J.A. Gangloff M. Mathelin and G. Abba 6 dof high speed dynamic visual servoing using gpc controllers. Proceedings of the 1998 IEEE Int. Conf. on Robotics and Automation pp

25 Hz. 25 Hz. X M(z) u c + u X. C(z) u ff KF. Θ, α. V(z) Θ m. 166 Hz Θ. Θ mot. C(z) Θ ref. C(z) V(z) 25 Hz. V(z) Θ, α. Interpolator.

25 Hz. 25 Hz. X M(z) u c + u X. C(z) u ff KF. Θ, α. V(z) Θ m. 166 Hz Θ. Θ mot. C(z) Θ ref. C(z) V(z) 25 Hz. V(z) Θ, α. Interpolator. Comparison of Control Structures for Visual Servoing S. Chroust y, J.P. Barreto z H. Araújo z, M. Vincze y y Vienna University of Technology Institute of Flexible Automation Gusshausstr. 27-20 /361 fsc,vmg@infa.tuwien.ac.at

More information

Visual Servoing Utilizing Zoom Mechanism

Visual Servoing Utilizing Zoom Mechanism IEEE Int. Conf. on Robotics and Automation 1995, pp.178 183, Nagoya, May. 12 16, 1995 1 Visual Servoing Utilizing Zoom Mechanism Koh HOSODA, Hitoshi MORIYAMA and Minoru ASADA Dept. of Mechanical Engineering

More information

Visual Tracking of a Hand-eye Robot for a Moving Target Object with Multiple Feature Points: Translational Motion Compensation Approach

Visual Tracking of a Hand-eye Robot for a Moving Target Object with Multiple Feature Points: Translational Motion Compensation Approach Visual Tracking of a Hand-eye Robot for a Moving Target Object with Multiple Feature Points: Translational Motion Compensation Approach Masahide Ito Masaaki Shibata Department of Electrical and Mechanical

More information

Robot Vision Control of robot motion from video. M. Jagersand

Robot Vision Control of robot motion from video. M. Jagersand Robot Vision Control of robot motion from video M. Jagersand Vision-Based Control (Visual Servoing) Initial Image User Desired Image Vision-Based Control (Visual Servoing) : Current Image Features : Desired

More information

Vision-Based Control of the RoboTenis System

Vision-Based Control of the RoboTenis System Vision-Based Control of the RoboTenis System L. Angel 1, A. Traslosheros 2, J.M. Sebastian 2, L. Pari 2, R. Carelli 3, and F. Roberti 3 1 Facultad de Ingeniera Electronica Universidad Pontificia Bolivariana

More information

Visual Servo...through the Pages of the Transactions on Robotics (... and Automation)

Visual Servo...through the Pages of the Transactions on Robotics (... and Automation) Dick Volz Festschrift p. 1 Visual Servo...through the Pages of the Transactions on Robotics (... and Automation) Seth Hutchinson University of Illinois Dick Volz Festschrift p. 2 Visual Servo Control The

More information

Keeping features in the camera s field of view: a visual servoing strategy

Keeping features in the camera s field of view: a visual servoing strategy Keeping features in the camera s field of view: a visual servoing strategy G. Chesi, K. Hashimoto,D.Prattichizzo,A.Vicino Department of Information Engineering, University of Siena Via Roma 6, 3 Siena,

More information

A comparison between Position Based and Image Based Visual Servoing on a 3 DOFs translating robot

A comparison between Position Based and Image Based Visual Servoing on a 3 DOFs translating robot A comparison between Position Based and Image Based Visual Servoing on a 3 DOFs translating robot Giacomo Palmieri 1, Matteo Palpacelli 2, Massimiliano Battistelli 2 1 Università degli Studi e-campus,

More information

LUMS Mine Detector Project

LUMS Mine Detector Project LUMS Mine Detector Project Using visual information to control a robot (Hutchinson et al. 1996). Vision may or may not be used in the feedback loop. Visual (image based) features such as points, lines

More information

Reinforcement Learning for Appearance Based Visual Servoing in Robotic Manipulation

Reinforcement Learning for Appearance Based Visual Servoing in Robotic Manipulation Reinforcement Learning for Appearance Based Visual Servoing in Robotic Manipulation UMAR KHAN, LIAQUAT ALI KHAN, S. ZAHID HUSSAIN Department of Mechatronics Engineering AIR University E-9, Islamabad PAKISTAN

More information

Visual servoing for a pan and tilt camera with upsampling control

Visual servoing for a pan and tilt camera with upsampling control Visual servoing for a pan and tilt camera with upsampling control Benoit Louvat Laurent Bonnaud Nicolas Marchand and Gerard Bouvier INPG Gipsa-lab 961 rue de la houille blanche Saint Martin d Heres France

More information

Prof. Fanny Ficuciello Robotics for Bioengineering Visual Servoing

Prof. Fanny Ficuciello Robotics for Bioengineering Visual Servoing Visual servoing vision allows a robotic system to obtain geometrical and qualitative information on the surrounding environment high level control motion planning (look-and-move visual grasping) low level

More information

MOTION. Feature Matching/Tracking. Control Signal Generation REFERENCE IMAGE

MOTION. Feature Matching/Tracking. Control Signal Generation REFERENCE IMAGE Head-Eye Coordination: A Closed-Form Solution M. Xie School of Mechanical & Production Engineering Nanyang Technological University, Singapore 639798 Email: mmxie@ntuix.ntu.ac.sg ABSTRACT In this paper,

More information

PSO based Adaptive Force Controller for 6 DOF Robot Manipulators

PSO based Adaptive Force Controller for 6 DOF Robot Manipulators , October 25-27, 2017, San Francisco, USA PSO based Adaptive Force Controller for 6 DOF Robot Manipulators Sutthipong Thunyajarern, Uma Seeboonruang and Somyot Kaitwanidvilai Abstract Force control in

More information

Cecilia Laschi The BioRobotics Institute Scuola Superiore Sant Anna, Pisa

Cecilia Laschi The BioRobotics Institute Scuola Superiore Sant Anna, Pisa University of Pisa Master of Science in Computer Science Course of Robotics (ROB) A.Y. 2016/17 cecilia.laschi@santannapisa.it http://didawiki.cli.di.unipi.it/doku.php/magistraleinformatica/rob/start Robot

More information

Visual Servoing for the Robotenis System: a Strategy for a 3 DOF Parallel Robot to Hit a Ping-Pong Ball

Visual Servoing for the Robotenis System: a Strategy for a 3 DOF Parallel Robot to Hit a Ping-Pong Ball 211 5th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC) Orlando, FL, USA, December 12-15, 211 Visual Servoing for the Robotenis System: a Strategy for a 3 DOF Parallel

More information

Control of a Robot Manipulator for Aerospace Applications

Control of a Robot Manipulator for Aerospace Applications Control of a Robot Manipulator for Aerospace Applications Antonella Ferrara a, Riccardo Scattolini b a Dipartimento di Informatica e Sistemistica - Università di Pavia, Italy b Dipartimento di Elettronica

More information

Robotics 2 Iterative Learning for Gravity Compensation

Robotics 2 Iterative Learning for Gravity Compensation Robotics 2 Iterative Learning for Gravity Compensation Prof. Alessandro De Luca Control goal! regulation of arbitrary equilibium configurations in the presence of gravity! without explicit knowledge of

More information

Calibration and Synchronization of a Robot-Mounted Camera for Fast Sensor-Based Robot Motion

Calibration and Synchronization of a Robot-Mounted Camera for Fast Sensor-Based Robot Motion IEEE Int. Conf. on Robotics and Automation ICRA2005, Barcelona, Spain, April 2005 Calibration and Synchronization of a Robot-Mounted Camera for Fast Sensor-Based Robot Motion Friedrich Lange and Gerd Hirzinger

More information

Control Design Tool for Algebraic Digital Controllers

Control Design Tool for Algebraic Digital Controllers Control Design Tool for Algebraic Digital Controllers Authors: Javier López, Ramón P. Ñeco, Óscar Reinoso, José M. Azorín, José M. Sabater, Nicolás M. García Departamento de Ingeniería de Sistemas Industriales,

More information

The end effector frame E. The selected or set vector: κ or ζ w.r.t. robot base frame ω1 or ω2 w.r.t. vision frame. y e. The vision frame V

The end effector frame E. The selected or set vector: κ or ζ w.r.t. robot base frame ω1 or ω2 w.r.t. vision frame. y e. The vision frame V Asymptotic Motion Control of Robot Manipulators Using Uncalibrated Visual Feedback Λ Yantao Shen and Yun-Hui Liu Dept. of Automation and Computer-Aided Engr. The Chinese University of Hong Kong, Hong Kong

More information

Proceedings of the 8th WSEAS Int. Conference on Automatic Control, Modeling and Simulation, Prague, Czech Republic, March 12-14, 2006 (pp )

Proceedings of the 8th WSEAS Int. Conference on Automatic Control, Modeling and Simulation, Prague, Czech Republic, March 12-14, 2006 (pp ) Dynamic Learning-Based Jacobian Estimation for Pan-Tilt-Verge Head Control SILA SORNSUJITRA and ARTHIT SRIKAEW Robotics and Automation Research Unit for Real-World Applications (RARA) School of Electrical

More information

Manipulator trajectory planning

Manipulator trajectory planning Manipulator trajectory planning Václav Hlaváč Czech Technical University in Prague Faculty of Electrical Engineering Department of Cybernetics Czech Republic http://cmp.felk.cvut.cz/~hlavac Courtesy to

More information

6-dof Eye-vergence visual servoing by 1-step GA pose tracking

6-dof Eye-vergence visual servoing by 1-step GA pose tracking International Journal of Applied Electromagnetics and Mechanics 52 (216) 867 873 867 DOI 1.3233/JAE-16225 IOS Press 6-dof Eye-vergence visual servoing by 1-step GA pose tracking Yu Cui, Kenta Nishimura,

More information

On Evolving Fuzzy Modeling for Visual Control of Robotic Manipulators

On Evolving Fuzzy Modeling for Visual Control of Robotic Manipulators On Evolving Fuzzy Modeling for Visual Control of Robotic Manipulators P.J.S. Gonçalves 1,2, P.M.B. Torres 2, J.R. Caldas Pinto 1, J.M.C. Sousa 1 1. Instituto Politécnico de Castelo Branco, Escola Superior

More information

Performance of a Partitioned Visual Feedback Controller

Performance of a Partitioned Visual Feedback Controller Proceedings of the 1999 IEEE International Conference on Robotics & Automation Detroit, Michigan May 1999 Performance of a Partitioned Visual Feedback Controller Paul Y. Oh and Peter K. Allen Dept. of

More information

A New Algorithm for Measuring and Optimizing the Manipulability Index

A New Algorithm for Measuring and Optimizing the Manipulability Index A New Algorithm for Measuring and Optimizing the Manipulability Index Mohammed Mohammed, Ayssam Elkady and Tarek Sobh School of Engineering, University of Bridgeport, USA. Mohammem@bridgeport.edu Abstract:

More information

Redundancy Resolution by Minimization of Joint Disturbance Torque for Independent Joint Controlled Kinematically Redundant Manipulators

Redundancy Resolution by Minimization of Joint Disturbance Torque for Independent Joint Controlled Kinematically Redundant Manipulators 56 ICASE :The Institute ofcontrol,automation and Systems Engineering,KOREA Vol.,No.1,March,000 Redundancy Resolution by Minimization of Joint Disturbance Torque for Independent Joint Controlled Kinematically

More information

TRAINING A ROBOTIC MANIPULATOR

TRAINING A ROBOTIC MANIPULATOR ME 4773/5493 Fundamental of Robotics Fall 2016 San Antonio, TX, USA TRAINING A ROBOTIC MANIPULATOR Jonathan Sackett Dept. of Mechanical Engineering San Antonio, TX, USA 78249 jonathan.sackett@utsa.edu

More information

Dynamic Analysis of Manipulator Arm for 6-legged Robot

Dynamic Analysis of Manipulator Arm for 6-legged Robot American Journal of Mechanical Engineering, 2013, Vol. 1, No. 7, 365-369 Available online at http://pubs.sciepub.com/ajme/1/7/42 Science and Education Publishing DOI:10.12691/ajme-1-7-42 Dynamic Analysis

More information

Intermediate Desired Value Approach for Continuous Transition among Multiple Tasks of Robots

Intermediate Desired Value Approach for Continuous Transition among Multiple Tasks of Robots 2 IEEE International Conference on Robotics and Automation Shanghai International Conference Center May 9-3, 2, Shanghai, China Intermediate Desired Value Approach for Continuous Transition among Multiple

More information

A Vision-Based Endpoint Trajectory and Vibration Control for Flexible Manipulators

A Vision-Based Endpoint Trajectory and Vibration Control for Flexible Manipulators 27 IEEE International Conference on Robotics and Automation Roma, Italy, -4 April 27 FrA. A Vision-Based Endpoint Trajectory and Vibration Control for Flexible Manipulators Xin Jiang, Atsushi Konno, Member,

More information

Survey on Visual Servoing for Manipulation

Survey on Visual Servoing for Manipulation Survey on Visual Servoing for Manipulation Danica Kragic and Henrik I Christensen Centre for Autonomous Systems, Numerical Analysis and Computer Science, Fiskartorpsv. 15 A 100 44 Stockholm, Sweden {danik,

More information

Adaptive Visual Servoing by Simultaneous Camera Calibration

Adaptive Visual Servoing by Simultaneous Camera Calibration 2007 IEEE International Conference on Robotics and Automation Roma, Italy, 10-14 April 2007 ThD2.1 Adaptive Visual Servoing by Simultaneous Camera Calibration J. Pomares, F. Chaumette, F. Torres Abstract

More information

1 Trajectories. Class Notes, Trajectory Planning, COMS4733. Figure 1: Robot control system.

1 Trajectories. Class Notes, Trajectory Planning, COMS4733. Figure 1: Robot control system. Class Notes, Trajectory Planning, COMS4733 Figure 1: Robot control system. 1 Trajectories Trajectories are characterized by a path which is a space curve of the end effector. We can parameterize this curve

More information

INSTITUTE OF AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING Name Code Class Branch Page 1 INSTITUTE OF AERONAUTICAL ENGINEERING : ROBOTICS (Autonomous) Dundigal, Hyderabad - 500 0 MECHANICAL ENGINEERING TUTORIAL QUESTION BANK : A7055 : IV B. Tech I Semester : MECHANICAL

More information

Autonomous Sensor Center Position Calibration with Linear Laser-Vision Sensor

Autonomous Sensor Center Position Calibration with Linear Laser-Vision Sensor International Journal of the Korean Society of Precision Engineering Vol. 4, No. 1, January 2003. Autonomous Sensor Center Position Calibration with Linear Laser-Vision Sensor Jeong-Woo Jeong 1, Hee-Jun

More information

A NOUVELLE MOTION STATE-FEEDBACK CONTROL SCHEME FOR RIGID ROBOTIC MANIPULATORS

A NOUVELLE MOTION STATE-FEEDBACK CONTROL SCHEME FOR RIGID ROBOTIC MANIPULATORS A NOUVELLE MOTION STATE-FEEDBACK CONTROL SCHEME FOR RIGID ROBOTIC MANIPULATORS Ahmad Manasra, 135037@ppu.edu.ps Department of Mechanical Engineering, Palestine Polytechnic University, Hebron, Palestine

More information

Robots are built to accomplish complex and difficult tasks that require highly non-linear motions.

Robots are built to accomplish complex and difficult tasks that require highly non-linear motions. Path and Trajectory specification Robots are built to accomplish complex and difficult tasks that require highly non-linear motions. Specifying the desired motion to achieve a specified goal is often a

More information

Motion Perceptibility and its Application to Active Vision-Based Servo Control

Motion Perceptibility and its Application to Active Vision-Based Servo Control IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 3, NO. 4, AUGUST 997 607 Motion Perceptibility and its Application to Active Vision-Based Servo Control Rajeev Sharma and Seth Hutchinson Abstract In

More information

A New Algorithm for Measuring and Optimizing the Manipulability Index

A New Algorithm for Measuring and Optimizing the Manipulability Index DOI 10.1007/s10846-009-9388-9 A New Algorithm for Measuring and Optimizing the Manipulability Index Ayssam Yehia Elkady Mohammed Mohammed Tarek Sobh Received: 16 September 2009 / Accepted: 27 October 2009

More information

Visual Servoing by Partitioning Degrees of Freedom

Visual Servoing by Partitioning Degrees of Freedom IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 17, NO. 1, FEBRUARY 2001 1 Visual Servoing by Partitioning Degrees of Freedom Paul Y. Oh, Member, IEEE, and Peter K. Allen, Member, IEEE Abstract There

More information

VIBRATION ISOLATION USING A MULTI-AXIS ROBOTIC PLATFORM G.

VIBRATION ISOLATION USING A MULTI-AXIS ROBOTIC PLATFORM G. VIBRATION ISOLATION USING A MULTI-AXIS ROBOTIC PLATFORM G. Satheesh Kumar, Y. G. Srinivasa and T. Nagarajan Precision Engineering and Instrumentation Laboratory Department of Mechanical Engineering Indian

More information

A Cost Oriented Humanoid Robot Motion Control System

A Cost Oriented Humanoid Robot Motion Control System Preprints of the 19th World Congress The International Federation of Automatic Control A Cost Oriented Humanoid Robot Motion Control System J. Baltes*, P. Kopacek**,M. Schörghuber** *Department of Computer

More information

Integration of visual cues for active tracking of an end-effector

Integration of visual cues for active tracking of an end-effector Proceedings of the 1999 IEEVRSJ International Conference on Intelligent Robots and Systems Integration of visual cues for active tracking of an end-effector D. KragiC Computational Vision and Active Perception

More information

3D Tracking Using Two High-Speed Vision Systems

3D Tracking Using Two High-Speed Vision Systems 3D Tracking Using Two High-Speed Vision Systems Yoshihiro NAKABO 1, Idaku ISHII 2, Masatoshi ISHIKAWA 3 1 University of Tokyo, Tokyo, Japan, nakabo@k2.t.u-tokyo.ac.jp 2 Tokyo University of Agriculture

More information

Simulation-Based Design of Robotic Systems

Simulation-Based Design of Robotic Systems Simulation-Based Design of Robotic Systems Shadi Mohammad Munshi* & Erik Van Voorthuysen School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052 shadimunshi@hotmail.com,

More information

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 1: Introduction

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 1: Introduction MCE/EEC 647/747: Robot Dynamics and Control Lecture 1: Introduction Reading: SHV Chapter 1 Robotics and Automation Handbook, Chapter 1 Assigned readings from several articles. Cleveland State University

More information

Image Based Visual Servoing Using Algebraic Curves Applied to Shape Alignment

Image Based Visual Servoing Using Algebraic Curves Applied to Shape Alignment The 29 IEEE/RSJ International Conference on Intelligent Robots and Systems October 11-15, 29 St. Louis, USA Image Based Visual Servoing Using Algebraic Curves Applied to Shape Alignment Ahmet Yasin Yazicioglu,

More information

EVALUATION OF THE PERFORMANCE OF VARIOUS FUZZY PID CONTROLLER STRUCTURES ON BENCHMARK SYSTEMS

EVALUATION OF THE PERFORMANCE OF VARIOUS FUZZY PID CONTROLLER STRUCTURES ON BENCHMARK SYSTEMS EVALUATION OF THE PERFORMANCE OF VARIOUS FUZZY CONTROLLER STRUCTURES ON BENCHMARK SYSTEMS Birkan Akbıyık İbrahim Eksin Müjde Güzelkaya Engin Yeşil e-mail: birkan@lycos.com e-mail:eksin@elk.itu.edu.tr e-mail:

More information

The University of Missouri - Columbia Electrical & Computer Engineering Department EE4330 Robotic Control and Intelligence

The University of Missouri - Columbia Electrical & Computer Engineering Department EE4330 Robotic Control and Intelligence The University of Missouri - Columbia Final Exam 1) Clear your desk top of all handwritten papers and personal notes. You may keep only your textbook, a cheat sheet, the test paper, a calculator and a

More information

Kinematics and dynamics analysis of micro-robot for surgical applications

Kinematics and dynamics analysis of micro-robot for surgical applications ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 5 (2009) No. 1, pp. 22-29 Kinematics and dynamics analysis of micro-robot for surgical applications Khaled Tawfik 1, Atef A.

More information

An Interactive Technique for Robot Control by Using Image Processing Method

An Interactive Technique for Robot Control by Using Image Processing Method An Interactive Technique for Robot Control by Using Image Processing Method Mr. Raskar D. S 1., Prof. Mrs. Belagali P. P 2 1, E&TC Dept. Dr. JJMCOE., Jaysingpur. Maharashtra., India. 2 Associate Prof.

More information

FREE SINGULARITY PATH PLANNING OF HYBRID PARALLEL ROBOT

FREE SINGULARITY PATH PLANNING OF HYBRID PARALLEL ROBOT Proceedings of the 11 th International Conference on Manufacturing Research (ICMR2013), Cranfield University, UK, 19th 20th September 2013, pp 313-318 FREE SINGULARITY PATH PLANNING OF HYBRID PARALLEL

More information

Chapter 1: Introduction

Chapter 1: Introduction Chapter 1: Introduction This dissertation will describe the mathematical modeling and development of an innovative, three degree-of-freedom robotic manipulator. The new device, which has been named the

More information

Motion Planning for Dynamic Knotting of a Flexible Rope with a High-speed Robot Arm

Motion Planning for Dynamic Knotting of a Flexible Rope with a High-speed Robot Arm The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems October 18-22, 2010, Taipei, Taiwan Motion Planning for Dynamic Knotting of a Flexible Rope with a High-speed Robot Arm Yuji

More information

Task selection for control of active vision systems

Task selection for control of active vision systems The 29 IEEE/RSJ International Conference on Intelligent Robots and Systems October -5, 29 St. Louis, USA Task selection for control of active vision systems Yasushi Iwatani Abstract This paper discusses

More information

Shortest Path Homography-Based Visual Control for Differential Drive Robots

Shortest Path Homography-Based Visual Control for Differential Drive Robots Citation: G. López-Nicolás, C. Sagüés, and J. J. Guerrero. Vision Systems, Shortest Path Homography-Based Visual Control for Differential Drive Robots, chapter 3, pp. 583 596. Edited by Goro Obinata and

More information

timizing Hand/Eye Configuration for Visual-Servo Systems

timizing Hand/Eye Configuration for Visual-Servo Systems timizing Hand/Eye Configuration for Visual-Servo Systems Rajeev Sharma Seth Hutchinson The Beckman nstitute, University of llinois at Urbana-Champaign 405 N. Mathews Avenue, Urbana, L 61801 Abstract We

More information

Design of Visual Servo Robot Tracking System Based on Image Feature

Design of Visual Servo Robot Tracking System Based on Image Feature 3rd International Conference on Mechatronics, Robotics and Automation (ICMRA 2015) Design of Visual Servo Robot Tracking System Based on Image Feature Yue Guo 1,a, Xiaolan Yao 2,b, Wei Li 3,c 1, 2, 3 School

More information

How to cope with a closed industrial robot control: a practical implementation for a 6-dof articulated robot

How to cope with a closed industrial robot control: a practical implementation for a 6-dof articulated robot How to cope with a closed industrial robot control: a practical implementation for a 6-dof articulated robot Basilio Bona Tommaso Calvelli Dipartimento di Automatica e Informatica Politecnico di Torino

More information

An actor-critic reinforcement learning controller for a 2-DOF ball-balancer

An actor-critic reinforcement learning controller for a 2-DOF ball-balancer An actor-critic reinforcement learning controller for a 2-DOF ball-balancer Andreas Stückl Michael Meyer Sebastian Schelle Projektpraktikum: Computational Neuro Engineering 2 Empty side for praktikums

More information

Trajectory Planning of Redundant Planar Mechanisms for Reducing Task Completion Duration

Trajectory Planning of Redundant Planar Mechanisms for Reducing Task Completion Duration Trajectory Planning of Redundant Planar Mechanisms for Reducing Task Completion Duration Emre Uzunoğlu 1, Mehmet İsmet Can Dede 1, Gökhan Kiper 1, Ercan Mastar 2, Tayfun Sığırtmaç 2 1 Department of Mechanical

More information

Research Subject. Dynamics Computation and Behavior Capture of Human Figures (Nakamura Group)

Research Subject. Dynamics Computation and Behavior Capture of Human Figures (Nakamura Group) Research Subject Dynamics Computation and Behavior Capture of Human Figures (Nakamura Group) (1) Goal and summary Introduction Humanoid has less actuators than its movable degrees of freedom (DOF) which

More information

autorob.github.io Inverse Kinematics UM EECS 398/598 - autorob.github.io

autorob.github.io Inverse Kinematics UM EECS 398/598 - autorob.github.io autorob.github.io Inverse Kinematics Objective (revisited) Goal: Given the structure of a robot arm, compute Forward kinematics: predicting the pose of the end-effector, given joint positions. Inverse

More information

Automatic Control Industrial robotics

Automatic Control Industrial robotics Automatic Control Industrial robotics Prof. Luca Bascetta (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Prof. Luca Bascetta Industrial robots

More information

Hand-Eye Calibration from Image Derivatives

Hand-Eye Calibration from Image Derivatives Hand-Eye Calibration from Image Derivatives Abstract In this paper it is shown how to perform hand-eye calibration using only the normal flow field and knowledge about the motion of the hand. The proposed

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Control Part 4 Other control strategies These slides are devoted to two advanced control approaches, namely Operational space control Interaction

More information

Table of Contents. Chapter 1. Modeling and Identification of Serial Robots... 1 Wisama KHALIL and Etienne DOMBRE

Table of Contents. Chapter 1. Modeling and Identification of Serial Robots... 1 Wisama KHALIL and Etienne DOMBRE Chapter 1. Modeling and Identification of Serial Robots.... 1 Wisama KHALIL and Etienne DOMBRE 1.1. Introduction... 1 1.2. Geometric modeling... 2 1.2.1. Geometric description... 2 1.2.2. Direct geometric

More information

Singularity Handling on Puma in Operational Space Formulation

Singularity Handling on Puma in Operational Space Formulation Singularity Handling on Puma in Operational Space Formulation Denny Oetomo, Marcelo Ang Jr. National University of Singapore Singapore d oetomo@yahoo.com mpeangh@nus.edu.sg Ser Yong Lim Gintic Institute

More information

Inverse Kinematics. Given a desired position (p) & orientation (R) of the end-effector

Inverse Kinematics. Given a desired position (p) & orientation (R) of the end-effector Inverse Kinematics Given a desired position (p) & orientation (R) of the end-effector q ( q, q, q ) 1 2 n Find the joint variables which can bring the robot the desired configuration z y x 1 The Inverse

More information

DEVELOPMENT OF TELE-ROBOTIC INTERFACE SYSTEM FOR THE HOT-LINE MAINTENANCE. Chang-Hyun Kim, Min-Soeng Kim, Ju-Jang Lee,1

DEVELOPMENT OF TELE-ROBOTIC INTERFACE SYSTEM FOR THE HOT-LINE MAINTENANCE. Chang-Hyun Kim, Min-Soeng Kim, Ju-Jang Lee,1 DEVELOPMENT OF TELE-ROBOTIC INTERFACE SYSTEM FOR THE HOT-LINE MAINTENANCE Chang-Hyun Kim, Min-Soeng Kim, Ju-Jang Lee,1 Dept. of Electrical Engineering and Computer Science Korea Advanced Institute of Science

More information

Development of 3D Positioning Scheme by Integration of Multiple Wiimote IR Cameras

Development of 3D Positioning Scheme by Integration of Multiple Wiimote IR Cameras Proceedings of the 5th IIAE International Conference on Industrial Application Engineering 2017 Development of 3D Positioning Scheme by Integration of Multiple Wiimote IR Cameras Hui-Yuan Chan *, Ting-Hao

More information

PRACTICAL SESSION 4: FORWARD DYNAMICS. Arturo Gil Aparicio.

PRACTICAL SESSION 4: FORWARD DYNAMICS. Arturo Gil Aparicio. PRACTICAL SESSION 4: FORWARD DYNAMICS Arturo Gil Aparicio arturo.gil@umh.es OBJECTIVES After this practical session, the student should be able to: Simulate the movement of a simple mechanism using the

More information

Task analysis based on observing hands and objects by vision

Task analysis based on observing hands and objects by vision Task analysis based on observing hands and objects by vision Yoshihiro SATO Keni Bernardin Hiroshi KIMURA Katsushi IKEUCHI Univ. of Electro-Communications Univ. of Karlsruhe Univ. of Tokyo Abstract In

More information

IMAGE MOMENTS have been widely used in computer vision

IMAGE MOMENTS have been widely used in computer vision IEEE TRANSACTIONS ON ROBOTICS, VOL. 20, NO. 4, AUGUST 2004 713 Image Moments: A General Useful Set of Features for Visual Servoing François Chaumette, Member, IEEE Abstract In this paper, we determine

More information

Modeling of Humanoid Systems Using Deductive Approach

Modeling of Humanoid Systems Using Deductive Approach INFOTEH-JAHORINA Vol. 12, March 2013. Modeling of Humanoid Systems Using Deductive Approach Miloš D Jovanović Robotics laboratory Mihailo Pupin Institute Belgrade, Serbia milos.jovanovic@pupin.rs Veljko

More information

Multi-sensor data fusion in sensor-based control: application to multi-camera visual servoing

Multi-sensor data fusion in sensor-based control: application to multi-camera visual servoing Multi-sensor data fusion in sensor-based control: application to multi-camera visual servoing Olivier Kermorgant and François Chaumette Abstract A low-level sensor fusion scheme is presented for the positioning

More information

Auto-focusing Technique in a Projector-Camera System

Auto-focusing Technique in a Projector-Camera System 2008 10th Intl. Conf. on Control, Automation, Robotics and Vision Hanoi, Vietnam, 17 20 December 2008 Auto-focusing Technique in a Projector-Camera System Lam Bui Quang, Daesik Kim and Sukhan Lee School

More information

HAREMS: Hierarchical Architecture for Robotics Experiments with Multiple Sensors

HAREMS: Hierarchical Architecture for Robotics Experiments with Multiple Sensors HAREMS: Hierarchical Architecture for Robotics Experiments with Multiple Sensors Giorgio Buttazzo ARTS Lab Scuola Superiore S. Anna Via Carducci, 40 56100 Pisa, Italy Abstract - This paper presents a hierarchical

More information

Torque-Position Transformer for Task Control of Position Controlled Robots

Torque-Position Transformer for Task Control of Position Controlled Robots 28 IEEE International Conference on Robotics and Automation Pasadena, CA, USA, May 19-23, 28 Torque-Position Transformer for Task Control of Position Controlled Robots Oussama Khatib, 1 Peter Thaulad,

More information

Pulsating flow around a stationary cylinder: An experimental study

Pulsating flow around a stationary cylinder: An experimental study Proceedings of the 3rd IASME/WSEAS Int. Conf. on FLUID DYNAMICS & AERODYNAMICS, Corfu, Greece, August 2-22, 2 (pp24-244) Pulsating flow around a stationary cylinder: An experimental study A. DOUNI & D.

More information

Segmentation and Tracking of Partial Planar Templates

Segmentation and Tracking of Partial Planar Templates Segmentation and Tracking of Partial Planar Templates Abdelsalam Masoud William Hoff Colorado School of Mines Colorado School of Mines Golden, CO 800 Golden, CO 800 amasoud@mines.edu whoff@mines.edu Abstract

More information

IMAGE DE-NOISING IN WAVELET DOMAIN

IMAGE DE-NOISING IN WAVELET DOMAIN IMAGE DE-NOISING IN WAVELET DOMAIN Aaditya Verma a, Shrey Agarwal a a Department of Civil Engineering, Indian Institute of Technology, Kanpur, India - (aaditya, ashrey)@iitk.ac.in KEY WORDS: Wavelets,

More information

Introduction to visual servoing

Introduction to visual servoing October 17th December 16th, 2005 Introduction to visual servoing Professor IFMA LASMEA Clermont-Ferrand, France Philippe.Martinet@lasmea.univ-bpclermont.fr http://wwwlasmea.univ-bpclermont.fr/philippe.martinet/welcome.html

More information

Serial Manipulator Statics. Robotics. Serial Manipulator Statics. Vladimír Smutný

Serial Manipulator Statics. Robotics. Serial Manipulator Statics. Vladimír Smutný Serial Manipulator Statics Robotics Serial Manipulator Statics Vladimír Smutný Center for Machine Perception Czech Institute for Informatics, Robotics, and Cybernetics (CIIRC) Czech Technical University

More information

Robotics 2 Visual servoing

Robotics 2 Visual servoing Robotics 2 Visual servoing Prof. Alessandro De Luca Visual servoing! objective use information acquired by vision sensors (cameras) for feedback control of the pose/motion of a robot (or of parts of it)

More information

New shortest-path approaches to visual servoing

New shortest-path approaches to visual servoing New shortest-path approaches to visual servoing Ville Laboratory of Information rocessing Lappeenranta University of Technology Lappeenranta, Finland kyrki@lut.fi Danica Kragic and Henrik I. Christensen

More information

AMR 2011/2012: Final Projects

AMR 2011/2012: Final Projects AMR 2011/2012: Final Projects 0. General Information A final project includes: studying some literature (typically, 1-2 papers) on a specific subject performing some simulations or numerical tests on an

More information

Introducing Robotics Vision System to a Manufacturing Robotics Course

Introducing Robotics Vision System to a Manufacturing Robotics Course Paper ID #16241 Introducing Robotics Vision System to a Manufacturing Robotics Course Dr. Yuqiu You, Ohio University c American Society for Engineering Education, 2016 Introducing Robotics Vision System

More information

MODELING AND SIMULATION METHODS FOR DESIGNING MECHATRONIC SYSTEMS

MODELING AND SIMULATION METHODS FOR DESIGNING MECHATRONIC SYSTEMS Journal of Engineering Studies and Research Volume 16 (2010) No. 4 20 MODELING AND SIMULATION METHODS FOR DESIGNING MECHATRONIC SYSTEMS LAPUSAN CIPRIAN *, MATIES VISTRIAN, BALAN RADU, HANCU OLIMPIU Technical

More information

Inverse Kinematics (part 1) CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

Inverse Kinematics (part 1) CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018 Inverse Kinematics (part 1) CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018 Welman, 1993 Inverse Kinematics and Geometric Constraints for Articulated Figure Manipulation, Chris

More information

DESIGN AND IMPLEMENTATION OF VISUAL FEEDBACK FOR AN ACTIVE TRACKING

DESIGN AND IMPLEMENTATION OF VISUAL FEEDBACK FOR AN ACTIVE TRACKING DESIGN AND IMPLEMENTATION OF VISUAL FEEDBACK FOR AN ACTIVE TRACKING Tomasz Żabiński, Tomasz Grygiel, Bogdan Kwolek Rzeszów University of Technology, W. Pola 2, 35-959 Rzeszów, Poland tomz, bkwolek@prz-rzeszow.pl

More information

KINEMATIC AND DYNAMIC SIMULATION OF A 3DOF PARALLEL ROBOT

KINEMATIC AND DYNAMIC SIMULATION OF A 3DOF PARALLEL ROBOT Bulletin of the Transilvania University of Braşov Vol. 8 (57) No. 2-2015 Series I: Engineering Sciences KINEMATIC AND DYNAMIC SIMULATION OF A 3DOF PARALLEL ROBOT Nadia Ramona CREŢESCU 1 Abstract: This

More information

Written exams of Robotics 2

Written exams of Robotics 2 Written exams of Robotics 2 http://www.diag.uniroma1.it/~deluca/rob2_en.html All materials are in English, unless indicated (oldies are in Year Date (mm.dd) Number of exercises Topics 2018 07.11 4 Inertia

More information

10/25/2018. Robotics and automation. Dr. Ibrahim Al-Naimi. Chapter two. Introduction To Robot Manipulators

10/25/2018. Robotics and automation. Dr. Ibrahim Al-Naimi. Chapter two. Introduction To Robot Manipulators Robotics and automation Dr. Ibrahim Al-Naimi Chapter two Introduction To Robot Manipulators 1 Robotic Industrial Manipulators A robot manipulator is an electronically controlled mechanism, consisting of

More information

A Framework for Compliant Physical Interaction based on Multisensor Information

A Framework for Compliant Physical Interaction based on Multisensor Information A Framework for Compliant Physical Interaction based on Multisensor Information Mario Prats, Pedro J. Sanz and Angel P. del Pobil Abstract Dependable robotic manipulation of everyday objects and execution

More information

A MULTI-ROBOT SYSTEM FOR ASSEMBLY TASKS IN AUTOMOTIVE INDUSTRY

A MULTI-ROBOT SYSTEM FOR ASSEMBLY TASKS IN AUTOMOTIVE INDUSTRY The 4th International Conference Computational Mechanics and Virtual Engineering COMEC 2011 20-22 OCTOBER 2011, Brasov, Romania A MULTI-ROBOT SYSTEM FOR ASSEMBLY TASKS IN AUTOMOTIVE INDUSTRY A. Fratu 1

More information

Optimal Design of a 6-DOF 4-4 Parallel Manipulator with Uncoupled Singularities

Optimal Design of a 6-DOF 4-4 Parallel Manipulator with Uncoupled Singularities Optimal Design of a 6-DOF 4-4 Parallel Manipulator with Uncoupled Singularities Júlia Borràs (1), Erika Ottaviano (2), Marco Ceccarelli (2) and Federico Thomas (1) (1) Institut de Robòtica i Informàtica

More information

Lecture VI: Constraints and Controllers. Parts Based on Erin Catto s Box2D Tutorial

Lecture VI: Constraints and Controllers. Parts Based on Erin Catto s Box2D Tutorial Lecture VI: Constraints and Controllers Parts Based on Erin Catto s Box2D Tutorial Motion Constraints In practice, no rigid body is free to move around on its own. Movement is constrained: wheels on a

More information