SUPER OBLIQUE INCIDENCE INTERFEROMETER USING SWS PRISM

Size: px
Start display at page:

Download "SUPER OBLIQUE INCIDENCE INTERFEROMETER USING SWS PRISM"

Transcription

1 SUPER OBLIQUE INCIDENCE INTERFEROMETER USING SWS PRISM Yukitosi OTANI 1,2), Yasuiro MIZUTANI 2), Noriiro UMEDA 2) 1) Optical Sciences Center, University of Arizona, Arizona ) Dept, of Mec. Sys. Engg., Tokyo University of Agriculture and Tecnology, Koganei, Tokyo, JAPAN Abstract A super oblique incidence interferometer is proposed by using an anti-reflection prism wit sub-wavelengt structure (SWS). Its sensitivity is lower tan an ordinary interferometer wit ig contrast. A fringe interval of its interferometer depends on te incident angle. Te SWS prism as a feature of increasing even if near te critical angle. Te rigorous coupled wave analysis (RCWA) is used to analyze te anti-reflection effects of SWS. An experimental result of of SWS prism agrees well wit te calculated result. Hig contrast fringe is acieved at 86º of te incident angle. A flatness measurement of a silicon wafer wit circuit patterns is succeeded by tis interferometer. Keywords anti-reflection prism oblique incidence interferometer, flatness measurement, SWS(sub-wavelengt structure), 1 Introduction A surface profile measurement of silicon wafer is still important in te field of te semiconductor industry. A size of wafer is larger tan 3 mm of te diameter and its tickness is tinner and tinner. Moreover, a fabrication process is more complicate for multilayer interconnection of te circuit patterns. Terefore, te flatness and/or waviness in tis large area become bigger and bigger. Meanwile, te requirement of te flatness in te micro area is more accurate using a process of te cemical mecanical polising. Tere are many reports to overcome contrariety requirements 1). Te fringe interval of a common interferometer wit vertical incidence is alf of wavelengt. If te flatness is muc waviness, we can not detect te surface profile because of 2π uncertainty and/or overlapped fringes. In general, an interferometer, especially a wite ligt interferometer, is powerful tool for tis purpose. An oblique interferometer is also possible to reduce te sensitivity of te fringe 2,3). Abramson proposed an oblique incidence interferometer by using a rigt-angled prism 2) but tere is a limitation of incident angle to increase te fringe interval because of a critical angle. To overcome tis problem, we propose a super oblique incidence interferometer using a sub-wavelengt structure (SWS) prism wit te anti-reflection effect. Recently, many papers related a SWS for anti-reflection effect ave been proposed 4-7). Te period of widt and eigt of SWS is almost equal to te wavelengt of te incident ligt. An anti-reflection effect of mot eye structure was first discovered by Bernard 4). A vector model for

2 SWS was first proposed by Moaram called te rigorous coupled wave analysis (RCWA) 5). It is powerful tool for accurate analysis of te diffraction of electromagnetic waves by periodic structure. We ave proposed a model error resulted at te numerical model divided SWS into several sections of model by te RCWA 7). Most of te anti-reflection studies ave been for vertical angle of te incident ligt. We study optical beaviors at SWS for oblique incidence. Experimental results are compared accurately wit simulation results of simulation model by using AFM. 2. Super oblique incidence interferometer by SWS prism 2.1 Experimental setup Figure 1 is an optical configuration for a super oblique incidence interferometer using SWS prism. Tis interferometer is based on Mac-Zender type wit two pair of SWS prism. A beam expander (L1, L2) and two alf mirror (HM1, HM2) are used for collimate and tilt of te ligt. Te incident beam is divided into a reference and a object beam by HM1 and HM2. One of te prisms is faced to te sample as an object beam and te oter is used as a reference to te M2 mirror. A ligt source is possible to use bot a wite ligt and a monocromatic ligt. Its sensitivity can be adjusted by canging te incident angle θ to te sample. Te eigt of a sample (x,y) is sown ( x, y) = φ, ( 1) ( x, y) 4 cosθ were is te wavelengt and φ(x,y) is te pase difference between te reference and te object beam. Te intensity I(x,y) of te interference fringe captured by te CCD camera is expressed as, ( xy ) I = a + b + 2abcos φ + δ. ( 2) 2 2 ( xy, ) (, ) L1 L2 M1 SWS prism ligt source HM1 SWS prism φ M2 ref. M3 HM2 object sample Fig.1 Super oblique incidence interferometer L3 CCD Here, a and b are te bias of te reference and te object beam. δ is te pase sift. Four step pase-sifting tecnique is employed to analyze tis fringe. In case of a wite ligt interferometer, we use te reference SWS prism to compensate wavelengt dispersion. However, we can remove it wen a monocromatic ligt source is utilized. fringe 2.2 Fabrication of SWS prism A SWS prism wit anti-reflection effect is illustrated in Fig.2. Figure 2 (a) is a detailed structure of SWS. Te requirement of tis structure is to fabricate a cycle of widt and eigt equal to te wavelengt. An oblique

3 4 Oblique incidence n 1 z x 2 µm eigt [nm] n 2 w W, (a) Structure of SWS and effective refractive index n 1 2 n index (b) 3D view by AFM x [nm] (C) Cross section and simulation model for RCWA Fig.2 Sub-wavelengt structure of anti reflection effect for oblique-incidence TE (SWS) TM (SWS) TE (flat) TM (flat) output angle [deg] Fig.3 RCWA simulated results of incidence wave transmitted from region I (refractive index: n 1 ) to region II (refractive index: n 2 ). Te refractive indices between two mediums along optical axis are canging slowly. Effective refractive index is obtained on te average of refractive indices of z axis in Figure 2(a). Tis means te Fresnel reflection at a boundary is also reduced. Figure 2(b) sows a surface profile of te manufactured SWS measured by a critical dimension (CD)-AFM. Its cross-section is sown in Fig.2(c). As tis result, a eigt of SWS is 35 nm, a widt is l97 nm and a period is 433 nm. (c) External result of te Fig.4 SWS prism A of SWS for te oblique incidence as been simulated by using RCWA. Te surface profile for tis simulation is measured by CD-AFM. Te equality orizontal lines in Fig.2(c) mean te simulation (a) Picture of SWS prism (BK7 n=1.52) 55.3mm anti-reflection (b) Detail of SWS prism He-Ne(633nm) 136mm 39.6 wit anti-reflection witout anti-reflection incident angle [deg] 41mm

4 row 1 14 row col 12 1 col unwrap _86_unwrap2 Table 1 Experimental result of surface profile measurement Incident angle[º] interferogram pase map surface profile ( =1.2µm) [mm] 1 [!m] [mm] 24 [!m] 86 ( =4.5µm) [mm] [mm] 5mm y [mm] 2. Measurement area x [mm] eigt [µm] (b) surface profile Fig.5 Surface profile of silicon wafer wit circuit pattern model for te SWS and te number of layers is 5 7). Figure 3 sows te along output angle compared te SWS prism wit te flat surface by RCWA. A wavelengt of incident wave is nm and polarizations of te incident wave are p and s-polarization. Te reflectance of TE mode is lower tan flat surface at all incident angles. Figure 4 slows an experimental result of te anti-reflection effect for te oblique incidence of SWS prism. Te SWS prism is made of BK7 glass and polymer film of te sub-wavelengt structure sown in Fig.4(a). Te

5 size of te prism is illustrated in Fig.4(b). Te two parts of SWS, as sown circled area, glued on te bottom of a prism SWS. Figure 4(c) is te experimental result. Te by SWS prism is muc iger tan by witout SWS. Te of 41º is succeeded to increase more tan 5%. 3. Experimental results of surface profile measurement We measured a piece of silicon wafer by te super oblique incidence interferometer sown in Fig.1. In tis experiment, we utilized a He-Ne laser at 632.8nm as a ligt source. A reference minor (M2) is moved for pase-sifting by a piezoelectric actuator (PZT, NEC-TOKIN). Table 1 sows two difference interferogram, pase map and surface profile given by different incident angles. Te silicon wafer is taped down on te glass substrate. An oblique incident angles are and 86º. A fringe space of 86º is wider tan tat of º. We can measure a smoot surface profile suc as a silicon wafer by tis metod. Te waviness of tis silicon is 47µm. Figure 5 sows te measured result of a silicon wafer wit multilayer interconnection of circuit patterns as Low-k + Cu -DD (Duel Damascene) wit CMP (Cemical Mecanical Polising). Its measurement area is 3x2 mm. We can succeed to measure wafer surface even if te large steps and waviness. 4. Conclusion We ave proposed a super oblique incidence interferometer by SWS prism. We succeeded to increase an efficient at te oblique incidence by te SWS prism under te condition of te vicinity or critical angle. A sape of te structure is a trapezoid wit eigt and widt of sub-wavelengt order periodically. Te experimental results of agree well wit te calculated results by RCWA. Te incident angle of te oblique interferometer could be acieved 86º. Te measurement of a silicon wafer wit multilayer interconnection of circuit patterns was succeeded to measure by tis interferometer. Te autors tank to Japan Veeco for elping te AFM measurement. References 1. D.Malacara : Optical sop testing (Wiley, 1992). 2. N.Abramson: Optik, 3, 56 (1967). 3. Y.Otani, N.Okuara, T. Yosizawa : Opt. Eng (1998). 4. C.G.Bermard : Endeavour, 26,79 (1967.) 5. M.G..Moaram, T.K.Gaylord : Applied Optics, 2, 24 (1981). 6. Y.Kanaori, M.Sasaki, K.Hane: Opt.Lett., 24, 2, 1422 (1999). 7. Y.Mizutani, K.Minato, Y.Otani, N.Umeda: ICO '4, 54l, (24).

θ R = θ 0 (1) -The refraction law says that: the direction of refracted ray (angle θ 1 from vertical) is (2)

θ R = θ 0 (1) -The refraction law says that: the direction of refracted ray (angle θ 1 from vertical) is (2) LIGHT (Basic information) - Considering te ligt of a projector in a smoky room, one gets to geometrical optics model of ligt as a set of tiny particles tat travel along straigt lines called "optical rays.

More information

Chapter K. Geometric Optics. Blinn College - Physics Terry Honan

Chapter K. Geometric Optics. Blinn College - Physics Terry Honan Capter K Geometric Optics Blinn College - Pysics 2426 - Terry Honan K. - Properties of Ligt Te Speed of Ligt Te speed of ligt in a vacuum is approximately c > 3.0µ0 8 mês. Because of its most fundamental

More information

Interference and Diffraction of Light

Interference and Diffraction of Light Interference and Diffraction of Ligt References: [1] A.P. Frenc: Vibrations and Waves, Norton Publ. 1971, Capter 8, p. 280-297 [2] PASCO Interference and Diffraction EX-9918 guide (written by Ann Hanks)

More information

Vector Processing Contours

Vector Processing Contours Vector Processing Contours Andrey Kirsanov Department of Automation and Control Processes MAMI Moscow State Tecnical University Moscow, Russia AndKirsanov@yandex.ru A.Vavilin and K-H. Jo Department of

More information

Non-Interferometric Testing

Non-Interferometric Testing NonInterferometric Testing.nb Optics 513 - James C. Wyant 1 Non-Interferometric Testing Introduction In tese notes four non-interferometric tests are described: (1) te Sack-Hartmann test, (2) te Foucault

More information

19.2 Surface Area of Prisms and Cylinders

19.2 Surface Area of Prisms and Cylinders Name Class Date 19 Surface Area of Prisms and Cylinders Essential Question: How can you find te surface area of a prism or cylinder? Resource Locker Explore Developing a Surface Area Formula Surface area

More information

4D Technology Corporation

4D Technology Corporation 4D Technology Corporation Dynamic Laser Interferometry for Company Profile Disk Shape Characterization DiskCon Asia-Pacific 2006 Chip Ragan chip.ragan@4dtechnology.com www.4dtechnology.com Interferometry

More information

Tolerancing of single point diamond turned diffractive. Carl Zeiss AG, Oberkochen, Germany. with. ρ = 1/R

Tolerancing of single point diamond turned diffractive. Carl Zeiss AG, Oberkochen, Germany. with. ρ = 1/R J O U R N A L O F Journal of te European Optical Society - Rapid Publications, 0708 (007) www.jeos.org T H E E U R O P E A N Tolerancing of single point diamond turned diffractive O Poptical T elements

More information

MEASUREMENT OF PATTERNED WAFER SURFACE DEFECTS USING ANNULAR EVANESCENT LIGHT ILLUMINATION METHOD

MEASUREMENT OF PATTERNED WAFER SURFACE DEFECTS USING ANNULAR EVANESCENT LIGHT ILLUMINATION METHOD XVIII IMEKO WORLD CONGRESS Metrology for a Sustainable Development September, 17 22, 26, Rio de Janeiro, Brazil MEASUREMENT OF PATTERNED WAFER SURFACE DEFECTS USING ANNULAR EVANESCENT LIGHT ILLUMINATION

More information

ANTENNA SPHERICAL COORDINATE SYSTEMS AND THEIR APPLICATION IN COMBINING RESULTS FROM DIFFERENT ANTENNA ORIENTATIONS

ANTENNA SPHERICAL COORDINATE SYSTEMS AND THEIR APPLICATION IN COMBINING RESULTS FROM DIFFERENT ANTENNA ORIENTATIONS NTNN SPHRICL COORDINT SSTMS ND THIR PPLICTION IN COMBINING RSULTS FROM DIFFRNT NTNN ORINTTIONS llen C. Newell, Greg Hindman Nearfield Systems Incorporated 133. 223 rd St. Bldg. 524 Carson, C 9745 US BSTRCT

More information

INTERFERENCE. where, m = 0, 1, 2,... (1.2) otherwise, if it is half integral multiple of wavelength, the interference would be destructive.

INTERFERENCE. where, m = 0, 1, 2,... (1.2) otherwise, if it is half integral multiple of wavelength, the interference would be destructive. 1.1 INTERFERENCE When two (or more than two) waves of the same frequency travel almost in the same direction and have a phase difference that remains constant with time, the resultant intensity of light

More information

More on Functions and Their Graphs

More on Functions and Their Graphs More on Functions and Teir Graps Difference Quotient ( + ) ( ) f a f a is known as te difference quotient and is used exclusively wit functions. Te objective to keep in mind is to factor te appearing in

More information

Traffic Sign Classification Using Ring Partitioned Method

Traffic Sign Classification Using Ring Partitioned Method Traffic Sign Classification Using Ring Partitioned Metod Aryuanto Soetedjo and Koici Yamada Laboratory for Management and Information Systems Science, Nagaoa University of Tecnology 603- Kamitomioamaci,

More information

2 The Derivative. 2.0 Introduction to Derivatives. Slopes of Tangent Lines: Graphically

2 The Derivative. 2.0 Introduction to Derivatives. Slopes of Tangent Lines: Graphically 2 Te Derivative Te two previous capters ave laid te foundation for te study of calculus. Tey provided a review of some material you will need and started to empasize te various ways we will view and use

More information

Optics Vac Work MT 2008

Optics Vac Work MT 2008 Optics Vac Work MT 2008 1. Explain what is meant by the Fraunhofer condition for diffraction. [4] An aperture lies in the plane z = 0 and has amplitude transmission function T(y) independent of x. It is

More information

Coherent Gradient Sensing Microscopy: Microinterferometric Technique. for Quantitative Cell Detection

Coherent Gradient Sensing Microscopy: Microinterferometric Technique. for Quantitative Cell Detection Coherent Gradient Sensing Microscopy: Microinterferometric Technique for Quantitative Cell Detection Proceedings of the SEM Annual Conference June 7-10, 010 Indianapolis, Indiana USA 010 Society for Experimental

More information

Journal of Advanced Mechanical Design, Systems, and Manufacturing

Journal of Advanced Mechanical Design, Systems, and Manufacturing 123456789 Bulletin of the JSME Journal of Advanced Mechanical Design, Systems, and Manufacturing Vol.1, No.5, 216 Investigation on the three-dimensional light intensity distribution of the fringe patterns

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

Interference with polarized light

Interference with polarized light Interference with polarized light Summary of the previous lecture (see lecture 3 - slides 12 to 25) With polarized light E 1 et E 2 are complex amplitudes: E 1 + E 2 e iϕ 2 = E 1 2 + E 2 2 + 2 Re(E 1 *

More information

When the dimensions of a solid increase by a factor of k, how does the surface area change? How does the volume change?

When the dimensions of a solid increase by a factor of k, how does the surface area change? How does the volume change? 8.4 Surface Areas and Volumes of Similar Solids Wen te dimensions of a solid increase by a factor of k, ow does te surface area cange? How does te volume cange? 1 ACTIVITY: Comparing Surface Areas and

More information

Optics: Reflection and Refraction (approx. completion time: 2.5 h) (3/28/11)

Optics: Reflection and Refraction (approx. completion time: 2.5 h) (3/28/11) Optics: Reflection and Refraction (approx. completion time: 2.5 h) (3/28/11) Introduction In this lab you will investigate the reflection and refraction of light. Reflection of light from a surface is

More information

NEW OPTICAL MEASUREMENT TECHNIQUE FOR SI WAFER SURFACE DEFECTS USING ANNULAR ILLUMINATION WITH CROSSED NICOLS

NEW OPTICAL MEASUREMENT TECHNIQUE FOR SI WAFER SURFACE DEFECTS USING ANNULAR ILLUMINATION WITH CROSSED NICOLS NEW OPTICAL MEASUREMENT TECHNIQUE FOR SI WAFER SURFACE DEFECTS USING ANNULAR ILLUMINATION WITH CROSSED NICOLS Satoru Takahashi 1, Takashi Miyoshi 1, Yasuhiro Takaya 1, and Takahiro Abe 2 1 Department of

More information

E x Direction of Propagation. y B y

E x Direction of Propagation. y B y x E x Direction of Propagation k z z y B y An electromagnetic wave is a travelling wave which has time varying electric and magnetic fields which are perpendicular to each other and the direction of propagation,

More information

Development of shape measuring system using a line sensor in a lateral shearing interferometer

Development of shape measuring system using a line sensor in a lateral shearing interferometer Development of shape measuring system using a line sensor in a lateral shearing interferometer Takashi NOMURA*a, Kazuhide KAMIYA*a, Akiko NAGATA*a, Hatsuzo TASHIRO **b, Seiichi OKUDA ***c a Toyama Prefectural

More information

Supplementary Figure 1 Optimum transmissive mask design for shaping an incident light to a desired

Supplementary Figure 1 Optimum transmissive mask design for shaping an incident light to a desired Supplementary Figure 1 Optimum transmissive mask design for shaping an incident light to a desired tangential form. (a) The light from the sources and scatterers in the half space (1) passes through the

More information

2.8 The derivative as a function

2.8 The derivative as a function CHAPTER 2. LIMITS 56 2.8 Te derivative as a function Definition. Te derivative of f(x) istefunction f (x) defined as follows f f(x + ) f(x) (x). 0 Note: tis differs from te definition in section 2.7 in

More information

A SUPER-RESOLUTION MICROSCOPY WITH STANDING EVANESCENT LIGHT AND IMAGE RECONSTRUCTION METHOD

A SUPER-RESOLUTION MICROSCOPY WITH STANDING EVANESCENT LIGHT AND IMAGE RECONSTRUCTION METHOD A SUPER-RESOLUTION MICROSCOPY WITH STANDING EVANESCENT LIGHT AND IMAGE RECONSTRUCTION METHOD Hiroaki Nishioka, Satoru Takahashi Kiyoshi Takamasu Department of Precision Engineering, The University of Tokyo,

More information

VOLUMES. The volume of a cylinder is determined by multiplying the cross sectional area by the height. r h V. a) 10 mm 25 mm.

VOLUMES. The volume of a cylinder is determined by multiplying the cross sectional area by the height. r h V. a) 10 mm 25 mm. OLUME OF A CYLINDER OLUMES Te volume of a cylinder is determined by multiplying te cross sectional area by te eigt. r Were: = volume r = radius = eigt Exercise 1 Complete te table ( =.14) r a) 10 mm 5

More information

Optical Topography Measurement of Patterned Wafers

Optical Topography Measurement of Patterned Wafers Optical Topography Measurement of Patterned Wafers Xavier Colonna de Lega and Peter de Groot Zygo Corporation, Laurel Brook Road, Middlefield CT 6455, USA xcolonna@zygo.com Abstract. We model the measurement

More information

Fresnel's biprism and mirrors

Fresnel's biprism and mirrors Fresnel's biprism and mirrors 1 Table of Contents Section Page Back ground... 3 Basic Experiments Experiment 1: Fresnel's mirrors... 4 Experiment 2: Fresnel's biprism... 7 2 Back ground Interference of

More information

Chapter 37. Wave Optics

Chapter 37. Wave Optics Chapter 37 Wave Optics Wave Optics Wave optics is a study concerned with phenomena that cannot be adequately explained by geometric (ray) optics. Sometimes called physical optics These phenomena include:

More information

12.2 Investigate Surface Area

12.2 Investigate Surface Area Investigating g Geometry ACTIVITY Use before Lesson 12.2 12.2 Investigate Surface Area MATERIALS grap paper scissors tape Q U E S T I O N How can you find te surface area of a polyedron? A net is a pattern

More information

Chapter 2: Wave Optics

Chapter 2: Wave Optics Chapter : Wave Optics P-1. We can write a plane wave with the z axis taken in the direction of the wave vector k as u(,) r t Acos tkzarg( A) As c /, T 1/ and k / we can rewrite the plane wave as t z u(,)

More information

4.1 Tangent Lines. y 2 y 1 = y 2 y 1

4.1 Tangent Lines. y 2 y 1 = y 2 y 1 41 Tangent Lines Introduction Recall tat te slope of a line tells us ow fast te line rises or falls Given distinct points (x 1, y 1 ) and (x 2, y 2 ), te slope of te line troug tese two points is cange

More information

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

wrobot k wwrobot hrobot (a) Observation area Horopter h(θ) (Virtual) horopters h(θ+ θ lim) U r U l h(θ+ θ) Base line Left camera Optical axis

wrobot k wwrobot hrobot (a) Observation area Horopter h(θ) (Virtual) horopters h(θ+ θ lim) U r U l h(θ+ θ) Base line Left camera Optical axis Selective Acquisition of 3-D Information Enoug for Finding Passable Free Spaces Using an Active Stereo Vision System Atsusi Nisikawa, Atsusi Okubo, and Fumio Miyazaki Department of Systems and Human Science

More information

Chapter 37. Interference of Light Waves

Chapter 37. Interference of Light Waves Chapter 37 Interference of Light Waves Wave Optics Wave optics is a study concerned with phenomena that cannot be adequately explained by geometric (ray) optics These phenomena include: Interference Diffraction

More information

UUV DEPTH MEASUREMENT USING CAMERA IMAGES

UUV DEPTH MEASUREMENT USING CAMERA IMAGES ABCM Symposium Series in Mecatronics - Vol. 3 - pp.292-299 Copyrigt c 2008 by ABCM UUV DEPTH MEASUREMENT USING CAMERA IMAGES Rogerio Yugo Takimoto Graduate Scool of Engineering Yokoama National University

More information

13.5 DIRECTIONAL DERIVATIVES and the GRADIENT VECTOR

13.5 DIRECTIONAL DERIVATIVES and the GRADIENT VECTOR 13.5 Directional Derivatives and te Gradient Vector Contemporary Calculus 1 13.5 DIRECTIONAL DERIVATIVES and te GRADIENT VECTOR Directional Derivatives In Section 13.3 te partial derivatives f x and f

More information

Physics 214 Midterm Fall 2003 Form A

Physics 214 Midterm Fall 2003 Form A 1. A ray of light is incident at the center of the flat circular surface of a hemispherical glass object as shown in the figure. The refracted ray A. emerges from the glass bent at an angle θ 2 with respect

More information

Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) Solutions

Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) Solutions Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) s Problem 1 (5x2 = 10 points) Label the following statements as True or False, with a one- or two-sentence explanation for why you chose

More information

Section 2.3: Calculating Limits using the Limit Laws

Section 2.3: Calculating Limits using the Limit Laws Section 2.3: Calculating Limits using te Limit Laws In previous sections, we used graps and numerics to approimate te value of a it if it eists. Te problem wit tis owever is tat it does not always give

More information

Assignment 8 Due November 29, Problems

Assignment 8 Due November 29, Problems Assignment 8 Due November 29, 2011 Text readings Fresnel equations, chapter 4.6 Polarization, chapter 8, sections 1, 2, 3, 5, 6, 7, and 8. Problems Problem 1 Polarization by Reflection: Given a polarizer

More information

Haar Transform CS 430 Denbigh Starkey

Haar Transform CS 430 Denbigh Starkey Haar Transform CS Denbig Starkey. Background. Computing te transform. Restoring te original image from te transform 7. Producing te transform matrix 8 5. Using Haar for lossless compression 6. Using Haar

More information

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation Chapter 6 Geometrical Optics Outline 6-1 The Reflection of Light 6- Forming Images with a Plane Mirror 6-3 Spherical Mirror 6-4 Ray Tracing and the Mirror Equation 6-5 The Refraction of Light 6-6 Ray Tracing

More information

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

Proceedings. Seventh ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC 2013) Palm Spring, CA

Proceedings. Seventh ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC 2013) Palm Spring, CA Proceedings Of te Sevent ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC ) Palm Spring, CA October 9 November st Parameter-Unaware Autocalibration for Occupancy Mapping David Van

More information

Section 3. Imaging With A Thin Lens

Section 3. Imaging With A Thin Lens Section 3 Imaging Wit A Tin Lens 3- at Ininity An object at ininity produces a set o collimated set o rays entering te optical system. Consider te rays rom a inite object located on te axis. Wen te object

More information

Two Modifications of Weight Calculation of the Non-Local Means Denoising Method

Two Modifications of Weight Calculation of the Non-Local Means Denoising Method Engineering, 2013, 5, 522-526 ttp://dx.doi.org/10.4236/eng.2013.510b107 Publised Online October 2013 (ttp://www.scirp.org/journal/eng) Two Modifications of Weigt Calculation of te Non-Local Means Denoising

More information

NOTES: A quick overview of 2-D geometry

NOTES: A quick overview of 2-D geometry NOTES: A quick overview of 2-D geometry Wat is 2-D geometry? Also called plane geometry, it s te geometry tat deals wit two dimensional sapes flat tings tat ave lengt and widt, suc as a piece of paper.

More information

Control of Light. Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 2007

Control of Light. Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 2007 Control of Light Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 007 Spectro-radiometry Spectral Considerations Chromatic dispersion

More information

MATH 5a Spring 2018 READING ASSIGNMENTS FOR CHAPTER 2

MATH 5a Spring 2018 READING ASSIGNMENTS FOR CHAPTER 2 MATH 5a Spring 2018 READING ASSIGNMENTS FOR CHAPTER 2 Note: Tere will be a very sort online reading quiz (WebWork) on eac reading assignment due one our before class on its due date. Due dates can be found

More information

Development of InP Immersion Grating for the near to mid infrared wavelength

Development of InP Immersion Grating for the near to mid infrared wavelength Paper No.54 Development of InP Immersion Grating for the near to mid infrared wavelength Takashi. Sukegawa Y.Okura, T.Nakayasu Outline Introduction Immersion grating by CANON InP immersion grating Summary

More information

Surface and thickness measurement of a transparent film using wavelength scanning interferometry

Surface and thickness measurement of a transparent film using wavelength scanning interferometry Surface and thickness measurement of a transparent film using wavelength scanning interferometry Feng Gao, Hussam Muhamedsalih, and Xiangqian Jiang * Centre for Precision Technologies, University of Huddersfield,

More information

3.6 Directional Derivatives and the Gradient Vector

3.6 Directional Derivatives and the Gradient Vector 288 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 3.6 Directional Derivatives and te Gradient Vector 3.6.1 Functions of two Variables Directional Derivatives Let us first quickly review, one more time, te

More information

Image Formation by Refraction

Image Formation by Refraction Image Formation by Refraction If you see a fish that appears to be swimming close to the front window of the aquarium, but then look through the side of the aquarium, you ll find that the fish is actually

More information

College Physics B - PHY2054C

College Physics B - PHY2054C Young College - PHY2054C Wave Optics: 10/29/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline Young 1 2 3 Young 4 5 Assume a thin soap film rests on a flat glass surface. Young Young

More information

CESILA: Communication Circle External Square Intersection-Based WSN Localization Algorithm

CESILA: Communication Circle External Square Intersection-Based WSN Localization Algorithm Sensors & Transducers 2013 by IFSA ttp://www.sensorsportal.com CESILA: Communication Circle External Square Intersection-Based WSN Localization Algoritm Sun Hongyu, Fang Ziyi, Qu Guannan College of Computer

More information

MICHELSON S INTERFEROMETER

MICHELSON S INTERFEROMETER MICHELSON S INTERFEROMETER Objectives: 1. Alignment of Michelson s Interferometer using He-Ne laser to observe concentric circular fringes 2. Measurement of the wavelength of He-Ne Laser and Na lamp using

More information

Wroclaw University of Technology Chair of Electronic and Photonic Metrology Wroclaw, Poland

Wroclaw University of Technology Chair of Electronic and Photonic Metrology Wroclaw, Poland METROLOGY AND MEASUREMENT SYSTEMS VOL. XV, NUMBER 4 (2008) WOJCIECH FRĄCZEK, JANUSZ MROCZKA Wroclaw University of Technology Chair of Electronic and Photonic Metrology Wroclaw, Poland e-mail: wojciech.fraczek@pwr.wroc.pl

More information

Polarization of light

Polarization of light Polarization of light TWO WEIGHTS RECOMENDED READINGS 1) G. King: Vibrations and Waves, Ch.5, pp. 109-11. Wiley, 009. ) E. Hecht: Optics, Ch.4 and Ch.8. Addison Wesley, 00. 3) PASCO Instruction Manual

More information

2.3 Additional Relations

2.3 Additional Relations 3 2.3 Additional Relations Figure 2.3 identiies additional relations, indicating te locations o te object and image, and te ratio o teir eigts (magniication) and orientations. Ray enters te lens parallel

More information

Lab 7 Interference and diffraction

Lab 7 Interference and diffraction Prep this lab, as usual. You may paste this entire lab into your notebook, including the data tables. All this should be completed prior to the start of lab on Wednesday, and I will score your completed

More information

A Finite Element Scheme for Calculating Inverse Dynamics of Link Mechanisms

A Finite Element Scheme for Calculating Inverse Dynamics of Link Mechanisms WCCM V Fift World Congress on Computational Mecanics July -1,, Vienna, Austria Eds.: H.A. Mang, F.G. Rammerstorfer, J. Eberardsteiner A Finite Element Sceme for Calculating Inverse Dynamics of Link Mecanisms

More information

MEMS SENSOR FOR MEMS METROLOGY

MEMS SENSOR FOR MEMS METROLOGY MEMS SENSOR FOR MEMS METROLOGY IAB Presentation Byungki Kim, H Ali Razavi, F. Levent Degertekin, Thomas R. Kurfess 9/24/24 OUTLINE INTRODUCTION Motivation Contact/Noncontact measurement Optical interferometer

More information

Alternating Direction Implicit Methods for FDTD Using the Dey-Mittra Embedded Boundary Method

Alternating Direction Implicit Methods for FDTD Using the Dey-Mittra Embedded Boundary Method Te Open Plasma Pysics Journal, 2010, 3, 29-35 29 Open Access Alternating Direction Implicit Metods for FDTD Using te Dey-Mittra Embedded Boundary Metod T.M. Austin *, J.R. Cary, D.N. Smite C. Nieter Tec-X

More information

13. Brewster angle measurement

13. Brewster angle measurement 13. Brewster angle measurement Brewster angle measurement Objective: 1. Verification of Malus law 2. Measurement of reflection coefficient of a glass plate for p- and s- polarizations 3. Determination

More information

Piecewise Polynomial Interpolation, cont d

Piecewise Polynomial Interpolation, cont d Jim Lambers MAT 460/560 Fall Semester 2009-0 Lecture 2 Notes Tese notes correspond to Section 4 in te text Piecewise Polynomial Interpolation, cont d Constructing Cubic Splines, cont d Having determined

More information

All truths are easy to understand once they are discovered; the point is to discover them. Galileo

All truths are easy to understand once they are discovered; the point is to discover them. Galileo Section 7. olume All truts are easy to understand once tey are discovered; te point is to discover tem. Galileo Te main topic of tis section is volume. You will specifically look at ow to find te volume

More information

Pedestrian Detection Algorithm for On-board Cameras of Multi View Angles

Pedestrian Detection Algorithm for On-board Cameras of Multi View Angles Pedestrian Detection Algoritm for On-board Cameras of Multi View Angles S. Kamijo IEEE, K. Fujimura, and Y. Sibayama Abstract In tis paper, a general algoritm for pedestrian detection by on-board monocular

More information

2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,

2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 016 IEEE. Personal use of tis material is permitted. Permission from IEEE must be obtained for all oter uses, in any current or future media, including reprinting/republising tis material for advertising

More information

Fast Calculation of Thermodynamic Properties of Water and Steam in Process Modelling using Spline Interpolation

Fast Calculation of Thermodynamic Properties of Water and Steam in Process Modelling using Spline Interpolation P R E P R N T CPWS XV Berlin, September 8, 008 Fast Calculation of Termodynamic Properties of Water and Steam in Process Modelling using Spline nterpolation Mattias Kunick a, Hans-Joacim Kretzscmar a,

More information

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE 58 UNIT VI OPTICS ALL THE POSSIBLE FORMULAE Relation between focal length and radius of curvature of a mirror/lens, f = R/2 Mirror formula: Magnification produced by a mirror: m = - = - Snell s law: 1

More information

The location of the bright fringes can be found using the following equation.

The location of the bright fringes can be found using the following equation. What You Need to Know: In the past two labs we ve been thinking of light as a particle that reflects off of a surface or refracts into a medium. Now we are going to talk about light as a wave. If you take

More information

A signature analysis based method for elliptical shape

A signature analysis based method for elliptical shape A signature analysis based metod for elliptical sape Ivana Guarneri, Mirko Guarnera, Giuseppe Messina and Valeria Tomaselli STMicroelectronics - AST Imaging Lab, Stradale rimosole 50, Catania, Italy ABSTRACT

More information

Parallel two-step spatial carrier phase-shifting common-path interferometer with a Ronchi grating outside the Fourier plane

Parallel two-step spatial carrier phase-shifting common-path interferometer with a Ronchi grating outside the Fourier plane Parallel two-step spatial carrier phase-shifting common-path interferometer with a Ronchi grating outside the Fourier plane Mingguang Shan, Bengong Hao, Zhi Zhong,* Ming Diao, and Yabin Zhang College of

More information

Surface and thickness profile measurement of a transparent film by three-wavelength vertical scanning interferometry

Surface and thickness profile measurement of a transparent film by three-wavelength vertical scanning interferometry Surface and thickness profile measurement of a transparent film by three-wavelength vertical scanning interferometry Katsuichi Kitagawa Toray Engineering Co. Ltd., 1-1-45 Oe, Otsu 50-141, Japan Corresponding

More information

OPSE FINAL EXAM Fall CLOSED BOOK. Two pages (front/back of both pages) of equations are allowed.

OPSE FINAL EXAM Fall CLOSED BOOK. Two pages (front/back of both pages) of equations are allowed. CLOSED BOOK. Two pages (front/back of both pages) of equations are allowed. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED.

More information

University Physics (Prof. David Flory) Chapt_37 Monday, August 06, 2007

University Physics (Prof. David Flory) Chapt_37 Monday, August 06, 2007 Name: Date: 1. If we increase the wavelength of the light used to form a double-slit diffraction pattern: A) the width of the central diffraction peak increases and the number of bright fringes within

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 27 Chapter 33 sec. 7-8 Fall 2017 Semester Professor Koltick Clicker Question Bright light of wavelength 585 nm is incident perpendicularly on a soap film (n =

More information

Photopolymer Diffractive Optical Elements in Electronic Speckle Pattern Shearing Interferometry

Photopolymer Diffractive Optical Elements in Electronic Speckle Pattern Shearing Interferometry Dublin Institute of Technology ARROW@DIT Articles Centre for Industrial and Engineering Optics 2006-01-01 Photopolymer Diffractive Optical Elements in Electronic Speckle Pattern Shearing Interferometry

More information

Diffraction and Interference of Plane Light Waves

Diffraction and Interference of Plane Light Waves PHY 92 Diffraction and Interference of Plane Light Waves Diffraction and Interference of Plane Light Waves Introduction In this experiment you will become familiar with diffraction patterns created when

More information

Characterization of MEMS Devices

Characterization of MEMS Devices MEMS: Characterization Characterization of MEMS Devices Prasanna S. Gandhi Assistant Professor, Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Recap Fabrication of MEMS Conventional

More information

Lab2: Single Photon Interference

Lab2: Single Photon Interference Lab2: Single Photon Interference Xiaoshu Chen* Department of Mechanical Engineering, University of Rochester, NY, 14623 ABSTRACT The wave-particle duality of light was verified by multi and single photon

More information

A Single Grating-lens Focusing Two Orthogonally Polarized Beams in Opposite Direction

A Single Grating-lens Focusing Two Orthogonally Polarized Beams in Opposite Direction , pp.41-45 http://dx.doi.org/10.14257/astl.2016.140.08 A Single Grating-lens Focusing Two Orthogonally Polarized Beams in Opposite Direction Seung Dae Lee 1 1* Dept. of Electronic Engineering, Namseoul

More information

Investigating an automated method for the sensitivity analysis of functions

Investigating an automated method for the sensitivity analysis of functions Investigating an automated metod for te sensitivity analysis of functions Sibel EKER s.eker@student.tudelft.nl Jill SLINGER j..slinger@tudelft.nl Delft University of Tecnology 2628 BX, Delft, te Neterlands

More information

Chapter 24 The Wave Nature of Light

Chapter 24 The Wave Nature of Light Chapter 24 The Wave Nature of Light 24.1 Waves Versus Particles; Huygens Principle and Diffraction Huygens principle: Every point on a wave front acts as a point source; the wavefront as it develops is

More information

Introduction to Microeletromechanical Systems (MEMS) Lecture 8 Topics. MEMS Overview

Introduction to Microeletromechanical Systems (MEMS) Lecture 8 Topics. MEMS Overview Introduction to Microeletromechanical Systems (MEMS) Lecture 8 Topics MicroOptoElectroMechanical Systems (MOEMS) Scanning D Micromirrors TI Digital Light Projection Device Basic Optics: Refraction and

More information

The (, D) and (, N) problems in double-step digraphs with unilateral distance

The (, D) and (, N) problems in double-step digraphs with unilateral distance Electronic Journal of Grap Teory and Applications () (), Te (, D) and (, N) problems in double-step digraps wit unilateral distance C Dalfó, MA Fiol Departament de Matemàtica Aplicada IV Universitat Politècnica

More information

UNSUPERVISED HIERARCHICAL IMAGE SEGMENTATION BASED ON THE TS-MRF MODEL AND FAST MEAN-SHIFT CLUSTERING

UNSUPERVISED HIERARCHICAL IMAGE SEGMENTATION BASED ON THE TS-MRF MODEL AND FAST MEAN-SHIFT CLUSTERING UNSUPERVISED HIERARCHICAL IMAGE SEGMENTATION BASED ON THE TS-MRF MODEL AND FAST MEAN-SHIFT CLUSTERING Raffaele Gaetano, Giuseppe Scarpa, Giovanni Poggi, and Josiane Zerubia Dip. Ing. Elettronica e Telecomunicazioni,

More information

Measuring Length 11and Area

Measuring Length 11and Area Measuring Lengt 11and Area 11.1 Areas of Triangles and Parallelograms 11.2 Areas of Trapezoids, Romuses, and Kites 11.3 Perimeter and Area of Similar Figures 11.4 Circumference and Arc Lengt 11.5 Areas

More information

Chapter 10 DIFFRACTION GRADING SAFETY NOTES

Chapter 10 DIFFRACTION GRADING SAFETY NOTES Chapter 10 DIFFRACTION GRADING SAFETY NOTES Do not look directly into the laser cavity, or at any reflections of the laser caused by shiny surfaces. Keep beam at bench level so as not to accidentally shine

More information

Refraction and Dispersion

Refraction and Dispersion Refraction and Dispersion 1 Objectives 1. To understand refraction in optical systems, and 2. To understand dispersion in optical systems. 2 Introduction From Einstein s Special Theory of Relativity, we

More information

Lecture 16 Diffraction Ch. 36

Lecture 16 Diffraction Ch. 36 Lecture 16 Diffraction Ch. 36 Topics Newtons Rings Diffraction and the wave theory Single slit diffraction Intensity of single slit diffraction Double slit diffraction Diffraction grating Dispersion and

More information

Wave Optics. April 11, 2014 Chapter 34 1

Wave Optics. April 11, 2014 Chapter 34 1 Wave Optics April 11, 2014 Chapter 34 1 Announcements! Exam tomorrow! We/Thu: Relativity! Last week: Review of entire course, no exam! Final exam Wednesday, April 30, 8-10 PM Location: WH B115 (Wells Hall)

More information

Engineering Mechanics (Statics) (Centroid) Dr. Hayder A. Mehdi

Engineering Mechanics (Statics) (Centroid) Dr. Hayder A. Mehdi Engineering Mecanics (Statics) (Centroid) Dr. Hader A. Medi Centroid of an Area: If an area lies in te x plane and is ounded te curve = f (x), as sown in te following figure ten its centroid will e in

More information

Interference of Light

Interference of Light Interference of Light Review: Principle of Superposition When two or more waves interact they interfere. Wave interference is governed by the principle of superposition. The superposition principle says

More information

Chapter 34. Images. Two Types of Images. A Common Mirage. Plane Mirrors, Extended Object. Plane Mirrors, Point Object

Chapter 34. Images. Two Types of Images. A Common Mirage. Plane Mirrors, Extended Object. Plane Mirrors, Point Object Capter Images One o te most important uses o te basic laws governing ligt is te production o images. Images are critical to a variety o ields and industries ranging rom entertainment, security, and medicine

More information

Influence of Texture Orientation on the Hydrodynamic Lubrication

Influence of Texture Orientation on the Hydrodynamic Lubrication Influence of Texture Orientation on te Hydrodynamic Lubrication Syed Ismail, Sarangi M Department of Mecanical Engineering Indian Institute of Tecnology, Karagpur West Bengal, India smiir@mec.iitkgp.ernet.in

More information

ASSESSMENT OF IMAGE REGISTRATION INTERPOLATION METHODS FOR PRESSURE- SENSITIVE PAINT MEASUREMENTS

ASSESSMENT OF IMAGE REGISTRATION INTERPOLATION METHODS FOR PRESSURE- SENSITIVE PAINT MEASUREMENTS TH NTERNATONAL SYMPOSUM ON FLOW VSUALZATON August 9-4 University of Notre Dame Notre Dame ndiana USA ASSESSMENT OF MAGE REGSTRATON NTERPOLATON METHODS FOR PRESSURE- SENSTVE PANT MEASUREMENTS Sang-Hyun

More information